Spaces:
Runtime error
Runtime error
""" | |
This script provides an example to wrap TencentPretrain for classification inference. | |
""" | |
import sys | |
import os | |
import torch | |
import argparse | |
import collections | |
import torch.nn as nn | |
tencentpretrain_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) | |
sys.path.append(tencentpretrain_dir) | |
from tencentpretrain.utils.constants import * | |
from tencentpretrain.utils import * | |
from tencentpretrain.utils.config import load_hyperparam | |
from tencentpretrain.utils.seed import set_seed | |
from tencentpretrain.model_loader import load_model | |
from tencentpretrain.opts import infer_opts, tokenizer_opts | |
from finetune.run_classifier_siamese import SiameseClassifier | |
def batch_loader(batch_size, src, seg): | |
src_a, src_b = src | |
seg_a, seg_b = seg | |
instances_num = src_a.size()[0] | |
for i in range(instances_num // batch_size): | |
src_a_batch = src_a[i * batch_size : (i + 1) * batch_size, :] | |
src_b_batch = src_b[i * batch_size : (i + 1) * batch_size, :] | |
seg_a_batch = seg_a[i * batch_size : (i + 1) * batch_size, :] | |
seg_b_batch = seg_b[i * batch_size : (i + 1) * batch_size, :] | |
yield (src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch) | |
if instances_num > instances_num // batch_size * batch_size: | |
src_a_batch = src_a[instances_num // batch_size * batch_size :, :] | |
src_b_batch = src_b[instances_num // batch_size * batch_size :, :] | |
seg_a_batch = seg_a[instances_num // batch_size * batch_size :, :] | |
seg_b_batch = seg_b[instances_num // batch_size * batch_size :, :] | |
yield (src_a_batch, src_b_batch), (seg_a_batch, seg_b_batch) | |
def read_dataset(args, path): | |
dataset, columns = [], {} | |
with open(path, mode="r", encoding="utf-8") as f: | |
for line_id, line in enumerate(f): | |
if line_id == 0: | |
line = line.rstrip("\r\n").split("\t") | |
for i, column_name in enumerate(line): | |
columns[column_name] = i | |
continue | |
line = line.rstrip("\r\n").split("\t") | |
text_a, text_b = line[columns["text_a"]], line[columns["text_b"]] | |
src_a = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_a) + [SEP_TOKEN]) | |
src_b = args.tokenizer.convert_tokens_to_ids([CLS_TOKEN] + args.tokenizer.tokenize(text_b) + [SEP_TOKEN]) | |
seg_a = [1] * len(src_a) | |
seg_b = [1] * len(src_b) | |
PAD_ID = args.tokenizer.convert_tokens_to_ids([PAD_TOKEN])[0] | |
if len(src_a) >= args.seq_length: | |
src_a = src_a[:args.seq_length] | |
seg_a = seg_a[:args.seq_length] | |
while len(src_a) < args.seq_length: | |
src_a.append(PAD_ID) | |
seg_a.append(0) | |
if len(src_b) >= args.seq_length: | |
src_b = src_b[:args.seq_length] | |
seg_b = seg_b[:args.seq_length] | |
while len(src_b) < args.seq_length: | |
src_b.append(PAD_ID) | |
seg_b.append(0) | |
dataset.append(((src_a, src_b), (seg_a, seg_b))) | |
return dataset | |
def main(): | |
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) | |
infer_opts(parser) | |
parser.add_argument("--labels_num", type=int, required=True, | |
help="Number of prediction labels.") | |
tokenizer_opts(parser) | |
parser.add_argument("--output_logits", action="store_true", help="Write logits to output file.") | |
parser.add_argument("--output_prob", action="store_true", help="Write probabilities to output file.") | |
args = parser.parse_args() | |
# Load the hyperparameters from the config file. | |
args = load_hyperparam(args) | |
# Build tokenizer. | |
args.tokenizer = str2tokenizer[args.tokenizer](args) | |
# Build classification model and load parameters. | |
args.soft_targets, args.soft_alpha = False, False | |
model = SiameseClassifier(args) | |
model = load_model(model, args.load_model_path) | |
# For simplicity, we use DataParallel wrapper to use multiple GPUs. | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
model = model.to(device) | |
if torch.cuda.device_count() > 1: | |
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count())) | |
model = torch.nn.DataParallel(model) | |
dataset = read_dataset(args, args.test_path) | |
src_a = torch.LongTensor([example[0][0] for example in dataset]) | |
src_b = torch.LongTensor([example[0][1] for example in dataset]) | |
seg_a = torch.LongTensor([example[1][0] for example in dataset]) | |
seg_b = torch.LongTensor([example[1][1] for example in dataset]) | |
batch_size = args.batch_size | |
instances_num = src_a.size()[0] | |
print("The number of prediction instances: ", instances_num) | |
model.eval() | |
with open(args.prediction_path, mode="w", encoding="utf-8") as f: | |
f.write("label") | |
if args.output_logits: | |
f.write("\t" + "logits") | |
if args.output_prob: | |
f.write("\t" + "prob") | |
f.write("\n") | |
for i, (src_batch, seg_batch) in enumerate(batch_loader(batch_size, (src_a, src_b), (seg_a, seg_b))): | |
src_a_batch, src_b_batch = src_batch | |
seg_a_batch, seg_b_batch = seg_batch | |
src_a_batch = src_a_batch.to(device) | |
src_b_batch = src_b_batch.to(device) | |
seg_a_batch = seg_a_batch.to(device) | |
seg_b_batch = seg_b_batch.to(device) | |
with torch.no_grad(): | |
_, logits = model((src_a_batch, src_b_batch), None, (seg_a_batch, seg_b_batch)) | |
pred = torch.argmax(logits, dim=1) | |
pred = pred.cpu().numpy().tolist() | |
prob = nn.Softmax(dim=1)(logits) | |
logits = logits.cpu().numpy().tolist() | |
prob = prob.cpu().numpy().tolist() | |
for j in range(len(pred)): | |
f.write(str(pred[j])) | |
if args.output_logits: | |
f.write("\t" + " ".join([str(v) for v in logits[j]])) | |
if args.output_prob: | |
f.write("\t" + " ".join([str(v) for v in prob[j]])) | |
f.write("\n") | |
if __name__ == "__main__": | |
main() | |