demo-space2 / neural_methods /trainer /FactorizePhysTrainer.py.backup
swetchareddytukkani
Initial commit with PhysMamba rPPG application
1c6711c
"""
FactorizePhys: Matrix Factorization for Multidimensional Attention in Remote Physiological Sensing
NeurIPS 2024
Jitesh Joshi, Sos S. Agaian, and Youngjun Cho
"""
import os
import numpy as np
import torch
import torch.optim as optim
from evaluation.metrics import calculate_metrics
from neural_methods.loss.NegPearsonLoss import Neg_Pearson
from neural_methods.model.FactorizePhys.FactorizePhys import FactorizePhys
from neural_methods.model.FactorizePhys.FactorizePhysBig import FactorizePhysBig
from neural_methods.trainer.BaseTrainer import BaseTrainer
from tqdm import tqdm
class FactorizePhysTrainer(BaseTrainer):
def __init__(self, config, data_loader):
"""Inits parameters from args and the writer for TensorboardX."""
super().__init__()
self.max_epoch_num = config.TRAIN.EPOCHS
self.model_dir = config.MODEL.MODEL_DIR
self.model_file_name = config.TRAIN.MODEL_FILE_NAME
self.batch_size = config.TRAIN.BATCH_SIZE
self.num_of_gpu = config.NUM_OF_GPU_TRAIN
self.dropout_rate = config.MODEL.DROP_RATE
self.base_len = self.num_of_gpu
self.config = config
self.min_valid_loss = None
self.best_epoch = 0
if torch.cuda.is_available() and config.NUM_OF_GPU_TRAIN > 0:
dev_list = [int(d) for d in config.DEVICE.replace("cuda:", "").split(",")]
self.device = torch.device(dev_list[0]) #currently toolbox only supports 1 GPU
self.num_of_gpu = 1 #config.NUM_OF_GPU_TRAIN # set number of used GPUs
else:
self.device = torch.device("cpu") # if no GPUs set device is CPU
self.num_of_gpu = 0 # no GPUs used
frames = self.config.MODEL.FactorizePhys.FRAME_NUM
in_channels = self.config.MODEL.FactorizePhys.CHANNELS
model_type = self.config.MODEL.FactorizePhys.TYPE
model_type = model_type.lower()
md_config = {}
md_config["FRAME_NUM"] = self.config.MODEL.FactorizePhys.FRAME_NUM
md_config["MD_TYPE"] = self.config.MODEL.FactorizePhys.MD_TYPE
md_config["MD_FSAM"] = self.config.MODEL.FactorizePhys.MD_FSAM
md_config["MD_TRANSFORM"] = self.config.MODEL.FactorizePhys.MD_TRANSFORM
md_config["MD_S"] = self.config.MODEL.FactorizePhys.MD_S
md_config["MD_R"] = self.config.MODEL.FactorizePhys.MD_R
md_config["MD_STEPS"] = self.config.MODEL.FactorizePhys.MD_STEPS
md_config["MD_INFERENCE"] = self.config.MODEL.FactorizePhys.MD_INFERENCE
md_config["MD_RESIDUAL"] = self.config.MODEL.FactorizePhys.MD_RESIDUAL
self.md_infer = self.config.MODEL.FactorizePhys.MD_INFERENCE
self.use_fsam = self.config.MODEL.FactorizePhys.MD_FSAM
if model_type == "standard":
self.model = FactorizePhys(frames=frames, md_config=md_config, in_channels=in_channels,
dropout=self.dropout_rate, device=self.device) # [3, T, 72,72]
elif model_type == "big":
self.model = FactorizePhysBig(frames=frames, md_config=md_config, in_channels=in_channels,
dropout=self.dropout_rate, device=self.device) # [3, T, 144,144]
else:
print("Unexpected model type specified. Should be standard or big, but specified:", model_type)
exit()
if torch.cuda.device_count() > 0 and self.num_of_gpu > 0: # distribute model across GPUs
self.model = torch.nn.DataParallel(self.model, device_ids=[self.device]) # data parallel model
else:
self.model = torch.nn.DataParallel(self.model).to(self.device)
if self.config.TOOLBOX_MODE == "train_and_test" or self.config.TOOLBOX_MODE == "only_train":
self.num_train_batches = len(data_loader["train"])
self.criterion = Neg_Pearson()
self.optimizer = optim.Adam(
self.model.parameters(), lr=self.config.TRAIN.LR)
# See more details on the OneCycleLR scheduler here: https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.OneCycleLR.html
self.scheduler = torch.optim.lr_scheduler.OneCycleLR(
self.optimizer, max_lr=self.config.TRAIN.LR, epochs=self.config.TRAIN.EPOCHS, steps_per_epoch=self.num_train_batches)
elif self.config.TOOLBOX_MODE == "only_test":
pass
else:
raise ValueError("FactorizePhys trainer initialized in incorrect toolbox mode!")
