Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| import torch.optim as optim | |
| # Convolutional Neural Network Model | |
| class ConvolutionalNeuralNetwork(nn.Module): | |
| def __init__(self): | |
| super(ConvolutionalNeuralNetwork, self).__init__() | |
| self.conv1 = nn.Conv2d(1, 16, kernel_size=5) | |
| self.conv2 = nn.Conv2d(16, 32, kernel_size=5) | |
| self.pool = nn.MaxPool2d(kernel_size=2, stride=2) | |
| self.fc1 = nn.Linear(32 * 4 * 4, 120) | |
| self.fc2 = nn.Linear(120, 84) | |
| self.fc3 = nn.Linear(84, 10) | |
| def forward(self, x): | |
| x = self.pool(torch.relu(self.conv1(x))) | |
| x = self.pool(torch.relu(self.conv2(x))) | |
| x = x.view(-1, 32 * 4 * 4) | |
| x = torch.relu(self.fc1(x)) | |
| x = torch.relu(self.fc2(x)) | |
| return x # Return raw output without applying softmax | |
| # Training Function | |
| def train_model(model, criterion, optimizer, x_train, y_train, epochs=100): | |
| for epoch in range(epochs): | |
| model.train() | |
| optimizer.zero_grad() | |
| y_pred = model(x_train) | |
| loss = criterion(y_pred, y_train) | |
| loss.backward() | |
| optimizer.step() | |
| if (epoch+1) % 10 == 0: | |
| print(f'Epoch [{epoch+1}/{epochs}], Loss: {loss.item():.4f}') | |
| import matplotlib.pyplot as plt # Added import for plotting | |
| # Example Usage | |
| if __name__ == "__main__": | |
| # Sample Data | |
| x_train = torch.randn(100, 1, 28, 28) # Example for MNIST | |
| y_train = torch.randint(0, 10, (100,)) | |
| # Plotting the input data | |
| for i in range(6): | |
| plt.subplot(2, 3, i + 1) | |
| plt.imshow(x_train[i].squeeze(), cmap='gray') | |
| plt.title(f'Label: {y_train[i].item()}') | |
| plt.axis('off') | |
| plt.show() | |
| model = ConvolutionalNeuralNetwork() | |
| # Plotting the predictions | |
| y_pred = model(x_train).detach().numpy() | |
| plt.figure(figsize=(12, 6)) | |
| for i in range(6): | |
| plt.subplot(2, 3, i + 1) | |
| plt.imshow(x_train[i].squeeze(), cmap='gray') | |
| plt.title(f'Predicted: {np.argmax(y_pred[i])}') | |
| plt.axis('off') | |
| plt.show() | |
| criterion = nn.CrossEntropyLoss() | |
| optimizer = optim.SGD(model.parameters(), lr=0.01) | |
| train_model(model, criterion, optimizer, x_train, y_train) | |