Spaces:
Sleeping
Sleeping
Commit
·
1ae5927
0
Parent(s):
Initial commit.
Browse files- .gitignore +8 -0
- README.md +162 -0
- app.py +6 -0
- config.py +7 -0
- create_rag_agent.py +112 -0
- generate_vector_db.py +118 -0
- gradio_app.py +66 -0
- requirements.txt +12 -0
.gitignore
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
chroma_db/
|
| 2 |
+
dataset
|
| 3 |
+
**/__pycache__
|
| 4 |
+
.venv/*
|
| 5 |
+
.env
|
| 6 |
+
pyrightconfig.json
|
| 7 |
+
|
| 8 |
+
!**/.gitkeep
|
README.md
ADDED
|
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# User Manual Chatbot
|
| 2 |
+
|
| 3 |
+
## Project Overview
|
| 4 |
+
|
| 5 |
+
This project is a chatbot developed as part of the **Akbank GenAI Bootcamp 2025**.
|
| 6 |
+
The chatbot leverages a database of user manuals for various products to provide accurate and contextually relevant answers to technical questions.
|
| 7 |
+
By utilizing **Retrieval-Augmented Generation (RAG)** technology, the chatbot retrieves relevant information from user manuals and combines it with the generative capabilities of the **Gemini-2.5-flash** model to deliver precise responses.
|
| 8 |
+
The project includes a user-friendly interface built with **Gradio** which can be used to interact with the chatbot.
|
| 9 |
+
|
| 10 |
+
### Purpose
|
| 11 |
+
|
| 12 |
+
The goal of this project is to create an intelligent chatbot capable of answering technical queries about electronic devices and products by referencing user manuals.
|
| 13 |
+
This enables users to quickly access accurate information without manually searching through lengthy documentation.
|
| 14 |
+
|
| 15 |
+
---
|
| 16 |
+
|
| 17 |
+
## Dataset
|
| 18 |
+
|
| 19 |
+
The dataset used in this project is sourced from the dataset described in the paper *[Question Answering over Electronic Devices: A New Benchmark Dataset and a Multi-Task Learning based QA Framework](https://arxiv.org/abs/2109.05897)*.
|
| 20 |
+
It can be accessed via this [Google Drive link](https://drive.google.com/drive/folders/1-gX1DlmVodP6OVRJC3WBRZoGgxPuJvvt).
|
| 21 |
+
|
| 22 |
+
### Dataset Details
|
| 23 |
+
- **Format**: Text-based user manuals for various electronic devices.
|
| 24 |
+
- **Preprocessing**: The manuals are split into overlapping chunks to facilitate efficient retrieval.
|
| 25 |
+
- **Embedding Generation**: The text chunks are converted into embeddings using the [sentence-transformers/all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) model from HuggingFace.
|
| 26 |
+
- **Generation Script**: The [generate_vector_db.py](./generate_vector_db.py) script processes the dataset and generates the vector database. If the process is interrupted the generated embeddings are saved and when ran again, the program will generate new embeddings.
|
| 27 |
+
- **Vector Database**: The embeddings are stored in a Chroma vector database and can be used locally. However, a pregenerated database already exists can be used via the HuggingFace dataset [syildizz/user-manuals-chromadb](https://huggingface.co/datasets/syildizz/user-manuals-chromadb).
|
| 28 |
+
|
| 29 |
+
### Usage
|
| 30 |
+
|
| 31 |
+
When generating the dataset, the folders that are used for the input user-manual dataset and the output Chroma dataset by the [generate_vector_db.py](./generate_vector_db.py) script is specified in the [config.py](config.py) file.
|
| 32 |
+
|
| 33 |
+
```python
|
| 34 |
+
dataset_directory = "user_manual_dataset_folder_path"
|
| 35 |
+
chroma_persist_directory = "chroma_dataset_folder_path"
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
## Methods and Technologies
|
| 41 |
+
|
| 42 |
+
### Solution Architecture
|
| 43 |
+
The chatbot employs a **Retrieval-Augmented Generation (RAG)** pipeline to combine information retrieval with generative AI:
|
| 44 |
+
1. **Vector Database**: The embeddings are retrieved from a **Chroma** vector database for efficient similarity-based retrieval.
