Spaces:
Runtime error
Runtime error
import uuid | |
from langchain_community.vectorstores import Qdrant | |
from qdrant_client import models | |
from utils import setup_qdrant_client,setup_openai_embeddings | |
def embed_documents_into_qdrant(documents, api_key, qdrant_url, qdrant_api_key, collection_name="Lex-v1"): | |
"""Embed documents into Qdrant.""" | |
embeddings_model = setup_openai_embeddings(api_key) | |
client = setup_qdrant_client(qdrant_url, qdrant_api_key) | |
qdrant = Qdrant(client=client, collection_name=collection_name, embeddings=embeddings_model) | |
try: | |
qdrant.add_documents(documents) | |
except Exception as e: | |
print("Failed to embed documents:", e) | |
def embed_documents_with_unique_collection(documents, api_key, qdrant_url, qdrant_api_key, collection_name=None): | |
"""Embed documents into a unique Qdrant collection.""" | |
if not collection_name: | |
collection_name = f"session-{uuid.uuid4()}" | |
client = setup_qdrant_client(qdrant_url, qdrant_api_key) | |
client.create_collection( | |
collection_name=collection_name, | |
vectors_config=models.VectorParams(size=1536, distance=models.Distance.COSINE) | |
) | |
embeddings_model = setup_openai_embeddings(api_key) | |
qdrant = Qdrant(client=client, collection_name=collection_name, embeddings=embeddings_model) | |
try: | |
qdrant.add_documents(documents) | |
except Exception as e: | |
print("Failed to embed documents:", e) | |
return collection_name |