splatter_image / scene /gaussian_predictor.py
Stanislaw Szymanowicz
Add util files
4aa5114
raw
history blame
No virus
39.2 kB
import torch
import torch.nn as nn
import numpy as np
from torch.nn.functional import silu
from einops import rearrange
from utils.general_utils import quaternion_raw_multiply
from utils.graphics_utils import fov2focal
# U-Net implementation from EDM
# Copyright (c) 2022, NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is licensed under a Creative Commons
# Attribution-NonCommercial-ShareAlike 4.0 International License.
# You should have received a copy of the license along with this
# work. If not, see http://creativecommons.org/licenses/by-nc-sa/4.0/
"""Model architectures and preconditioning schemes used in the paper
"Elucidating the Design Space of Diffusion-Based Generative Models"."""
#----------------------------------------------------------------------------
# Unified routine for initializing weights and biases.
def weight_init(shape, mode, fan_in, fan_out):
if mode == 'xavier_uniform': return np.sqrt(6 / (fan_in + fan_out)) * (torch.rand(*shape) * 2 - 1)
if mode == 'xavier_normal': return np.sqrt(2 / (fan_in + fan_out)) * torch.randn(*shape)
if mode == 'kaiming_uniform': return np.sqrt(3 / fan_in) * (torch.rand(*shape) * 2 - 1)
if mode == 'kaiming_normal': return np.sqrt(1 / fan_in) * torch.randn(*shape)
raise ValueError(f'Invalid init mode "{mode}"')
#----------------------------------------------------------------------------
# Fully-connected layer.
class Linear(torch.nn.Module):
def __init__(self, in_features, out_features, bias=True, init_mode='kaiming_normal', init_weight=1, init_bias=0):
super().__init__()
self.in_features = in_features
self.out_features = out_features
init_kwargs = dict(mode=init_mode, fan_in=in_features, fan_out=out_features)
self.weight = torch.nn.Parameter(weight_init([out_features, in_features], **init_kwargs) * init_weight)
self.bias = torch.nn.Parameter(weight_init([out_features], **init_kwargs) * init_bias) if bias else None
def forward(self, x):
x = x @ self.weight.to(x.dtype).t()
if self.bias is not None:
x = x.add_(self.bias.to(x.dtype))
return x
#----------------------------------------------------------------------------
# Convolutional layer with optional up/downsampling.
class Conv2d(torch.nn.Module):
def __init__(self,
in_channels, out_channels, kernel, bias=True, up=False, down=False,
resample_filter=[1,1], fused_resample=False, init_mode='kaiming_normal', init_weight=1, init_bias=0,
):
assert not (up and down)
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
self.up = up
self.down = down
self.fused_resample = fused_resample
init_kwargs = dict(mode=init_mode, fan_in=in_channels*kernel*kernel, fan_out=out_channels*kernel*kernel)
self.weight = torch.nn.Parameter(weight_init([out_channels, in_channels, kernel, kernel], **init_kwargs) * init_weight) if kernel else None
self.bias = torch.nn.Parameter(weight_init([out_channels], **init_kwargs) * init_bias) if kernel and bias else None
f = torch.as_tensor(resample_filter, dtype=torch.float32)
f = f.ger(f).unsqueeze(0).unsqueeze(1) / f.sum().square()
self.register_buffer('resample_filter', f if up or down else None)
def forward(self, x, N_views_xa=1):
w = self.weight.to(x.dtype) if self.weight is not None else None
b = self.bias.to(x.dtype) if self.bias is not None else None
f = self.resample_filter.to(x.dtype) if self.resample_filter is not None else None
w_pad = w.shape[-1] // 2 if w is not None else 0
f_pad = (f.shape[-1] - 1) // 2 if f is not None else 0
if self.fused_resample and self.up and w is not None:
x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=max(f_pad - w_pad, 0))
x = torch.nn.functional.conv2d(x, w, padding=max(w_pad - f_pad, 0))
elif self.fused_resample and self.down and w is not None:
x = torch.nn.functional.conv2d(x, w, padding=w_pad+f_pad)
x = torch.nn.functional.conv2d(x, f.tile([self.out_channels, 1, 1, 1]), groups=self.out_channels, stride=2)
else:
if self.up:
x = torch.nn.functional.conv_transpose2d(x, f.mul(4).tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad)
if self.down:
x = torch.nn.functional.conv2d(x, f.tile([self.in_channels, 1, 1, 1]), groups=self.in_channels, stride=2, padding=f_pad)
if w is not None:
x = torch.nn.functional.conv2d(x, w, padding=w_pad)
if b is not None:
x = x.add_(b.reshape(1, -1, 1, 1))
