Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for text-to-text inference. | |
""" | |
import sys | |
import os | |
import random | |
import argparse | |
import torch | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.vocab import Vocab | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts, tokenizer_opts | |
from finetune.run_text2text import Text2text | |
from inference.run_classifier_infer import batch_loader | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
if "text_b" in columns: | |
text = line[columns["text_a"]] + SEP_TOKEN + line[columns["text_b"]] | |
else: | |
text = line[columns["text_a"]] | |
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text) + [SEP_TOKEN]) | |
seg = [1] * len(src) | |
if len(src) > args.seq_length: | |
src = src[: args.seq_length] | |
seg = seg[: args.seq_length] | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
while len(src) < args.seq_length: | |
src.append(PAD_ID) | |
seg.append(0) | |
dataset.append((src, seg)) | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
tokenizer_opts(parser) | |
parser.add_argument("--tgt_seq_length", type=int, default=32, | |
help="Output sequence length.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model. | |
model = Text2text(args) | |
model = load_model(model, args.load_model_path) | |
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(args.device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
dataset = read_dataset(args, args.test_path) | |
src = torch.LongTensor([sample[0] for sample in dataset]) | |
seg = torch.LongTensor([sample[1] for sample in dataset]) | |
batch_size = args.batch_size | |
instances_num = src.size()[0] | |
print("The number of prediction instances: ", instances_num) | |
model.eval() | |
with open(args.prediction_path, mode="w", encoding="utf-8") as f: | |
f.write("label") | |
f.write("\n") | |
for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)): | |
src_batch = src_batch.to(args.device) | |
seg_batch = seg_batch.to(args.device) | |
tgt_in_batch = torch.zeros(src_batch.size()[0], 1, dtype = torch.long, device = args.device) | |
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], 1, dtype = torch.long, device = args.device) | |
current_batch_size = tgt_in_batch.size()[0] | |
for j in range(current_batch_size): | |
tgt_in_batch[j][-1] = args.tokenizer.vocab.get(CLS_TOKEN) | |
with torch.no_grad(): | |
memory_bank = model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True) | |
for _ in range(args.tgt_seq_length): | |
with torch.no_grad(): | |
outputs = model(src_batch, (tgt_in_batch, None, src_batch), None, tgt_seg_batch, memory_bank=memory_bank) | |
next_token_logits = outputs[:, -1] | |
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1) | |
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1) | |
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device) | |
for j in range(len(outputs)): | |
f.write("".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]]) | |
.split(SEP_TOKEN)[0]) | |
f.write("\n") | |
if __name__ == "__main__": | |
main() | |