|
| 45 |
+
2. **Query Processing**: When a user submits a query, the system retrieves the most relevant manual chunks using similarity search.
|
| 46 |
+
3. **Response Generation**: The retrieved chunks are passed to the **Gemini-2.5-flash** model to generate a coherent and contextually accurate response.
|
| 47 |
+
4. **User Interface**: A **Gradio**-based interface allows users to interact with the chatbot seamlessly.
|
| 48 |
+
|
| 49 |
+
### Technologies Used
|
| 50 |
+
- **LLM**: Gemini-2.5-flash (`langchain-google-genai`)
|
| 51 |
+
- **Embedding Model**: sentence-transformers/all-mpnet-base-v2 (`langchain-huggingface`)
|
| 52 |
+
- **Vector Database**: Chroma (`langchain-chroma`, `chromadb`)
|
| 53 |
+
- **Text Splitting**: `langchain-text-splitters`
|
| 54 |
+
- **Interface**: Gradio (`gradio`)
|
| 55 |
+
- **Environment Management**: `python-dotenv`, `pydantic`
|
| 56 |
+
- **Other Libraries**: `langchain`, `langchain-core`, `langchain-community`
|
| 57 |
+
|
| 58 |
+
### Key Features
|
| 59 |
+
- **RAG-based Retrieval**: Ensures answers are grounded in the user manual dataset.
|
| 60 |
+
- **Incremental Vector Database**: The `generate_vector_db.py` script supports resumable processing.
|
| 61 |
+
- **Configurability**: Parameters like chunk size and overlap are adjustable in `config.py`.
|
| 62 |
+
- **Interactive UI**: Gradio interface for easy user interaction.
|
| 63 |
+
|
| 64 |
+
---
|
| 65 |
+
|
| 66 |
+
## Results
|
| 67 |
+
|
| 68 |
+
The chatbot successfully answers technical questions about electronic devices by retrieving relevant information from user manuals.
|
| 69 |
+
Key outcomes include:
|
| 70 |
+
|
| 71 |
+
- **Accuracy**: The RAG pipeline ensures responses are highly relevant to the query, leveraging the structured manual dataset.
|
| 72 |
+
- **Scalability**: The incremental vector database generation supports large datasets and resumable processing.
|
| 73 |
+
- **Usability**: The Gradio interface provides a seamless experience for users to query the chatbot.
|
| 74 |
+
- **Deployment**: The project is live on HuggingFace Spaces at [Placeholder Link](https://huggingface.co/spaces/placeholder).
|
| 75 |
+
|
| 76 |
+
---
|
| 77 |
+
|
| 78 |
+
## Setup and Installation
|
| 79 |
+
|
| 80 |
+
### Prerequisites
|
| 81 |
+
- Python
|
| 82 |
+
- Git
|
| 83 |
+
- Virtual environment (recommended)
|
| 84 |
+
|
| 85 |
+
### Installation Steps
|
| 86 |
+
|
| 87 |
+
1. **Clone the Repository**:
|
| 88 |
+
```bash
|
| 89 |
+
git clone https://github.com/syildizz/[your-repo-name].git
|
| 90 |
+
cd [your-repo-name]
|
| 91 |
+
```
|
| 92 |
+
|
| 93 |
+
2. **Set Up a Virtual Environment**:
|
| 94 |
+
```bash
|
| 95 |
+
python -m venv .venv
|
| 96 |
+
source .venv/bin/activate # On Windows: .venv\Scripts\activate
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
+
3. **Install Dependencies**:
|
| 100 |
+
Use the [requirements.txt](./requirements.txt) file to install dependencies via running:
|
| 101 |
+
|
| 102 |
+
```bash
|
| 103 |
+
pip install -r requirements.txt
|
| 104 |
+
```
|
| 105 |
+
|
| 106 |
+
4. **Configuration**:
|
| 107 |
+
The public configuration information is stored in the [config.py](./config.py) file. The global parameters in the config file specified can be changed if another value is desired for the project.
