hilamanor's picture
dropdown>radio, t-start percentage, intro text change
4397c18
raw
history blame
12 kB
import gradio as gr
import random
import torch
import torchaudio
from torch import inference_mode
from tempfile import NamedTemporaryFile
import numpy as np
from models import load_model
import utils
from inversion_utils import inversion_forward_process, inversion_reverse_process
# current_loaded_model = "cvssp/audioldm2-music"
# # current_loaded_model = "cvssp/audioldm2-music"
# ldm_stable = load_model(current_loaded_model, device, 200) # deafult model
LDM2 = "cvssp/audioldm2"
MUSIC = "cvssp/audioldm2-music"
LDM2_LARGE = "cvssp/audioldm2-large"
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
ldm2 = load_model(model_id=LDM2, device=device)
ldm2_large = load_model(model_id=LDM2_LARGE, device=device)
ldm2_music = load_model(model_id=MUSIC, device=device)
def randomize_seed_fn(seed, randomize_seed):
if randomize_seed:
seed = random.randint(0, np.iinfo(np.int32).max)
torch.manual_seed(seed)
return seed
def invert(ldm_stable, x0, prompt_src, num_diffusion_steps, cfg_scale_src): # , ldm_stable):
ldm_stable.model.scheduler.set_timesteps(num_diffusion_steps, device=device)
with inference_mode():
w0 = ldm_stable.vae_encode(x0)
# find Zs and wts - forward process
_, zs, wts = inversion_forward_process(ldm_stable, w0, etas=1,
prompts=[prompt_src],
cfg_scales=[cfg_scale_src],
prog_bar=True,
num_inference_steps=num_diffusion_steps,
numerical_fix=True)
return zs, wts
def sample(ldm_stable, zs, wts, steps, prompt_tar, tstart, cfg_scale_tar): # , ldm_stable):
# reverse process (via Zs and wT)
tstart = torch.tensor(tstart, dtype=torch.int)
skip = steps - tstart
w0, _ = inversion_reverse_process(ldm_stable, xT=wts, skips=steps - skip,
etas=1., prompts=[prompt_tar],
neg_prompts=[""], cfg_scales=[cfg_scale_tar],
prog_bar=True,
zs=zs[:int(steps - skip)])
# vae decode image
with inference_mode():
x0_dec = ldm_stable.vae_decode(w0)
if x0_dec.dim() < 4:
x0_dec = x0_dec[None, :, :, :]
with torch.no_grad():
audio = ldm_stable.decode_to_mel(x0_dec)
f = NamedTemporaryFile("wb", suffix=".wav", delete=False)
torchaudio.save(f.name, audio, sample_rate=16000)
return f.name
# def change_tstart_range(t_start, steps):
# maximum = int(0.8 * steps)
# minimum = int(0.15 * steps)
# if t_start > maximum:
# t_start = maximum
# elif t_start < minimum:
# t_start = minimum
# return t_start
def edit(input_audio,
model_id: str,
do_inversion: bool,
wts: gr.State, zs: gr.State, saved_inv_model: str,
source_prompt="",
target_prompt="",
steps=200,
cfg_scale_src=3.5,
cfg_scale_tar=12,
t_start=45,
randomize_seed=True):
# global ldm_stable, current_loaded_model
# print(f'current loaded model: {ldm_stable.model_id}')
# if model_id != current_loaded_model:
# print(f'Changing model to {model_id}...')
# current_loaded_model = model_id
# ldm_stable = None
# ldm_stable = load_model(model_id, device)
print(model_id)
if model_id == LDM2:
ldm_stable = ldm2
elif model_id == LDM2_LARGE:
ldm_stable = ldm2_large
else: # MUSIC
ldm_stable = ldm2_music
# If the inversion was done for a different model, we need to re-run the inversion
if not do_inversion and (saved_inv_model is None or saved_inv_model != model_id):
do_inversion = True
x0 = utils.load_audio(input_audio, ldm_stable.get_fn_STFT(), device=device)
if do_inversion or randomize_seed: # always re-run inversion
zs_tensor, wts_tensor = invert(ldm_stable=ldm_stable, x0=x0, prompt_src=source_prompt,
num_diffusion_steps=steps,
cfg_scale_src=cfg_scale_src)
wts = gr.State(value=wts_tensor)
zs = gr.State(value=zs_tensor)
saved_inv_model = model_id
do_inversion = False
# make sure t_start is in the right limit
# t_start = change_tstart_range(t_start, steps)
output = sample(ldm_stable, zs.value, wts.value, steps, prompt_tar=target_prompt,
tstart=int(t_start / 100 * steps), cfg_scale_tar=cfg_scale_tar)
return output, wts, zs, saved_inv_model, do_inversion
def get_example():
case = [
['Examples/Beethoven.wav',
'',
'A recording of an arcade game soundtrack.',
45,
'cvssp/audioldm2-music',
'27s',
'Examples/Beethoven_arcade.wav',
],
['Examples/Beethoven.wav',
'A high quality recording of wind instruments and strings playing.',
'A high quality recording of a piano playing.',
45,
'cvssp/audioldm2-music',
'27s',
'Examples/Beethoven_piano.wav',
],
['Examples/ModalJazz.wav',
'Trumpets playing alongside a piano, bass and drums in an upbeat old-timey cool jazz song.',
'A banjo playing alongside a piano, bass and drums in an upbeat old-timey cool country song.',
45,
'cvssp/audioldm2-music',
'106s',
'Examples/ModalJazz_banjo.wav',],
['Examples/Cat.wav',
'',
'A dog barking.',
75,
'cvssp/audioldm2-large',
'10s',
'Examples/Cat_dog.wav',]
]
return case
intro = """
<h1 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> ZETA Editing 🎧 </h1>
<h2 style="font-weight: 1400; text-align: center; margin-bottom: 7px;"> Zero-Shot Text-Based Audio Editing Using DDPM Inversion 🎛️ </h2>
<h3 style="margin-bottom: 10px; text-align: center;">
<a href="https://arxiv.org/abs/2402.10009">[Paper]</a>&nbsp;|&nbsp;
<a href="https://hilamanor.github.io/AudioEditing/">[Project page]</a>&nbsp;|&nbsp;
<a href="https://github.com/HilaManor/AudioEditingCode">[Code]</a>
</h3>
<p style="font-size:large">
Demo for the text-based editing method introduced in:
<b <a href="https://arxiv.org/abs/2402.10009" style="text-decoration: underline;" target="_blank"> Zero-Shot Unsupervised and Text-Based Audio Editing Using DDPM Inversion </a> </b>
</p>
<p style="font-size:larger">
<p style="font-size: 0.9rem; margin: 0rem; line-height: 1.2em; margin-top:1em">
For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings.