return x
#----------------------------------------------------------------------------
# Group normalization.
class GroupNorm(torch.nn.Module):
def __init__(self, num_channels, num_groups=32, min_channels_per_group=4, eps=1e-5):
super().__init__()
self.num_groups = min(num_groups, num_channels // min_channels_per_group)
self.eps = eps
self.weight = torch.nn.Parameter(torch.ones(num_channels))
self.bias = torch.nn.Parameter(torch.zeros(num_channels))
def forward(self, x, N_views_xa=1):
x = torch.nn.functional.group_norm(x, num_groups=self.num_groups, weight=self.weight.to(x.dtype), bias=self.bias.to(x.dtype), eps=self.eps)
return x.to(memory_format=torch.channels_last)
#----------------------------------------------------------------------------
# Attention weight computation, i.e., softmax(Q^T * K).
# Performs all computation using FP32, but uses the original datatype for
# inputs/outputs/gradients to conserve memory.
class AttentionOp(torch.autograd.Function):
@staticmethod
def forward(ctx, q, k):
w = torch.einsum('ncq,nck->nqk', q.to(torch.float32), (k / np.sqrt(k.shape[1])).to(torch.float32)).softmax(dim=2).to(q.dtype)
ctx.save_for_backward(q, k, w)
return w
@staticmethod
def backward(ctx, dw):
q, k, w = ctx.saved_tensors
db = torch._softmax_backward_data(grad_output=dw.to(torch.float32), output=w.to(torch.float32), dim=2, input_dtype=torch.float32)
dq = torch.einsum('nck,nqk->ncq', k.to(torch.float32), db).to(q.dtype) / np.sqrt(k.shape[1])
dk = torch.einsum('ncq,nqk->nck', q.to(torch.float32), db).to(k.dtype) / np.sqrt(k.shape[1])
return dq, dk
#----------------------------------------------------------------------------
# Timestep embedding used in the DDPM++ and ADM architectures.
class PositionalEmbedding(torch.nn.Module):
def __init__(self, num_channels, max_positions=10000, endpoint=False):
super().__init__()
self.num_channels = num_channels
self.max_positions = max_positions
self.endpoint = endpoint
def forward(self, x):
b, c = x.shape
x = rearrange(x, 'b c -> (b c)')
freqs = torch.arange(start=0, end=self.num_channels//2, dtype=torch.float32, device=x.device)
freqs = freqs / (self.num_channels // 2 - (1 if self.endpoint else 0))
freqs = (1 / self.max_positions) ** freqs
x = x.ger(freqs.to(x.dtype))
x = torch.cat([x.cos(), x.sin()], dim=1)
x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b)
return x
#----------------------------------------------------------------------------
# Timestep embedding used in the NCSN++ architecture.
class FourierEmbedding(torch.nn.Module):
def __init__(self, num_channels, scale=16):
super().__init__()
self.register_buffer('freqs', torch.randn(num_channels // 2) * scale)
def forward(self, x):
b, c = x.shape
x = rearrange(x, 'b c -> (b c)')
x = x.ger((2 * np.pi * self.freqs).to(x.dtype))
x = torch.cat([x.cos(), x.sin()], dim=1)
x = rearrange(x, '(b c) emb_ch -> b (c emb_ch)', b=b)
return x
class CrossAttentionBlock(torch.nn.Module):
def __init__(self, num_channels, num_heads = 1, eps=1e-5):
super().__init__()
self.num_heads = 1
init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2))
init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5)
self.norm = GroupNorm(num_channels=num_channels, eps=eps)
self.q_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=1, **init_attn)
self.kv_proj = Conv2d(in_channels=num_channels, out_channels=num_channels*2, kernel=1, **init_attn)
self.out_proj = Conv2d(in_channels=num_channels, out_channels=num_channels, kernel=3, **init_zero)
def forward(self, q, kv):
q_proj = self.q_proj(self.norm(q)).reshape(q.shape[0] * self.num_heads, q.shape[1] // self.num_heads, -1)
k_proj, v_proj = self.kv_proj(self.norm(kv)).reshape(kv.shape[0] * self.num_heads,
kv.shape[1] // self.num_heads, 2, -1).unbind(2)
w = AttentionOp.apply(q_proj, k_proj)
a = torch.einsum('nqk,nck->ncq', w, v_proj)
x = self.out_proj(a.reshape(*q.shape)).add_(q)
