VISOR-GPT / train /inference /run_text2text_infer.py
szukevin's picture
upload
7900c16
raw
history blame
4.65 kB
"""
This script provides an example to wrap TencentPretrain for text-to-text inference.
"""
import sys
import os
import random
import argparse
import torch
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), ".."))
sys.path.append(tencentpretrain_dir)
from tencentpretrain.utils.constants import *
from tencentpretrain.utils import *
from tencentpretrain.utils.config import load_hyperparam
from tencentpretrain.utils.vocab import Vocab
from tencentpretrain.model_loader import load_model
from tencentpretrain.opts import infer_opts, tokenizer_opts
from finetune.run_text2text import Text2text
from inference.run_classifier_infer import batch_loader
def read_dataset(args, path):
dataset, columns = [], {}
with open(path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
for i, column_name in enumerate(line.rstrip("\r\n").split("\t")):
columns[column_name] = i
continue
line = line.rstrip("\r\n").split("\t")
if "text_b" in columns:
text = line[columns["text_a"]] + SEP_TOKEN + line[columns["text_b"]]
else:
text = line[columns["text_a"]]
src = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text) + [SEP_TOKEN])
seg = [1] * len(src)
if len(src) > args.seq_length:
src = src[: args.seq_length]
seg = seg[: args.seq_length]
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0]
while len(src) < args.seq_length:
src.append(PAD_ID)
seg.append(0)
dataset.append((src, seg))
return dataset
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
infer_opts(parser)
tokenizer_opts(parser)
parser.add_argument("--tgt_seq_length", type=int, default=32,
help="Output sequence length.")
args = parser.parse_args()
# Load the hyperparameters from the config file.
args = load_hyperparam(args)
# Build tokenizer.
args.tokenizer = str2tokenizer[args.tokenizer](args)
# Build classification model.
model = Text2text(args)
model = load_model(model, args.load_model_path)
args.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(args.device)
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = torch.nn.DataParallel(model)
dataset = read_dataset(args, args.test_path)
src = torch.LongTensor([sample[0] for sample in dataset])
seg = torch.LongTensor([sample[1] for sample in dataset])
batch_size = args.batch_size
instances_num = src.size()[0]
print("The number of prediction instances: ", instances_num)
model.eval()
with open(args.prediction_path, mode="w", encoding="utf-8") as f:
f.write("label")
f.write("\n")
for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, src, seg)):
src_batch = src_batch.to(args.device)
seg_batch = seg_batch.to(args.device)
tgt_in_batch = torch.zeros(src_batch.size()[0], 1, dtype = torch.long, device = args.device)
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], 1, dtype = torch.long, device = args.device)
current_batch_size = tgt_in_batch.size()[0]
for j in range(current_batch_size):
tgt_in_batch[j][-1] = args.tokenizer.vocab.get(CLS_TOKEN)
with torch.no_grad():
memory_bank = model(src_batch, None, seg_batch, tgt_seg_batch, only_use_encoder=True)
for _ in range(args.tgt_seq_length):
with torch.no_grad():
outputs = model(src_batch, (tgt_in_batch, None, src_batch), None, tgt_seg_batch, memory_bank=memory_bank)
next_token_logits = outputs[:, -1]
next_tokens = torch.argmax(next_token_logits, dim=1).unsqueeze(1)
tgt_in_batch = torch.cat([tgt_in_batch, next_tokens], dim=1)
tgt_seg_batch = torch.ones(tgt_in_batch.size()[0], tgt_in_batch.size()[1], dtype=torch.long, device=args.device)
for j in range(len(outputs)):
f.write("".join([args.tokenizer.inv_vocab[token_id.item()] for token_id in tgt_in_batch[j][1:]])
.split(SEP_TOKEN)[0])
f.write("\n")
if __name__ == "__main__":
main()