|
| 108 |
+
|
| 109 |
+
Default values:
|
| 110 |
+
```python
|
| 111 |
+
dataset_directory = "dataset"
|
| 112 |
+
chroma_persist_directory = "chroma_db"
|
| 113 |
+
huggingface_embedding_model_repo_path = "sentence-transformers/all-mpnet-base-v2"
|
| 114 |
+
huggingface_vector_embedding_database_repo_path = "syildizz/user-manuals-chromadb"
|
| 115 |
+
google_llm_model_name = "gemini-2.5-flash"
|
| 116 |
+
```
|
| 117 |
+
|
| 118 |
+
4. **Configure Environment Variables**:
|
| 119 |
+
Create a `.env` file in the project root with the following:
|
| 120 |
+
```text
|
| 121 |
+
GEMINI_API_KEY=[your-gemini-api-key]
|
| 122 |
+
HUGGINGFACE_TOKEN=[your-huggingface-token]
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
5. **Generate Vector Database** (Optional):
|
| 126 |
+
If you want to generate a local vector database, run:
|
| 127 |
+
```bash
|
| 128 |
+
python generate_vector_db.py
|
| 129 |
+
```
|
| 130 |
+
NOTE: Do not generate a vector database if you want to pull the public pregenerated database.
|
| 131 |
+
If a database does not exist in the next step, [app.py](./app.py) will pull the remote pregenerated database.
|
| 132 |
+
|
| 133 |
+
6. **Run the Application**:
|
| 134 |
+
Launch the Gradio interface:
|
| 135 |
+
```bash
|
| 136 |
+
python app.py
|
| 137 |
+
```
|
| 138 |
+
The interface will be available at `http://localhost:7860`.
|
| 139 |
+
|
| 140 |
+
---
|
| 141 |
+
|
| 142 |
+
## Web Interface & Product Guide
|
| 143 |
+
|
| 144 |
+
The chatbot is deployed on HuggingFace Spaces at [Placeholder Link](https://huggingface.co/spaces/placeholder).
|
| 145 |
+
The Gradio-based interface allows users to:
|
| 146 |
+
|
| 147 |
+
- Enter technical questions about electronic devices.
|
| 148 |
+
- Receive responses grounded in user manual content.
|
| 149 |
+
|
| 150 |
+
### Usage Instructions
|
| 151 |
+
|
| 152 |
+
1. Visit the HuggingFace Spaces link: [Placeholder Link](https://huggingface.co/spaces/placeholder).
|
| 153 |
+
2. Enter a question in the text input field (e.g., "How do I reset my [device name]?").
|
| 154 |
+
3. The chatbot will use relevant manual sections to generate a response.
|
| 155 |
+
|
| 156 |
+
### Screenshots
|
| 157 |
+
|
| 158 |
+
[Placeholder: Add screenshots or a short video demonstrating the interface]
|
| 159 |
+
|
| 160 |
+
---
|
| 161 |
+
|
| 162 |
+
**Live Demo**: [Placeholder HuggingFace Spaces Link](https://huggingface.co/spaces/placeholder)
|
app.py
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from gradio_app import gradio_main
|
| 3 |
+
|
| 4 |
+
if __name__ == "__main__":
|
| 5 |
+
gr_interface = gradio_main()
|
| 6 |
+
gr_interface.queue().launch() # pyright: ignore[reportUnusedCallResult]
|
config.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
dataset_directory = "dataset"
|
| 3 |
+
chroma_persist_directory = "chroma_db"
|
| 4 |
+
huggingface_embedding_model_repo_path = "sentence-transformers/all-mpnet-base-v2"
|
| 5 |
+
huggingface_vector_embedding_database_repo_path = "syildizz/user-manuals-chromadb"
|
| 6 |
+
google_llm_model_name = "gemini-2.5-flash"
|
| 7 |
+
temperature = 0.3
|
create_rag_agent.py
ADDED
|
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# rag_gemini_chroma_v1_0_1_fixed.py