return x
#----------------------------------------------------------------------------
# Unified U-Net block with optional up/downsampling and self-attention.
# Represents the union of all features employed by the DDPM++, NCSN++, and
# ADM architectures.
class UNetBlock(torch.nn.Module):
def __init__(self,
in_channels, out_channels, emb_channels, up=False, down=False, attention=False,
num_heads=None, channels_per_head=64, dropout=0, skip_scale=1, eps=1e-5,
resample_filter=[1,1], resample_proj=False, adaptive_scale=True,
init=dict(), init_zero=dict(init_weight=0), init_attn=None,
):
super().__init__()
self.in_channels = in_channels
self.out_channels = out_channels
if emb_channels is not None:
self.affine = Linear(in_features=emb_channels, out_features=out_channels*(2 if adaptive_scale else 1), **init)
self.num_heads = 0 if not attention else num_heads if num_heads is not None else out_channels // channels_per_head
self.dropout = dropout
self.skip_scale = skip_scale
self.adaptive_scale = adaptive_scale
self.norm0 = GroupNorm(num_channels=in_channels, eps=eps)
self.conv0 = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=3, up=up, down=down, resample_filter=resample_filter, **init)
self.norm1 = GroupNorm(num_channels=out_channels, eps=eps)
self.conv1 = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=3, **init_zero)
self.skip = None
if out_channels != in_channels or up or down:
kernel = 1 if resample_proj or out_channels!= in_channels else 0
self.skip = Conv2d(in_channels=in_channels, out_channels=out_channels, kernel=kernel, up=up, down=down, resample_filter=resample_filter, **init)
if self.num_heads:
self.norm2 = GroupNorm(num_channels=out_channels, eps=eps)
self.qkv = Conv2d(in_channels=out_channels, out_channels=out_channels*3, kernel=1, **(init_attn if init_attn is not None else init))
self.proj = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=1, **init_zero)
def forward(self, x, emb=None, N_views_xa=1):
orig = x
x = self.conv0(silu(self.norm0(x)))
if emb is not None:
params = self.affine(emb).unsqueeze(2).unsqueeze(3).to(x.dtype)
if self.adaptive_scale:
scale, shift = params.chunk(chunks=2, dim=1)
x = silu(torch.addcmul(shift, self.norm1(x), scale + 1))
else:
x = silu(self.norm1(x.add_(params)))
x = silu(self.norm1(x))
x = self.conv1(torch.nn.functional.dropout(x, p=self.dropout, training=self.training))
x = x.add_(self.skip(orig) if self.skip is not None else orig)
x = x * self.skip_scale
if self.num_heads:
if N_views_xa != 1:
B, C, H, W = x.shape
# (B, C, H, W) -> (B/N, N, C, H, W) -> (B/N, N, H, W, C)
x = x.reshape(B // N_views_xa, N_views_xa, *x.shape[1:]).permute(0, 1, 3, 4, 2)
# (B/N, N, H, W, C) -> (B/N, N*H, W, C) -> (B/N, C, N*H, W)
x = x.reshape(B // N_views_xa, N_views_xa * x.shape[2], *x.shape[3:]).permute(0, 3, 1, 2)
q, k, v = self.qkv(self.norm2(x)).reshape(x.shape[0] * self.num_heads, x.shape[1] // self.num_heads, 3, -1).unbind(2)
w = AttentionOp.apply(q, k)
a = torch.einsum('nqk,nck->ncq', w, v)
x = self.proj(a.reshape(*x.shape)).add_(x)
x = x * self.skip_scale
if N_views_xa != 1:
# (B/N, C, N*H, W) -> (B/N, N*H, W, C)
x = x.permute(0, 2, 3, 1)
# (B/N, N*H, W, C) -> (B/N, N, H, W, C) -> (B/N, N, C, H, W)
x = x.reshape(B // N_views_xa, N_views_xa, H, W, C).permute(0, 1, 4, 2, 3)
# (B/N, N, C, H, W) -> # (B, C, H, W)
x = x.reshape(B, C, H, W)
return x
#----------------------------------------------------------------------------
# Reimplementation of the DDPM++ and NCSN++ architectures from the paper
# "Score-Based Generative Modeling through Stochastic Differential
# Equations". Equivalent to the original implementation by Song et al.,
# available at https://github.com/yang-song/score_sde_pytorch
# taken from EDM repository https://github.com/NVlabs/edm/blob/main/training/networks.py#L372
class SongUNet(nn.Module):
def __init__(self,
img_resolution, # Image resolution at input/output.
