|
import torch
|
|
import torchaudio
|
|
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
|
import gradio as gr
|
|
|
|
model = Wav2Vec2ForCTC.from_pretrained("tacab/tacab_asr_somali")
|
|
processor = Wav2Vec2Processor.from_pretrained("tacab/tacab_asr_somali")
|
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
model.to(device)
|
|
|
|
def transcribe(audio):
|
|
waveform, sample_rate = torchaudio.load(audio)
|
|
if sample_rate != 16000:
|
|
waveform = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)(waveform)
|
|
if waveform.shape[0] > 1:
|
|
waveform = waveform.mean(dim=0, keepdim=True)
|
|
inputs = processor(waveform.squeeze().numpy(), sampling_rate=16000, return_tensors="pt")
|
|
input_values = inputs.input_values.to(device)
|
|
with torch.no_grad():
|
|
logits = model(input_values).logits
|
|
predicted_ids = torch.argmax(logits, dim=-1)
|
|
transcription = processor.batch_decode(predicted_ids)[0]
|
|
return transcription.lower()
|
|
|
|
gr.Interface(
|
|
fn=transcribe,
|
|
inputs=gr.Audio(type="filepath", label="ποΈ Ku hadal Af Soomaali"),
|
|
outputs=gr.Text(label="π Qoraalka la helay"),
|
|
title="Tacab ASR Somali",
|
|
description="ASR model for Somali speech-to-text using Wav2Vec2.",
|
|
).launch()
|
|
|