|
| 2 |
+
import os
|
| 3 |
+
from typing import Any
|
| 4 |
+
from dotenv import load_dotenv
|
| 5 |
+
from langchain.agents import create_agent
|
| 6 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 7 |
+
from langgraph.graph.state import CompiledStateGraph
|
| 8 |
+
from pydantic import SecretStr
|
| 9 |
+
|
| 10 |
+
from huggingface_hub import snapshot_download
|
| 11 |
+
|
| 12 |
+
# Core types and prompt
|
| 13 |
+
from langchain_core.documents import Document
|
| 14 |
+
|
| 15 |
+
# Document loaders, text splitters, vectorstore (community / ecosystem packages)
|
| 16 |
+
from langchain_chroma import Chroma
|
| 17 |
+
|
| 18 |
+
# Google Gemini provider and embeddings package
|
| 19 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 20 |
+
|
| 21 |
+
from langchain.tools import tool
|
| 22 |
+
|
| 23 |
+
import config
|
| 24 |
+
|
| 25 |
+
# Instead, LCEL (Runnable components) is used for chain composition.
|
| 26 |
+
|
| 27 |
+
def get_chroma_store(
|
| 28 |
+
chroma_persist_directory: str = config.chroma_persist_directory,
|
| 29 |
+
huggingface_embedding_model_repo_path: str = config.huggingface_embedding_model_repo_path,
|
| 30 |
+
huggingface_vector_embedding_database_repo_path: str = config.huggingface_vector_embedding_database_repo_path,
|
| 31 |
+
) -> Chroma:
|
| 32 |
+
"""
|
| 33 |
+
Load an existing Chroma store if present, otherwise create from docs and persist.
|
| 34 |
+
|
| 35 |
+
This version uses lazy loading and batch processing to prevent memory issues.
|
| 36 |
+
"""
|
| 37 |
+
|
| 38 |
+
embedding_model = HuggingFaceEmbeddings(model_name=huggingface_embedding_model_repo_path)
|
| 39 |
+
|
| 40 |
+
# 3) Check for existing Chroma DB and load it
|
| 41 |
+
if os.path.exists(chroma_persist_directory) and os.path.isdir(chroma_persist_directory):
|
| 42 |
+
print(f"✅ Loading existing Chroma DB from: {chroma_persist_directory}")
|
| 43 |
+
else:
|
| 44 |
+
print("📥 No local Chroma DB found. Pulling from Hugging Face dataset...")
|
| 45 |
+
|
| 46 |
+
# Create local directory
|
| 47 |
+
os.makedirs(chroma_persist_directory, exist_ok=True)
|
| 48 |
+
|
| 49 |
+
# Download all files from the Hugging Face dataset
|
| 50 |
+
snapshot_download( # pyright: ignore[reportUnusedCallResult]
|
| 51 |
+
repo_id=huggingface_vector_embedding_database_repo_path,
|
| 52 |
+
repo_type="dataset",
|
| 53 |
+
local_dir=chroma_persist_directory,
|
| 54 |
+
ignore_patterns=["*.md", "*.json"], # Optional: skip non-DB files like README,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
print(f"✅ Pulled and persisted Chroma DB to: {chroma_persist_directory}")
|
| 58 |
+
|
| 59 |
+
return Chroma(
|
| 60 |
+
embedding_function=embedding_model,
|
| 61 |
+
persist_directory=chroma_persist_directory
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
|
| 65 |
+
def create_rag_agent(
|
| 66 |
+
google_llm_model_name: str = config.google_llm_model_name,
|
| 67 |
+
temperature: float = 0.3
|
| 68 |
+
) -> CompiledStateGraph[Any]:
|
| 69 |
+
load_dotenv() # pyright: ignore[reportUnusedCallResult]
|
| 70 |
+
|
| 71 |
+
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
| 72 |
+
if not gemini_api_key:
|
| 73 |
+
raise ValueError("Missing GEMINI_API_KEY in environment")
|
| 74 |
+
|
| 75 |
+
vector_store = get_chroma_store()
|
| 76 |
+
|
| 77 |
+
# 6) Create Gemini chat model (LLM)
|
| 78 |
+
llm = ChatGoogleGenerativeAI(model=google_llm_model_name, temperature=temperature, google_api_key=SecretStr(gemini_api_key))
|
| 79 |
+
|
| 80 |
+
# 7) Prompt template
|
| 81 |
+
# Note: The prompt input variables must match the dict passed to the model
|
| 82 |
+
system_prompt = """
|
| 83 |
+
You are provided with a list of sample text that comes from various different user manuals.