in_channels, # Number of color channels at input.
out_channels, # Number of color channels at output.
emb_dim_in = 0, # Input embedding dim.
augment_dim = 0, # Augmentation label dimensionality, 0 = no augmentation.
model_channels = 128, # Base multiplier for the number of channels.
channel_mult = [1,2,2,2], # Per-resolution multipliers for the number of channels.
channel_mult_emb = 4, # Multiplier for the dimensionality of the embedding vector.
num_blocks = 4, # Number of residual blocks per resolution.
attn_resolutions = [16], # List of resolutions with self-attention.
dropout = 0.10, # Dropout probability of intermediate activations.
label_dropout = 0, # Dropout probability of class labels for classifier-free guidance.
embedding_type = 'positional', # Timestep embedding type: 'positional' for DDPM++, 'fourier' for NCSN++.
channel_mult_noise = 0, # Timestep embedding size: 1 for DDPM++, 2 for NCSN++.
encoder_type = 'standard', # Encoder architecture: 'standard' for DDPM++, 'residual' for NCSN++.
decoder_type = 'standard', # Decoder architecture: 'standard' for both DDPM++ and NCSN++.
resample_filter = [1,1], # Resampling filter: [1,1] for DDPM++, [1,3,3,1] for NCSN++.
):
assert embedding_type in ['fourier', 'positional']
assert encoder_type in ['standard', 'skip', 'residual']
assert decoder_type in ['standard', 'skip']
super().__init__()
self.label_dropout = label_dropout
self.emb_dim_in = emb_dim_in
if emb_dim_in > 0:
emb_channels = model_channels * channel_mult_emb
else:
emb_channels = None
noise_channels = model_channels * channel_mult_noise
init = dict(init_mode='xavier_uniform')
init_zero = dict(init_mode='xavier_uniform', init_weight=1e-5)
init_attn = dict(init_mode='xavier_uniform', init_weight=np.sqrt(0.2))
block_kwargs = dict(
emb_channels=emb_channels, num_heads=1, dropout=dropout, skip_scale=np.sqrt(0.5), eps=1e-6,
resample_filter=resample_filter, resample_proj=True, adaptive_scale=False,
init=init, init_zero=init_zero, init_attn=init_attn,
)
# Mapping.
# self.map_label = Linear(in_features=label_dim, out_features=noise_channels, **init) if label_dim else None
# self.map_augment = Linear(in_features=augment_dim, out_features=noise_channels, bias=False, **init) if augment_dim else None
# self.map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init)
# self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
if emb_dim_in > 0:
self.map_layer0 = Linear(in_features=emb_dim_in, out_features=emb_channels, **init)
self.map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
if noise_channels > 0:
self.noise_map_layer0 = Linear(in_features=noise_channels, out_features=emb_channels, **init)
self.noise_map_layer1 = Linear(in_features=emb_channels, out_features=emb_channels, **init)
# Encoder.
self.enc = torch.nn.ModuleDict()
cout = in_channels
caux = in_channels
for level, mult in enumerate(channel_mult):
res = img_resolution >> level
if level == 0:
cin = cout
cout = model_channels
self.enc[f'{res}x{res}_conv'] = Conv2d(in_channels=cin, out_channels=cout, kernel=3, **init)
else:
self.enc[f'{res}x{res}_down'] = UNetBlock(in_channels=cout, out_channels=cout, down=True, **block_kwargs)
if encoder_type == 'skip':
self.enc[f'{res}x{res}_aux_down'] = Conv2d(in_channels=caux, out_channels=caux, kernel=0, down=True, resample_filter=resample_filter)
self.enc[f'{res}x{res}_aux_skip'] = Conv2d(in_channels=caux, out_channels=cout, kernel=1, **init)
if encoder_type == 'residual':
self.enc[f'{res}x{res}_aux_residual'] = Conv2d(in_channels=caux, out_channels=cout, kernel=3, down=True, resample_filter=resample_filter, fused_resample=True, **init)
caux = cout
for idx in range(num_blocks):
cin = cout
cout = model_channels * mult
attn = (res in attn_resolutions)
self.enc[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs)
skips = [block.out_channels for name, block in self.enc.items() if 'aux' not in name]
