Spaces:
Sleeping
Sleeping
add examples
Browse files- app.py +1 -1
- clustering_evaluator.py +2 -2
- gradio_tst.py +10 -3
app.py
CHANGED
@@ -2,4 +2,4 @@ import evaluate
|
|
2 |
from gradio_tst import launch_gradio_widget2
|
3 |
|
4 |
module = evaluate.load("clustering_evaluator.py")
|
5 |
-
launch_gradio_widget2(module)
|
|
|
2 |
from gradio_tst import launch_gradio_widget2
|
3 |
|
4 |
module = evaluate.load("clustering_evaluator.py")
|
5 |
+
launch_gradio_widget2(module)
|
clustering_evaluator.py
CHANGED
@@ -38,8 +38,8 @@ However, it allows to compute additional metrics when truth labels are passed to
|
|
38 |
_KWARGS_DESCRIPTION = """
|
39 |
Computes the quality of clustering results.
|
40 |
Args:
|
41 |
-
samples
|
42 |
-
predictions:
|
43 |
truth_labels (optional): truth labels to compute additional metrics
|
44 |
Returns:
|
45 |
silhouete_score
|
|
|
38 |
_KWARGS_DESCRIPTION = """
|
39 |
Computes the quality of clustering results.
|
40 |
Args:
|
41 |
+
samples: vector representations
|
42 |
+
predictions: predicted cluster labels
|
43 |
truth_labels (optional): truth labels to compute additional metrics
|
44 |
Returns:
|
45 |
silhouete_score
|
gradio_tst.py
CHANGED
@@ -117,6 +117,12 @@ def launch_gradio_widget2(metric):
|
|
117 |
def compute(data):
|
118 |
return metric.compute(**parse_gradio_data(data, gradio_input_types))
|
119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
iface = gr.Interface(
|
121 |
fn=compute,
|
122 |
inputs=gr.Dataframe(
|
@@ -133,8 +139,9 @@ def launch_gradio_widget2(metric):
|
|
133 |
),
|
134 |
title=f"Metric: {metric.name}",
|
135 |
article=parse_readme(local_path / "README.md"),
|
136 |
-
|
137 |
-
|
|
|
138 |
)
|
139 |
|
140 |
-
iface.launch(share=True)
|
|
|
117 |
def compute(data):
|
118 |
return metric.compute(**parse_gradio_data(data, gradio_input_types))
|
119 |
|
120 |
+
test_cases = [
|
121 |
+
{
|
122 |
+
"samples": [[0.1, 0.2, 0.3], [0.7, 0.6, 0.9], [0.8, 0.95, 0.85]],
|
123 |
+
"predictions": [0, 1, 1],
|
124 |
+
}
|
125 |
+
]
|
126 |
iface = gr.Interface(
|
127 |
fn=compute,
|
128 |
inputs=gr.Dataframe(
|
|
|
139 |
),
|
140 |
title=f"Metric: {metric.name}",
|
141 |
article=parse_readme(local_path / "README.md"),
|
142 |
+
examples=[
|
143 |
+
parse_test_cases(test_cases, feature_names, gradio_input_types)
|
144 |
+
],
|
145 |
)
|
146 |
|
147 |
+
iface.launch(share=True)
|