Spaces:
Runtime error
Runtime error
import argparse | |
import collections | |
import torch | |
def convert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num): | |
for i in range(layers_num): | |
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.0.weight'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.q_proj.weight'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.0.bias'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.q_proj.bias'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.1.weight'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.k_proj.weight'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.1.bias'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.k_proj.bias'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.2.weight'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.v_proj.weight'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.linear_layers.2.bias'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.v_proj.bias'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.final_linear.weight'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.out_proj.weight'] | |
output_model['encoder.transformer.' + str(i) + '.self_attn.final_linear.bias'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn.out_proj.bias'] | |
output_model['encoder.transformer.' + str(i) + '.layer_norm_1.gamma'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn_layer_norm.weight'] | |
output_model['encoder.transformer.' + str(i) + '.layer_norm_1.beta'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.self_attn_layer_norm.bias'] | |
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_1.weight'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.fc1.weight'] | |
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_1.bias'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.fc1.bias'] | |
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_2.weight'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.fc2.weight'] | |
output_model['encoder.transformer.' + str(i) + '.feed_forward.linear_2.bias'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.fc2.bias'] | |
output_model['encoder.transformer.' + str(i) + '.layer_norm_2.gamma'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.final_layer_norm.weight'] | |
output_model['encoder.transformer.' + str(i) + '.layer_norm_2.beta'] = \ | |
input_model['model.encoder.layers.' + str(i) + '.final_layer_norm.bias'] | |
def convert_transformer_decoder_from_huggingface_to_tencentpretrain(input_model, output_model, layers_num): | |
for i in range(layers_num): | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.0.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.q_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.0.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.q_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.1.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.k_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.1.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.k_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.2.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.v_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.linear_layers.2.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.v_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.final_linear.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.out_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.self_attn.final_linear.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn.out_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_1.gamma'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn_layer_norm.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_1.beta'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.self_attn_layer_norm.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.0.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.q_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.0.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.q_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.1.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.k_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.1.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.k_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.2.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.v_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.linear_layers.2.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.v_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.final_linear.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.out_proj.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.context_attn.final_linear.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn.out_proj.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_2.gamma'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn_layer_norm.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_2.beta'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.encoder_attn_layer_norm.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_1.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.fc1.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_1.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.fc1.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_2.weight'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.fc2.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.feed_forward.linear_2.bias'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.fc2.bias'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_3.gamma'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.final_layer_norm.weight'] | |
output_model['decoder.transformer_decoder.' + str(i) + '.layer_norm_3.beta'] = \ | |
input_model['model.decoder.layers.' + str(i) + '.final_layer_norm.bias'] | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
parser.add_argument("--input_model_path", type=str, default="models/input_model.pt", | |
help=".") | |
parser.add_argument("--output_model_path", type=str, default="models/output_model.bin", | |
help=".") | |
parser.add_argument("--layers_num", type=int, default=12, help=".") | |
parser.add_argument("--decoder_layers_num", type=int, default=6, help=".") | |
args = parser.parse_args() | |
input_model = torch.load(args.input_model_path) | |
output_model = collections.OrderedDict() | |
for i in range(2): | |
output_model["embedding.speech.conv.conv_layers." + str(i) + ".0.weight"] = \ | |
input_model["model.encoder.conv.conv_layers." + str(i) + ".weight"] | |
output_model["embedding.speech.conv.conv_layers." + str(i) + ".0.bias"] = \ | |
input_model["model.encoder.conv.conv_layers." + str(i) + ".bias"] | |
output_model['tgt_embedding.word.embedding.weight'] = input_model['model.decoder.embed_tokens.weight'] | |
convert_transformer_encoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.layers_num) | |
convert_transformer_decoder_from_huggingface_to_tencentpretrain(input_model, output_model, args.decoder_layers_num) | |
output_model['encoder.layer_norm.gamma'] = input_model['model.encoder.layer_norm.weight'] | |
output_model['encoder.layer_norm.beta'] = input_model['model.encoder.layer_norm.bias'] | |
output_model['decoder.layer_norm.gamma'] = input_model['model.decoder.layer_norm.weight'] | |
output_model['decoder.layer_norm.beta'] = input_model['model.decoder.layer_norm.bias'] | |
output_model['target.lm.output_layer.weight'] = input_model["lm_head.weight"] | |
torch.save(output_model, args.output_model_path) | |
if __name__ == "__main__": | |
main() | |