# Decoder.
self.dec = torch.nn.ModuleDict()
for level, mult in reversed(list(enumerate(channel_mult))):
res = img_resolution >> level
if level == len(channel_mult) - 1:
self.dec[f'{res}x{res}_in0'] = UNetBlock(in_channels=cout, out_channels=cout, attention=True, **block_kwargs)
self.dec[f'{res}x{res}_in1'] = UNetBlock(in_channels=cout, out_channels=cout, **block_kwargs)
else:
self.dec[f'{res}x{res}_up'] = UNetBlock(in_channels=cout, out_channels=cout, up=True, **block_kwargs)
for idx in range(num_blocks + 1):
cin = cout + skips.pop()
cout = model_channels * mult
attn = (idx == num_blocks and res in attn_resolutions)
self.dec[f'{res}x{res}_block{idx}'] = UNetBlock(in_channels=cin, out_channels=cout, attention=attn, **block_kwargs)
if decoder_type == 'skip' or level == 0:
if decoder_type == 'skip' and level < len(channel_mult) - 1:
self.dec[f'{res}x{res}_aux_up'] = Conv2d(in_channels=out_channels, out_channels=out_channels, kernel=0, up=True, resample_filter=resample_filter)
self.dec[f'{res}x{res}_aux_norm'] = GroupNorm(num_channels=cout, eps=1e-6)
self.dec[f'{res}x{res}_aux_conv'] = Conv2d(in_channels=cout, out_channels=out_channels, kernel=3, init_weight=0.2, **init)# init_zero)
def forward(self, x, film_camera_emb=None, N_views_xa=1):
emb = None
if film_camera_emb is not None:
if self.emb_dim_in != 1:
film_camera_emb = film_camera_emb.reshape(
film_camera_emb.shape[0], 2, -1).flip(1).reshape(*film_camera_emb.shape) # swap sin/cos
film_camera_emb = silu(self.map_layer0(film_camera_emb))
film_camera_emb = silu(self.map_layer1(film_camera_emb))
emb = film_camera_emb
# Encoder.
skips = []
aux = x
for name, block in self.enc.items():
if 'aux_down' in name:
aux = block(aux, N_views_xa)
elif 'aux_skip' in name:
x = skips[-1] = x + block(aux, N_views_xa)
elif 'aux_residual' in name:
x = skips[-1] = aux = (x + block(aux, N_views_xa)) / np.sqrt(2)
else:
x = block(x, emb=emb, N_views_xa=N_views_xa) if isinstance(block, UNetBlock) \
else block(x, N_views_xa=N_views_xa)
skips.append(x)
# Decoder.
aux = None
tmp = None
for name, block in self.dec.items():
if 'aux_up' in name:
aux = block(aux, N_views_xa)
elif 'aux_norm' in name:
tmp = block(x, N_views_xa)
elif 'aux_conv' in name:
tmp = block(silu(tmp), N_views_xa)
aux = tmp if aux is None else tmp + aux
else:
if x.shape[1] != block.in_channels:
# skip connection is pixel-aligned which is good for
# foreground features
# but it's not good for gradient flow and background features
x = torch.cat([x, skips.pop()], dim=1)
x = block(x, emb=emb, N_views_xa=N_views_xa)
return aux
class SingleImageSongUNetPredictor(nn.Module):
def __init__(self, cfg, out_channels, bias, scale):
super(SingleImageSongUNetPredictor, self).__init__()
self.out_channels = out_channels
self.cfg = cfg
if cfg.cam_embd.embedding is None:
in_channels = 3
emb_dim_in = 0
else:
in_channels = 3
emb_dim_in = 6 * cfg.cam_embd.dimension
self.encoder = SongUNet(cfg.data.training_resolution,
in_channels,
sum(out_channels),
model_channels=cfg.model.base_dim,
num_blocks=cfg.model.num_blocks,
emb_dim_in=emb_dim_in,
channel_mult_noise=0,
attn_resolutions=cfg.model.attention_resolutions)
self.out = nn.Conv2d(in_channels=sum(out_channels),
out_channels=sum(out_channels),
kernel_size=1)
start_channels = 0
for out_channel, b, s in zip(out_channels, bias, scale):
nn.init.xavier_uniform_(
self.out.weight[start_channels:start_channels+out_channel,
:, :, :], s)
nn.init.constant_(
self.out.bias[start_channels:start_channels+out_channel], b)
start_channels += out_channel
def forward(self, x, film_camera_emb=None, N_views_xa=1):
x = self.encoder(x,
film_camera_emb=film_camera_emb,
N_views_xa=N_views_xa)
return self.out(x)
def networkCallBack(cfg, name, out_channels, **kwargs):
assert name == "SingleUNet"
return SingleImageSongUNetPredictor(cfg, out_channels, **kwargs)
class GaussianSplatPredictor(nn.Module):
def __init__(self, cfg):
super(GaussianSplatPredictor, self).__init__()