|
| 84 |
+
Your task is to respond to the user using the samples provided to the best of your abilities.
|
| 85 |
+
The context text is in the following paragraph.
|
| 86 |
+
|
| 87 |
+
"""
|
| 88 |
+
|
| 89 |
+
# Helper to format documents for the prompt
|
| 90 |
+
def format_docs(docs: list[Document]) -> str:
|
| 91 |
+
"""Formats a list of documents into a single string."""
|
| 92 |
+
return "\n".join(doc.page_content for doc in docs)
|
| 93 |
+
|
| 94 |
+
# 8) Build RAG chain using LCEL (LangChain Expression Language)
|
| 95 |
+
# The chain structure is:
|
| 96 |
+
# { 'context': retriever | format_docs, 'input': RunnablePassthrough() } | prompt | llm
|
| 97 |
+
|
| 98 |
+
@tool #fonksiyonun hem cevap (content) hem de kaynak/detay (artifact) döndüreceğini belirtir.
|
| 99 |
+
def retrieve_context(query: str) -> str:
|
| 100 |
+
'''Sorguyu yanıtlamaya yardımcı olacak bilgileri getir.'''
|
| 101 |
+
retrieved_docs = vector_store.similarity_search(query, k=5)
|
| 102 |
+
return format_docs(retrieved_docs)
|
| 103 |
+
|
| 104 |
+
rag_agent = create_agent(llm, [retrieve_context], system_prompt=system_prompt)
|
| 105 |
+
|
| 106 |
+
return rag_agent
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
rag_agent = create_rag_agent()
|
| 110 |
+
result: dict[str, Any] | Any = rag_agent.invoke(
|
| 111 |
+
{"messages": [{"role": "user", "content": "I want to replace the batteries of a sony brand remote. What can I do?"}]}
|
| 112 |
+
)
|
generate_vector_db.py
ADDED
|
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain_core.documents import Document
|
| 2 |
+
from langchain_community.document_loaders import DirectoryLoader, TextLoader
|
| 3 |
+
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
| 4 |
+
|
| 5 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
| 6 |
+
from langchain_chroma import Chroma
|
| 7 |
+
import chromadb.errors
|
| 8 |
+
|
| 9 |
+
import gc
|
| 10 |
+
import os
|
| 11 |
+
|
| 12 |
+
import config
|
| 13 |
+
|
| 14 |
+
batch_size = 5
|
| 15 |
+
|
| 16 |
+
def generate_doc_id(chunk: Document, postfix: str) -> str:
|
| 17 |
+
unique_string = f"{chunk.metadata.get('source')}---{postfix}"
|
| 18 |
+
return unique_string
|
| 19 |
+
|
| 20 |
+
def create_chroma_store(
|
| 21 |
+
dataset_directory: str = config.dataset_directory,
|
| 22 |
+
chroma_persist_directory: str = config.chroma_persist_directory,
|
| 23 |
+
huggingface_embedding_model_repo_path: str = config.huggingface_embedding_model_repo_path
|
| 24 |
+
) -> Chroma:
|
| 25 |
+
|
| 26 |
+
embedding_model = HuggingFaceEmbeddings(model_name=huggingface_embedding_model_repo_path)
|
| 27 |
+
|
| 28 |
+
store: Chroma
|
| 29 |
+
|
| 30 |
+
if os.path.exists(chroma_persist_directory) and os.path.isdir(chroma_persist_directory):
|
| 31 |
+
print(f"✅ Loading existing Chroma DB from: {chroma_persist_directory}")
|
| 32 |
+
store = Chroma(
|
| 33 |
+
embedding_function=embedding_model,
|
| 34 |
+
persist_directory=chroma_persist_directory
|
| 35 |
+
)
|
| 36 |
+
else:
|
| 37 |
+
print(f"📦 Creating new Chroma DB at: {chroma_persist_directory} using batch processing.")
