|
"""
|
|
Script to store FAISS and pickle files in Azure Cosmos DB MongoDB API
|
|
This script should be run only once to upload the vector database files.
|
|
|
|
run this at root of the project:
|
|
python -m app.services.chatbot.vectorDB_upload_script
|
|
"""
|
|
|
|
import os
|
|
import asyncio
|
|
from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorGridFSBucket
|
|
from datetime import datetime
|
|
import logging
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
logging.basicConfig(level=logging.INFO)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
MONGO_URI = os.getenv("MONGODB_KEY")
|
|
DB_NAME = "SysmodelerDB"
|
|
BUCKET_NAME = "vector_db"
|
|
|
|
|
|
FAISS_PATH = r"c:\Users\User\Downloads\faiss_index_sysml\index.faiss"
|
|
PICKLE_PATH = r"c:\Users\User\Downloads\faiss_index_sysml\index.pkl"
|
|
|
|
class VectorDBUploader:
|
|
def __init__(self):
|
|
self.client = None
|
|
self.db = None
|
|
self.fs = None
|
|
|
|
async def connect(self):
|
|
"""Connect to MongoDB"""
|
|
try:
|
|
self.client = AsyncIOMotorClient(MONGO_URI)
|
|
self.db = self.client[DB_NAME]
|
|
self.fs = AsyncIOMotorGridFSBucket(self.db, bucket_name=BUCKET_NAME)
|
|
|
|
|
|
await self.client.admin.command('ping')
|
|
logger.info("Successfully connected to MongoDB")
|
|
return True
|
|
except Exception as e:
|
|
logger.error(f"Failed to connect to MongoDB: {e}")
|
|
return False
|
|
|
|
async def file_exists(self, filename: str) -> bool:
|
|
"""Check if file already exists in GridFS"""
|
|
try:
|
|
async for file_doc in self.fs.find({"filename": filename}):
|
|
return True
|
|
return False
|
|
except Exception as e:
|
|
logger.error(f"Error checking file existence: {e}")
|
|
return False
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def upload_file(self, file_path: str, filename: str) -> bool:
|
|
"""Upload a file to GridFS, overwriting any existing files with the same name"""
|
|
try:
|
|
|
|
if not os.path.exists(file_path):
|
|
logger.error(f"Local file not found: {file_path}")
|
|
return False
|
|
|
|
|
|
async for file_doc in self.fs.find({"filename": filename}):
|
|
await self.fs.delete(file_doc._id)
|
|
logger.info(f"Deleted existing file: {filename} (ID: {file_doc._id})")
|
|
|
|
|
|
file_size = os.path.getsize(file_path)
|
|
logger.info(f"Uploading {filename} ({file_size} bytes)...")
|
|
|
|
|
|
with open(file_path, 'rb') as f:
|
|
file_id = await self.fs.upload_from_stream(
|
|
filename,
|
|
f,
|
|
metadata={
|
|
"uploaded_at": datetime.utcnow(),
|
|
"original_path": file_path,
|
|
"file_size": file_size,
|
|
"description": f"Vector database file: {filename}"
|
|
}
|
|
)
|
|
|
|
logger.info(f"Successfully uploaded {filename} with ID: {file_id}")
|
|
return True
|
|
|
|
except Exception as e:
|
|
logger.error(f"Failed to upload {filename}: {e}")
|
|
return False
|
|
|
|
|
|
async def list_files(self):
|
|
"""List all files in the GridFS bucket"""
|
|
try:
|
|
logger.info(f"Files in {BUCKET_NAME} bucket:")
|
|
async for file_doc in self.fs.find():
|
|
logger.info(f"- {file_doc.filename} (ID: {file_doc._id}, Size: {file_doc.length} bytes)")
|
|
except Exception as e:
|
|
logger.error(f"Failed to list files: {e}")
|
|
|
|
async def upload_vector_files(self):
|
|
"""Upload both FAISS and pickle files"""
|
|
files_to_upload = [
|
|
(FAISS_PATH, "index.faiss"),
|
|
(PICKLE_PATH, "index.pkl")
|
|
]
|
|
|
|
success_count = 0
|
|
for file_path, filename in files_to_upload:
|
|
if await self.upload_file(file_path, filename):
|
|
success_count += 1
|
|
else:
|
|
logger.error(f"Failed to upload {filename}")
|
|
|
|
logger.info(f"Upload completed: {success_count}/{len(files_to_upload)} files uploaded successfully")
|
|
return success_count == len(files_to_upload)
|
|
|
|
async def close(self):
|
|
"""Close database connection"""
|
|
if self.client:
|
|
self.client.close()
|
|
logger.info("Database connection closed")
|
|
|
|
async def main():
|
|
"""Main function to upload vector database files"""
|
|
uploader = VectorDBUploader()
|
|
|
|
try:
|
|
|
|
if not await uploader.connect():
|
|
logger.error("Failed to connect to database. Exiting...")
|
|
return
|
|
|
|
|
|
logger.info("Starting vector database files upload...")
|
|
success = await uploader.upload_vector_files()
|
|
|
|
if success:
|
|
logger.info("All files uploaded successfully!")
|
|
else:
|
|
logger.error("Some files failed to upload")
|
|
|
|
|
|
await uploader.list_files()
|
|
|
|
except Exception as e:
|
|
logger.error(f"Unexpected error: {e}")
|
|
finally:
|
|
await uploader.close()
|
|
|
|
if __name__ == "__main__":
|
|
print("Vector Database File Uploader")
|
|
print("=" * 50)
|
|
print(f"Database: {DB_NAME}")
|
|
print(f"Bucket: {BUCKET_NAME}")
|
|
print(f"FAISS file: {FAISS_PATH}")
|
|
print(f"Pickle file: {PICKLE_PATH}")
|
|
print("=" * 50)
|
|
|
|
|
|
asyncio.run(main())
|
|
|