self.cfg = cfg
assert cfg.model.network_with_offset or cfg.model.network_without_offset, \
"Need at least one network"
if cfg.model.network_with_offset:
split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(True, cfg)
self.network_with_offset = networkCallBack(cfg,
cfg.model.name,
split_dimensions,
scale = scale_inits,
bias = bias_inits)
assert not cfg.model.network_without_offset, "Can only have one network"
if cfg.model.network_without_offset:
split_dimensions, scale_inits, bias_inits = self.get_splits_and_inits(False, cfg)
self.network_wo_offset = networkCallBack(cfg,
cfg.model.name,
split_dimensions,
scale = scale_inits,
bias = bias_inits)
assert not cfg.model.network_with_offset, "Can only have one network"
self.init_ray_dirs()
# Activation functions for different parameters
self.depth_act = nn.Sigmoid()
self.scaling_activation = torch.exp
self.opacity_activation = torch.sigmoid
self.rotation_activation = torch.nn.functional.normalize
if self.cfg.model.max_sh_degree > 0:
self.init_sh_transform_matrices()
if self.cfg.cam_embd.embedding is not None:
if self.cfg.cam_embd.encode_embedding is None:
self.cam_embedding_map = nn.Identity()
elif self.cfg.cam_embd.encode_embedding == "positional":
self.cam_embedding_map = PositionalEmbedding(self.cfg.cam_embd.dimension)
def init_sh_transform_matrices(self):
v_to_sh_transform = torch.tensor([[ 0, 0,-1],
[-1, 0, 0],
[ 0, 1, 0]], dtype=torch.float32)
sh_to_v_transform = v_to_sh_transform.transpose(0, 1)
self.register_buffer('sh_to_v_transform', sh_to_v_transform.unsqueeze(0))
self.register_buffer('v_to_sh_transform', v_to_sh_transform.unsqueeze(0))
def init_ray_dirs(self):
x = torch.linspace(-self.cfg.data.training_resolution // 2 + 0.5,
self.cfg.data.training_resolution // 2 - 0.5,
self.cfg.data.training_resolution)
y = torch.linspace( self.cfg.data.training_resolution // 2 - 0.5,
-self.cfg.data.training_resolution // 2 + 0.5,
self.cfg.data.training_resolution)
if self.cfg.model.inverted_x:
x = -x
if self.cfg.model.inverted_y:
y = -y
grid_x, grid_y = torch.meshgrid(x, y, indexing='xy')
ones = torch.ones_like(grid_x, dtype=grid_x.dtype)
ray_dirs = torch.stack([grid_x, grid_y, ones]).unsqueeze(0)
# for cars and chairs the focal length is fixed across dataset
# so we can preprocess it
# for co3d this is done on the fly
if self.cfg.data.category not in ["hydrants", "teddybears"]:
ray_dirs[:, :2, ...] /= fov2focal(self.cfg.data.fov * np.pi / 180,
self.cfg.data.training_resolution)
self.register_buffer('ray_dirs', ray_dirs)
def get_splits_and_inits(self, with_offset, cfg):
# Gets channel split dimensions and last layer initialisation
split_dimensions = []
scale_inits = []
bias_inits = []
if with_offset:
split_dimensions = split_dimensions + [1, 3, 1, 3, 4, 3]
scale_inits = scale_inits + [cfg.model.depth_scale,
cfg.model.xyz_scale,
cfg.model.opacity_scale,
cfg.model.scale_scale,
1.0,
5.0]
bias_inits = [cfg.model.depth_bias,
cfg.model.xyz_bias,
cfg.model.opacity_bias,
np.log(cfg.model.scale_bias),
0.0,
0.0]
else:
split_dimensions = split_dimensions + [1, 1, 3, 4, 3]
scale_inits = scale_inits + [cfg.model.depth_scale,
cfg.model.opacity_scale,
cfg.model.scale_scale,
1.0,
5.0]
bias_inits = bias_inits + [cfg.model.depth_bias,
cfg.model.opacity_bias,
np.log(cfg.model.scale_bias),
0.0,
0.0]
if cfg.model.max_sh_degree != 0:
sh_num = (self.cfg.model.max_sh_degree + 1) ** 2 - 1
sh_num_rgb = sh_num * 3
split_dimensions.append(sh_num_rgb)
scale_inits.append(0.0)
bias_inits.append(0.0)
if with_offset:
self.split_dimensions_with_offset = split_dimensions
else:
self.split_dimensions_without_offset = split_dimensions
return split_dimensions, scale_inits, bias_inits
def flatten_vector(self, x):
# Gets rid of the image dimensions and flattens to a point list
# B x C x H x W -> B x C x N -> B x N x C
return x.reshape(x.shape[0], x.shape[1], -1).permute(0, 2, 1)
def make_contiguous(self, tensor_dict):
