Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- .gradio/certificate.pem +31 -0
- README.md +25 -0
- app.py +27 -10
.gradio/certificate.pem
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
-----BEGIN CERTIFICATE-----
|
2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
31 |
+
-----END CERTIFICATE-----
|
README.md
CHANGED
@@ -7,3 +7,28 @@ app_file: app.py
|
|
7 |
sdk: gradio
|
8 |
sdk_version: 5.15.0
|
9 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
sdk: gradio
|
8 |
sdk_version: 5.15.0
|
9 |
---
|
10 |
+
# MedicalChatbot-Phi3.5
|
11 |
+
|
12 |
+
## Getting Started
|
13 |
+
1. Create virtual environment
|
14 |
+
```python
|
15 |
+
python -m venv venv
|
16 |
+
```
|
17 |
+
|
18 |
+
2. Activate virtual environment
|
19 |
+
```python
|
20 |
+
source venv/bin/activate
|
21 |
+
```
|
22 |
+
|
23 |
+
3. Install Required packages
|
24 |
+
```python
|
25 |
+
pip install -r requirements.txt
|
26 |
+
```
|
27 |
+
|
28 |
+
## Run Gradio App
|
29 |
+
```python
|
30 |
+
python app.py
|
31 |
+
```
|
32 |
+
|
33 |
+
## Sample Output
|
34 |
+

|
app.py
CHANGED
@@ -1,4 +1,4 @@
|
|
1 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
@@ -15,10 +15,12 @@ try:
|
|
15 |
except Exception as e:
|
16 |
raise ValueError(f"Error loading Model and Tokenizer: {e}")
|
17 |
|
18 |
-
@
|
|
|
19 |
def generate_response(user_query: str, system_message: str = None, max_length: int = 1024) -> str:
|
20 |
"""
|
21 |
Generates a response based on the given user query.
|
|
|
22 |
:param user_query: The user's input message.
|
23 |
:param system_message: Custom system instruction (optional, defaults to medical assistant).
|
24 |
:param max_length: Max tokens to generate.
|
@@ -26,23 +28,36 @@ def generate_response(user_query: str, system_message: str = None, max_length: i
|
|
26 |
"""
|
27 |
if not user_query.strip():
|
28 |
return "Error: User query cannot be empty."
|
29 |
-
|
30 |
if system_message is None:
|
31 |
system_message = ("You are a trusted AI-powered medical assistant. "
|
32 |
"Analyze patient queries carefully and provide accurate, professional, and empathetic responses. "
|
33 |
"Prioritize patient safety, adhere to medical best practices, and recommend consulting a healthcare provider when necessary.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
try:
|
37 |
-
|
38 |
-
|
39 |
-
# Decode response
|
40 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
41 |
-
return response.split("<|assistant|>")[-1].strip().split("<|end|>")[0].strip()
|
42 |
except Exception as e:
|
43 |
return f"Error generating response: {e}"
|
44 |
|
45 |
# Gradio Interface
|
|
|
|
|
46 |
def chat_interface(user_query, system_message=None):
|
47 |
response = generate_response(user_query, system_message)
|
48 |
return response
|
@@ -60,4 +75,6 @@ with gr.Blocks() as demo:
|
|
60 |
|
61 |
submit_button.click(chat_interface, inputs=[user_query, system_message], outputs=output)
|
62 |
|
63 |
-
demo.launch()
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
|
2 |
import torch
|
3 |
import gradio as gr
|
4 |
import spaces
|
|
|
15 |
except Exception as e:
|
16 |
raise ValueError(f"Error loading Model and Tokenizer: {e}")
|
17 |
|
18 |
+
@torch.inference_mode()
|
19 |
+
@spaces.GPU(duration=120)
|
20 |
def generate_response(user_query: str, system_message: str = None, max_length: int = 1024) -> str:
|
21 |
"""
|
22 |
Generates a response based on the given user query.
|
23 |
+
|
24 |
:param user_query: The user's input message.
|
25 |
:param system_message: Custom system instruction (optional, defaults to medical assistant).
|
26 |
:param max_length: Max tokens to generate.
|
|
|
28 |
"""
|
29 |
if not user_query.strip():
|
30 |
return "Error: User query cannot be empty."
|
31 |
+
|
32 |
if system_message is None:
|
33 |
system_message = ("You are a trusted AI-powered medical assistant. "
|
34 |
"Analyze patient queries carefully and provide accurate, professional, and empathetic responses. "
|
35 |
"Prioritize patient safety, adhere to medical best practices, and recommend consulting a healthcare provider when necessary.")
|
36 |
+
|
37 |
+
messages = [
|
38 |
+
{"role": "system", "content": system_message},
|
39 |
+
{'role': "user", "content": user_query}
|
40 |
+
]
|
41 |
+
|
42 |
+
pipe = pipeline("text-generation",
|
43 |
+
model=model,
|
44 |
+
tokenizer=tokenizer)
|
45 |
|
46 |
+
generation_args = {
|
47 |
+
"max_new_tokens": max_length,
|
48 |
+
"return_full_text": False,
|
49 |
+
"temperature": 0.0,
|
50 |
+
"do_sample": False,
|
51 |
+
}
|
52 |
try:
|
53 |
+
output = pipe(messages, **generation_args)
|
54 |
+
return(output[0]['generated_text'])
|
|
|
|
|
|
|
55 |
except Exception as e:
|
56 |
return f"Error generating response: {e}"
|
57 |
|
58 |
# Gradio Interface
|
59 |
+
@torch.inference_mode()
|
60 |
+
@spaces.GPU(duration=120)
|
61 |
def chat_interface(user_query, system_message=None):
|
62 |
response = generate_response(user_query, system_message)
|
63 |
return response
|
|
|
75 |
|
76 |
submit_button.click(chat_interface, inputs=[user_query, system_message], outputs=output)
|
77 |
|
78 |
+
demo.launch(share=True)
|
79 |
+
|
80 |
+
|