<a href="https://huggingface.co/spaces/hilamanor/audioEditing?duplicate=true">
<img style="margin-top: 0em; margin-bottom: 0em; display:inline" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" ></a>
</p>
"""
help = """
<b>Instructions:</b><br>
Provide an input audio and a target prompt to edit the audio. <br>
T<sub>start</sub> is used to control the tradeoff between fidelity to the original signal and text-adhearance.
Lower value -> favor fidelity. Higher value -> apply a stronger edit.<br>
Make sure that you use an AudioLDM2 version that is suitable for your input audio.
For example, use the music version for music and the large version for general audio.
</p>
<p style="font-size:larger">
You can additionally provide a source prompt to guide even further the editing process.
</p>
<p style="font-size:larger">Longer input will take more time.</p>
"""
with gr.Blocks(css='style.css') as demo:
def reset_do_inversion():
do_inversion = gr.State(value=True)
return do_inversion
gr.HTML(intro)
wts = gr.State()
zs = gr.State()
saved_inv_model = gr.State()
# current_loaded_model = gr.State(value="cvssp/audioldm2-music")
# ldm_stable = load_model("cvssp/audioldm2-music", device, 200)
# ldm_stable = gr.State(value=ldm_stable)
do_inversion = gr.State(value=True) # To save some runtime when editing the same thing over and over
with gr.Row():
input_audio = gr.Audio(sources=["upload", "microphone"], type="filepath", label="Input Audio",
interactive=True, scale=1)
output_audio = gr.Audio(label="Edited Audio", interactive=False, scale=1)
with gr.Row():
tar_prompt = gr.Textbox(label="Prompt", info="Describe your desired edited output", placeholder="a recording of a happy upbeat arcade game soundtrack",
lines=2, interactive=True)
with gr.Row():
t_start = gr.Slider(minimum=15, maximum=85, value=45, step=1, label="T-start (%)", interactive=True, scale=3,
info="Higher T-start -> stronger edit. Lower T-start -> closer to original audio.")
# model_id = gr.Dropdown(label="AudioLDM2 Version",
model_id = gr.Radio(label="AudioLDM2 Version",
choices=["cvssp/audioldm2",
"cvssp/audioldm2-large",
"cvssp/audioldm2-music"],
info="Choose a checkpoint suitable for your intended audio and edit",
value="cvssp/audioldm2-music", interactive=True, type="value", scale=2)
with gr.Row():
with gr.Column():
submit = gr.Button("Edit")
with gr.Accordion("More Options", open=False):
with gr.Row():
src_prompt = gr.Textbox(label="Source Prompt", lines=2, interactive=True, info= "Optional: Describe the original audio input",
placeholder="A recording of a happy upbeat classical music piece",)
with gr.Row():
cfg_scale_src = gr.Number(value=3, minimum=0.5, maximum=25, precision=None,
label="Source Guidance Scale", interactive=True, scale=1)
cfg_scale_tar = gr.Number(value=12, minimum=0.5, maximum=25, precision=None,
label="Target Guidance Scale", interactive=True, scale=1)
steps = gr.Number(value=50, step=1, minimum=20, maximum=300,
label="Num Diffusion Steps", interactive=True, scale=1)
with gr.Row():
seed = gr.Number(value=0, precision=0, label="Seed", interactive=True)
randomize_seed = gr.Checkbox(label='Randomize seed', value=False)
length = gr.Number(label="Length", interactive=False, visible=False)
with gr.Accordion("Help💡", open=False):
gr.HTML(help)
submit.click(
fn=randomize_seed_fn,
inputs=[seed, randomize_seed],
outputs=[seed], queue=False).then(
fn=edit,
inputs=[input_audio,
model_id,
do_inversion,
# current_loaded_model, ldm_stable,
wts, zs, saved_inv_model,
src_prompt,
tar_prompt,
steps,
cfg_scale_src,
cfg_scale_tar,
t_start,
randomize_seed
],
outputs=[output_audio, wts, zs, saved_inv_model, do_inversion] # , current_loaded_model, ldm_stable],
)
# If sources changed we have to rerun inversion
input_audio.change(fn=reset_do_inversion, outputs=[do_inversion])
src_prompt.change(fn=reset_do_inversion, outputs=[do_inversion])
model_id.change(fn=reset_do_inversion, outputs=[do_inversion])
steps.change(fn=reset_do_inversion, outputs=[do_inversion])
gr.Examples(
label="Examples",
examples=get_example(),
inputs=[input_audio, src_prompt, tar_prompt, t_start, model_id, length, output_audio],
outputs=[output_audio]
)
demo.queue()
demo.launch()