return {k: v.contiguous() for k, v in tensor_dict.items()}
def multi_view_union(self, tensor_dict, B, N_view):
for t_name, t in tensor_dict.items():
t = t.reshape(B, N_view, *t.shape[1:])
tensor_dict[t_name] = t.reshape(B, N_view * t.shape[2], *t.shape[3:])
return tensor_dict
def get_camera_embeddings(self, cameras):
# get embedding
# pass through encoding
b, n_view = cameras.shape[:2]
if self.cfg.cam_embd.embedding == "index":
cam_embedding = torch.arange(n_view,
dtype=cameras.dtype,
device=cameras.device,
).unsqueeze(0).expand(b, n_view).unsqueeze(2)
if self.cfg.cam_embd.embedding == "pose":
# concatenate origin and z-vector. cameras are in row-major order
cam_embedding = torch.cat([cameras[:, :, 3, :3], cameras[:, :, 2, :3]], dim=2)
cam_embedding = rearrange(cam_embedding, 'b n_view c -> (b n_view) c')
cam_embedding = self.cam_embedding_map(cam_embedding)
cam_embedding = rearrange(cam_embedding, '(b n_view) c -> b n_view c', b=b, n_view=n_view)
return cam_embedding
def transform_SHs(self, shs, source_cameras_to_world):
# shs: B x N x SH_num x 3
# source_cameras_to_world: B 4 4
assert shs.shape[2] == 3, "Can only process shs order 1"
shs = rearrange(shs, 'b n sh_num rgb -> b (n rgb) sh_num')
transforms = torch.bmm(
self.sh_to_v_transform.expand(source_cameras_to_world.shape[0], 3, 3),
# transpose is because source_cameras_to_world is
# in row major order
source_cameras_to_world[:, :3, :3])
transforms = torch.bmm(transforms,
self.v_to_sh_transform.expand(source_cameras_to_world.shape[0], 3, 3))
shs_transformed = torch.bmm(shs, transforms)
shs_transformed = rearrange(shs_transformed, 'b (n rgb) sh_num -> b n sh_num rgb', rgb=3)
return shs_transformed
def transform_rotations(self, rotations, source_cv2wT_quat):
"""
Applies a transform that rotates the predicted rotations from
camera space to world space.
Args:
rotations: predicted in-camera rotation quaternions (B x N x 4)
source_cameras_to_world: transformation quaternions from
camera-to-world matrices transposed(B x 4)
Retures:
rotations with appropriately applied transform to world space
"""
Mq = source_cv2wT_quat.unsqueeze(1).expand(*rotations.shape)
rotations = quaternion_raw_multiply(Mq, rotations)
return rotations
def get_pos_from_network_output(self, depth_network, offset, focals_pixels, const_offset=None):
# expands ray dirs along the batch dimension
# adjust ray directions according to fov if not done already
ray_dirs_xy = self.ray_dirs.expand(depth_network.shape[0], 3, *self.ray_dirs.shape[2:])
if self.cfg.data.category in ["hydrants", "teddybears"]:
assert torch.all(focals_pixels > 0)
ray_dirs_xy = ray_dirs_xy.clone()
ray_dirs_xy[:, :2, ...] = ray_dirs_xy[:, :2, ...] / focals_pixels.unsqueeze(2).unsqueeze(3)
# depth and offsets are shaped as (b 3 h w)
if const_offset is not None:
depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear + const_offset
else:
depth = self.depth_act(depth_network) * (self.cfg.data.zfar - self.cfg.data.znear) + self.cfg.data.znear
pos = ray_dirs_xy * depth + offset
return pos
def forward(self, x,
source_cameras_view_to_world,
source_cv2wT_quat=None,
focals_pixels=None,
activate_output=True):
B = x.shape[0]
N_views = x.shape[1]
# UNet attention will reshape outputs so that there is cross-view attention
if self.cfg.model.cross_view_attention:
N_views_xa = N_views
else:
N_views_xa = 1
if self.cfg.cam_embd.embedding is not None:
cam_embedding = self.get_camera_embeddings(source_cameras_view_to_world)
assert self.cfg.cam_embd.method == "film"
film_camera_emb = cam_embedding.reshape(B*N_views, cam_embedding.shape[2])
else:
film_camera_emb = None
if self.cfg.data.category in ["hydrants", "teddybears"]:
assert focals_pixels is not None
focals_pixels = focals_pixels.reshape(B*N_views, *focals_pixels.shape[2:])
else:
assert focals_pixels is None, "Unexpected argument for non-co3d dataset"
x = x.reshape(B*N_views, *x.shape[2:])
if self.cfg.data.origin_distances:
const_offset = x[:, 3:, ...]