|
| 38 |
+
store = Chroma(
|
| 39 |
+
embedding_function=embedding_model,
|
| 40 |
+
persist_directory=chroma_persist_directory
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
try:
|
| 44 |
+
# Use lazy_load() to get a generator instead of loading all documents into memory
|
| 45 |
+
loader = DirectoryLoader(
|
| 46 |
+
path=dataset_directory,
|
| 47 |
+
glob="**/*.txt",
|
| 48 |
+
loader_cls=TextLoader,
|
| 49 |
+
show_progress=True,
|
| 50 |
+
use_multithreading=False,
|
| 51 |
+
randomize_sample=True
|
| 52 |
+
)
|
| 53 |
+
# Use iterator to avoid loading all documents
|
| 54 |
+
document_iterator = loader.lazy_load()
|
| 55 |
+
except FileNotFoundError:
|
| 56 |
+
raise FileNotFoundError(f"🚨 Warning: '{dataset_directory}' directory not found.")
|
| 57 |
+
|
| 58 |
+
# Splitter for document chunks
|
| 59 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100)
|
| 60 |
+
|
| 61 |
+
doc_batch: list[Document] = []
|
| 62 |
+
|
| 63 |
+
try:
|
| 64 |
+
for document in document_iterator:
|
| 65 |
+
|
| 66 |
+
doc_batch.append(document)
|
| 67 |
+
|
| 68 |
+
global batch_size
|
| 69 |
+
if len(doc_batch) >= batch_size:
|
| 70 |
+
print(f"Processing batch of {len(doc_batch)} documents...")
|
| 71 |
+
# 3. Split the current batch of documents into chunks
|
| 72 |
+
# Splitting a small batch is memory-efficient
|
| 73 |
+
chunks = splitter.split_documents(doc_batch)
|
| 74 |
+
|
| 75 |
+
if len(chunks) == 0:
|
| 76 |
+
doc_batch = []
|
| 77 |
+
continue
|
| 78 |
+
|
| 79 |
+
# Assign an ID to every chunk
|
| 80 |
+
for i, chunk in enumerate(chunks, 1):
|
| 81 |
+
chunk.id = generate_doc_id(chunk, str(i))
|
| 82 |
+
|
| 83 |
+
existingIds = [doc.id for doc in store.get_by_ids([chunk.id for chunk in chunks if chunk.id is not None]) if doc.id is not None]
|
| 84 |
+
unaddedChunks = [chunk for chunk in chunks if chunk.id is not None and chunk.id not in existingIds]
|
| 85 |
+
|
| 86 |
+
if len(unaddedChunks) != 0:
|
| 87 |
+
try:
|
| 88 |
+
store.add_documents(unaddedChunks) # pyright: ignore[reportUnusedCallResult]
|
| 89 |
+
except chromadb.errors.InternalError:
|
| 90 |
+
batch_size //= 2
|
| 91 |
+
|
| 92 |
+
# E) Reset the batch list
|
| 93 |
+
doc_batch = []
|
| 94 |
+
|
| 95 |
+
gc.collect() # pyright: ignore[reportUnusedCallResult]
|
| 96 |
+
|
| 97 |
+
if len(unaddedChunks) != 0:
|
| 98 |
+
#sleep(61)
|
| 99 |
+
pass
|
| 100 |
+
|
| 101 |
+
# Process the final batch (if any)
|
| 102 |
+
if doc_batch:
|
| 103 |
+
print(f"Processing final batch of {len(doc_batch)} documents...")
