syullaprillia's picture
uploded file
6620a89
import time
import streamlit as st
import numpy as np
from PIL import Image
import urllib.request
from utils import *
labels = gen_labels()
html_temp = '''
<div style = padding-bottom: 20px; padding-top: 20px; padding-left: 5px; padding-right: 5px">
<center><h1>Klasifikasi Citra Kerang Menggunakan Algoritma CNN-Deep Learning</h1></center>
</div>
'''
st.markdown(html_temp, unsafe_allow_html=True)
html_temp = '''
<div>
<h2></h2>
<center><h3>Harap Unggah Gambar Untuk Menemukan Kategorinya</h3></center>
</div>
'''
st.set_option('deprecation.showfileUploaderEncoding', False)
st.markdown(html_temp, unsafe_allow_html=True)
opt = st.selectbox("Bagaimana Anda ingin mengunggah gambar untuk klasifikasi? (Harap Masukan Gambar Yang Jelas Agar Hasilnya Tidak Ambigu)\n", ('Silahkan Pilih', 'Unggah gambar melalui tautan', 'Unggah gambar dari perangkat'))
if opt == 'Unggah gambar dari perangkat':
file = st.file_uploader('Select', type = ['jpg', 'png', 'jpeg'])
st.set_option('deprecation.showfileUploaderEncoding', False)
if file is not None:
image = Image.open(file)
elif opt == 'Unggah gambar melalui tautan':
try:
img = st.text_input('Masukkan Tautan Gambar')
image = Image.open(urllib.request.urlopen(img))
except:
if st.button('Submit'):
show = st.error("Please Enter a valid Image Address!")
time.sleep(4)
show.empty()
try:
if image is not None:
st.image(image, width = 300, caption = 'Unggah Gambar')
if st.button('Prediksi'):
img = preprocess(image)
model = model_arc()
model.load_weights("weights/model.h5")
prediction = model.predict(img[np.newaxis, ...])
proba = np.max(prediction[0], axis=-1)
print("Kemungkinan:",np.max(prediction[0], axis=-1))
st.info('Hai! Gambar yang diunggah telah diklasifikasikan sebagai " {} " '.format(labels[np.argmax(prediction[0], axis=-1)]))
st.info('Kemungkinan '+ str(proba))
except Exception as e:
st.info(e)
pass