x = x[:, :3, ...]
else:
const_offset = None
source_cameras_view_to_world = source_cameras_view_to_world.reshape(B*N_views, *source_cameras_view_to_world.shape[2:])
x = x.contiguous(memory_format=torch.channels_last)
if self.cfg.model.network_with_offset:
split_network_outputs = self.network_with_offset(x,
film_camera_emb=film_camera_emb,
N_views_xa=N_views_xa
)
split_network_outputs = split_network_outputs.split(self.split_dimensions_with_offset, dim=1)
depth, offset, opacity, scaling, rotation, features_dc = split_network_outputs[:6]
if self.cfg.model.max_sh_degree > 0:
features_rest = split_network_outputs[6]
pos = self.get_pos_from_network_output(depth, offset, focals_pixels, const_offset=const_offset)
else:
split_network_outputs = self.network_wo_offset(x,
film_camera_emb=film_camera_emb,
N_views_xa=N_views_xa
).split(self.split_dimensions_without_offset, dim=1)
depth, opacity, scaling, rotation, features_dc = split_network_outputs[:5]
if self.cfg.model.max_sh_degree > 0:
features_rest = split_network_outputs[5]
pos = self.get_pos_from_network_output(depth, 0.0, focals_pixels, const_offset=const_offset)
if self.cfg.model.isotropic:
scaling_out = torch.cat([scaling[:, :1, ...], scaling[:, :1, ...], scaling[:, :1, ...]], dim=1)
else:
scaling_out = scaling
# Pos prediction is in camera space - compute the positions in the world space
pos = self.flatten_vector(pos)
pos = torch.cat([pos,
torch.ones((pos.shape[0], pos.shape[1], 1), device="cuda", dtype=torch.float32)
], dim=2)
pos = torch.bmm(pos, source_cameras_view_to_world)
pos = pos[:, :, :3] / (pos[:, :, 3:] + 1e-10)
out_dict = {
"xyz": pos,
"rotation": self.flatten_vector(self.rotation_activation(rotation)),
"features_dc": self.flatten_vector(features_dc).unsqueeze(2)
}
if activate_output:
out_dict["opacity"] = self.flatten_vector(self.opacity_activation(opacity))
out_dict["scaling"] = self.flatten_vector(self.scaling_activation(scaling_out))
else:
out_dict["opacity"] = self.flatten_vector(opacity)
out_dict["scaling"] = self.flatten_vector(scaling_out)
assert source_cv2wT_quat is not None
source_cv2wT_quat = source_cv2wT_quat.reshape(B*N_views, *source_cv2wT_quat.shape[2:])
out_dict["rotation"] = self.transform_rotations(out_dict["rotation"],
source_cv2wT_quat=source_cv2wT_quat)
if self.cfg.model.max_sh_degree > 0:
features_rest = self.flatten_vector(features_rest)
# Channel dimension holds SH_num * RGB(3) -> renderer expects split across RGB
# Split channel dimension B x N x C -> B x N x SH_num x 3
out_dict["features_rest"] = features_rest.reshape(*features_rest.shape[:2], -1, 3)
assert self.cfg.model.max_sh_degree == 1 # "Only accepting degree 1"
out_dict["features_rest"] = self.transform_SHs(out_dict["features_rest"],
source_cameras_view_to_world)
else:
out_dict["features_rest"] = torch.zeros((out_dict["features_dc"].shape[0],
out_dict["features_dc"].shape[1],
(self.cfg.model.max_sh_degree + 1) ** 2 - 1,
3), dtype=out_dict["features_dc"].dtype, device="cuda")
out_dict = self.multi_view_union(out_dict, B, N_views)
out_dict = self.make_contiguous(out_dict)
return out_dict