|
| 104 |
+
chunks = splitter.split_documents(doc_batch)
|
| 105 |
+
|
| 106 |
+
store.add_documents(chunks) # pyright: ignore[reportUnusedCallResult]
|
| 107 |
+
|
| 108 |
+
except KeyboardInterrupt:
|
| 109 |
+
print("Process interrupted")
|
| 110 |
+
pass
|
| 111 |
+
|
| 112 |
+
return store
|
| 113 |
+
|
| 114 |
+
def main():
|
| 115 |
+
vectorstore = create_chroma_store() # pyright: ignore[reportUnusedVariable]
|
| 116 |
+
|
| 117 |
+
if __name__ == "__main__":
|
| 118 |
+
main()
|
gradio_app.py
ADDED
|
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Any
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from langchain_core.messages import AIMessage
|
| 4 |
+
from create_rag_agent import create_rag_agent
|
| 5 |
+
|
| 6 |
+
def gradio_main():
|
| 7 |
+
|
| 8 |
+
rag_agent = create_rag_agent()
|
| 9 |
+
|
| 10 |
+
def rag_agent_response(message: str, history: list[dict[str, Any]]):
|
| 11 |
+
"""
|
| 12 |
+
The function integrated with Gradio, calling your LangChain rag_agent.
|
| 13 |
+
It now passes the full conversation history for conversational context.
|
| 14 |
+
|
| 15 |
+
The type hint for history is now the built-in generic: list[dict].
|
| 16 |
+
"""
|
| 17 |
+
|
| 18 |
+
full_messages = history + [{"role": "user", "content": message}]
|
| 19 |
+
|
| 20 |
+
agent_input = {
|
| 21 |
+
"messages": full_messages
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
stream = rag_agent.stream(agent_input)
|
| 25 |
+
|
| 26 |
+
current_response=""
|
| 27 |
+
|
| 28 |
+
# Iterate over the stream of chunks
|
| 29 |
+
for chunk in stream:
|
| 30 |
+
|
| 31 |
+
model_in_chunk = chunk.get("model", [])
|
| 32 |
+
|
| 33 |
+
if model_in_chunk:
|
| 34 |
+
|
| 35 |
+
messages_in_chunk = model_in_chunk.get("messages", [])
|
| 36 |
+
|
| 37 |
+
if messages_in_chunk:
|
| 38 |
+
# The final item in the messages list contains the generated text chunk
|
| 39 |
+
message_chunk = messages_in_chunk[-1]
|
| 40 |
+
|
| 41 |
+
# We use getattr to safely get the content from a message object/chunk
|
| 42 |
+
content_chunk = getattr(message_chunk, "text", None)
|
| 43 |
+
|
| 44 |
+
if content_chunk:
|
| 45 |
+
# Accumulate and yield the running response
|
| 46 |
+
current_response += content_chunk
|
| 47 |
+
yield current_response
|
| 48 |
+
|
| 49 |
+
gr_interface = gr.ChatInterface(
|
| 50 |
+
fn=rag_agent_response,
|
| 51 |
+
type="messages",
|
| 52 |
+
chatbot=gr.Chatbot(
|
| 53 |
+
height=500,
|
| 54 |
+
label="LangChain Conversational RAG Chatbot",
|
| 55 |
+
type="messages"
|
| 56 |
+
),
|
| 57 |
+
textbox=gr.Textbox(placeholder="Enter your query here...", container=False, scale=7),
|
| 58 |
+
title="LangChain RAG Agent Integrated with Gradio (Conversational)",
|
| 59 |
+
description="This interface now passes the full conversation history to the agent for context.",
|
| 60 |
+
theme="soft"
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
return gr_interface
|
| 64 |
+
|
| 65 |
+
if __name__ == "__main__":
|
| 66 |
+
gradio_main().queue().launch() # pyright: ignore[reportUnusedCallResult]
|
requirements.txt
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
python-dotenv
|
| 2 |
+
pydantic
|
| 3 |
+
langchain==1.0.1
|
| 4 |
+
langchain-core
|
| 5 |
+
langchain-chroma
|
| 6 |
+
langchain-community
|
| 7 |
+
langchain-text-splitters
|
| 8 |
+
langchain-google-genai
|
| 9 |
+
langchain-huggingface
|
| 10 |
+
sentence-transformers
|
| 11 |
+
chromadb
|
| 12 |
+
gradio
|