|
import whisper |
|
from pytube import YouTube |
|
from transformers import pipeline |
|
import gradio as gr |
|
import os |
|
|
|
model = whisper.load_model("base") |
|
summarizer = pipeline("summarization") |
|
|
|
def get_audio(url): |
|
yt = YouTube(url) |
|
video = yt.streams.filter(only_audio=True).first() |
|
out_file=video.download(output_path=".") |
|
base, ext = os.path.splitext(out_file) |
|
new_file = base+'.mp3' |
|
os.rename(out_file, new_file) |
|
a = new_file |
|
return a |
|
|
|
def get_text(url): |
|
result = model.transcribe(get_audio(url)) |
|
return result['text'] |
|
|
|
def get_summary(article): |
|
print(article) |
|
b = summarizer(article, min_length=5, max_length=20) |
|
print(b) |
|
|
|
return b |
|
|
|
with gr.Blocks() as demo: |
|
gr.Markdown("<h1><center>Free YouTube URL Video to Text using OpenAI's Whisper Model</center></h1>") |
|
gr.Markdown("<center>Enter the link of any YouTube video to generate a text transcript of the video and then create a summary of the video transcript.</center>") |
|
|
|
input_text_url = gr.Textbox(placeholder='Youtube video URL', label='URL') |
|
result_button_transcribe = gr.Button('1. Transcribe') |
|
output_text_transcribe = gr.Textbox(placeholder='Transcript of the YouTube video.', label='Transcript') |
|
|
|
result_button = gr.Button('2. Create Summary') |
|
output_text_summary = gr.Textbox(placeholder='Summary of the YouTube video transcript.', label='Summary') |
|
|
|
result_button_1.click(get_text, inputs = input_text_url, outputs = output_text_transcribe) |
|
result_button.click(get_summary, inputs = output_text_transcribe, outputs = output_text_summary) |
|
|
|
demo.launch(debug = True) |