Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import ViTFeatureExtractor, ViTForImageClassification, pipeline
|
4 |
+
from PIL import Image
|
5 |
+
import easyocr
|
6 |
+
from aesthetic_score import AestheticScorer
|
7 |
+
|
8 |
+
# Initialize models
|
9 |
+
# Vision Transformer for Emotion Detection
|
10 |
+
feature_extractor = ViTFeatureExtractor.from_pretrained("nateraw/vit-base-beauty")
|
11 |
+
model = ViTForImageClassification.from_pretrained("nateraw/vit-base-beauty")
|
12 |
+
emotion_detector = pipeline("image-classification", model=model, feature_extractor=feature_extractor)
|
13 |
+
|
14 |
+
# OCR for Text Detection
|
15 |
+
reader = easyocr.Reader(['en'])
|
16 |
+
|
17 |
+
# Aesthetic Scoring Model (Placeholder)
|
18 |
+
aesthetic_scorer = AestheticScorer()
|
19 |
+
|
20 |
+
# Function to analyze a single thumbnail
|
21 |
+
def analyze_single_thumbnail(image):
|
22 |
+
# Text detection using OCR
|
23 |
+
ocr_result = reader.readtext(image)
|
24 |
+
text_detected = " ".join([item[1] for item in ocr_result]) if ocr_result else "No text found"
|
25 |
+
|
26 |
+
# Emotion detection for overall appeal
|
27 |
+
emotions = emotion_detector(image)
|
28 |
+
main_emotion = max(emotions, key=lambda x: x['score'])['label'] if emotions else "Unknown"
|
29 |
+
|
30 |
+
# Aesthetic scoring
|
31 |
+
aesthetic_score = aesthetic_scorer.score(image)
|
32 |
+
|
33 |
+
return {
|
34 |
+
"Detected Text": text_detected,
|
35 |
+
"Emotion Detected": main_emotion,
|
36 |
+
"Aesthetic Score": aesthetic_score,
|
37 |
+
}
|
38 |
+
|
39 |
+
# Function to compare two thumbnails
|
40 |
+
def compare_thumbnails(image1, image2):
|
41 |
+
result1 = analyze_single_thumbnail(image1)
|
42 |
+
result2 = analyze_single_thumbnail(image2)
|
43 |
+
|
44 |
+
# Determine which thumbnail might perform better based on scores
|
45 |
+
if result1["Aesthetic Score"] > result2["Aesthetic Score"]:
|
46 |
+
better_thumbnail = "Thumbnail 1 is likely better."
|
47 |
+
elif result2["Aesthetic Score"] > result1["Aesthetic Score"]:
|
48 |
+
better_thumbnail = "Thumbnail 2 is likely better."
|
49 |
+
else:
|
50 |
+
better_thumbnail = "Both thumbnails have similar appeal."
|
51 |
+
|
52 |
+
return result1, result2, better_thumbnail
|
53 |
+
|
54 |
+
# Gradio Interface
|
55 |
+
iface = gr.Interface(
|
56 |
+
fn=compare_thumbnails,
|
57 |
+
inputs=[gr.Image(type="pil"), gr.Image(type="pil")],
|
58 |
+
outputs=[
|
59 |
+
gr.JSON(label="Thumbnail 1 Analysis"),
|
60 |
+
gr.JSON(label="Thumbnail 2 Analysis"),
|
61 |
+
gr.Textbox(label="Comparison Result"),
|
62 |
+
],
|
63 |
+
title="YouTube Thumbnail Comparator",
|
64 |
+
description="Upload two thumbnails to compare their effectiveness based on detected text, emotions, and aesthetic score.",
|
65 |
+
)
|
66 |
+
|
67 |
+
iface.launch()
|