def train(self, data_loader):
"""Training routine for model"""
if data_loader["train"] is None:
raise ValueError("No data for train")
mean_training_losses = []
mean_valid_losses = []
mean_appx_error = []
lrs = []
for epoch in range(self.max_epoch_num):
print('')
print(f"====Training Epoch: {epoch}====")
running_loss = 0.0
train_loss = []
appx_error_list = []
self.model.train()
tbar = tqdm(data_loader["train"], ncols=80)
for idx, batch in enumerate(tbar):
tbar.set_description("Train epoch %s" % epoch)
data = batch[0].to(self.device)
labels = batch[1].to(self.device)
if len(labels.shape) > 2:
labels = labels[..., 0] # Compatibility wigth multi-signal labelled data
labels = (labels - torch.mean(labels)) / torch.std(labels) # normalize
last_frame = torch.unsqueeze(data[:, :, -1, :, :], 2).repeat(1, 1, max(self.num_of_gpu, 1), 1, 1)
data = torch.cat((data, last_frame), 2)
# last_sample = torch.unsqueeze(labels[-1, :], 0).repeat(max(self.num_of_gpu, 1), 1)
# labels = torch.cat((labels, last_sample), 0)
# labels = torch.diff(labels, dim=0)
# labels = labels/ torch.std(labels) # normalize
# labels[torch.isnan(labels)] = 0
self.optimizer.zero_grad()
if self.model.training and self.use_fsam:
pred_ppg, vox_embed, factorized_embed, appx_error = self.model(data)
else:
pred_ppg, vox_embed = self.model(data)
pred_ppg = (pred_ppg - torch.mean(pred_ppg)) / torch.std(pred_ppg) # normalize
loss = self.criterion(pred_ppg, labels)
loss.backward()
running_loss += loss.item()
if idx % 100 == 99: # print every 100 mini-batches
print(
f'[{epoch}, {idx + 1:5d}] loss: {running_loss / 100:.3f}')
running_loss = 0.0
train_loss.append(loss.item())
if self.use_fsam:
appx_error_list.append(appx_error.item())
# Append the current learning rate to the list
lrs.append(self.scheduler.get_last_lr())
self.optimizer.step()
self.scheduler.step()
if self.use_fsam:
tbar.set_postfix({"appx_error": appx_error.item()}, loss=loss.item())
else:
tbar.set_postfix(loss=loss.item())
# Append the mean training loss for the epoch
mean_training_losses.append(np.mean(train_loss))
if self.use_fsam:
mean_appx_error.append(np.mean(appx_error_list))
print("Mean train loss: {}, Mean appx error: {}".format(
np.mean(train_loss), np.mean(appx_error_list)))
else:
print("Mean train loss: {}".format(np.mean(train_loss)))
self.save_model(epoch)
if not self.config.TEST.USE_LAST_EPOCH:
valid_loss = self.valid(data_loader)
mean_valid_losses.append(valid_loss)
print('validation loss: ', valid_loss)
if self.min_valid_loss is None:
self.min_valid_loss = valid_loss
self.best_epoch = epoch
print("Update best model! Best epoch: {}".format(self.best_epoch))
elif (valid_loss < self.min_valid_loss):
self.min_valid_loss = valid_loss
self.best_epoch = epoch
print("Update best model! Best epoch: {}".format(self.best_epoch))
if not self.config.TEST.USE_LAST_EPOCH:
print("best trained epoch: {}, min_val_loss: {}".format(
self.best_epoch, self.min_valid_loss))
if self.config.TRAIN.PLOT_LOSSES_AND_LR:
self.plot_losses_and_lrs(mean_training_losses, mean_valid_losses, lrs, self.config)
def valid(self, data_loader):
""" Runs the model on valid sets."""
if data_loader["valid"] is None:
raise ValueError("No data for valid")
print('')
print(" ====Validing===")
valid_loss = []
self.model.eval()
valid_step = 0
with torch.no_grad():
vbar = tqdm(data_loader["valid"], ncols=80)
for valid_idx, valid_batch in enumerate(vbar):
vbar.set_description("Validation")
data, labels = valid_batch[0].to(self.device), valid_batch[1].to(self.device)
if len(labels.shape) > 2:
labels = labels[..., 0] # Compatibility wigth multi-signal labelled data
labels = (labels - torch.mean(labels)) / torch.std(labels) # normalize
last_frame = torch.unsqueeze(data[:, :, -1, :, :], 2).repeat(1, 1, max(self.num_of_gpu, 1), 1, 1)
data = torch.cat((data, last_frame), 2)
# last_sample = torch.unsqueeze(labels[-1, :], 0).repeat(max(self.num_of_gpu, 1), 1)
# labels = torch.cat((labels, last_sample), 0)
# labels = torch.diff(labels, dim=0)
# labels = labels/ torch.std(labels) # normalize
# labels[torch.isnan(labels)] = 0
if self.md_infer and self.use_fsam:
pred_ppg, vox_embed, factorized_embed, appx_error = self.model(data)
else:
pred_ppg, vox_embed = self.model(data)
pred_ppg = (pred_ppg - torch.mean(pred_ppg)) / torch.std(pred_ppg) # normalize
loss = self.criterion(pred_ppg, labels)
valid_loss.append(loss.item())
valid_step += 1
# vbar.set_postfix(loss=loss.item())
if self.md_infer and self.use_fsam:
vbar.set_postfix({"appx_error": appx_error.item()}, loss=loss.item())
else:
vbar.set_postfix(loss=loss.item())
valid_loss = np.asarray(valid_loss)
return np.mean(valid_loss)
def test(self, data_loader):
""" Runs the model on test sets."""
if data_loader["test"] is None:
raise ValueError("No data for test")
print('')
print("===Testing===")
predictions = dict()
labels = dict()
if self.config.TOOLBOX_MODE == "only_test":
if not os.path.exists(self.config.INFERENCE.MODEL_PATH):
raise ValueError("Inference model path error! Please check INFERENCE.MODEL_PATH in your yaml.")
self.model.load_state_dict(torch.load(self.config.INFERENCE.MODEL_PATH, map_location=self.device), strict=False)
print("Testing uses pretrained model!")
print(self.config.INFERENCE.MODEL_PATH)
else:
if self.config.TEST.USE_LAST_EPOCH:
last_epoch_model_path = os.path.join(
self.model_dir, self.model_file_name + '_Epoch' + str(self.max_epoch_num - 1) + '.pth')
print("Testing uses last epoch as non-pretrained model!")
print(last_epoch_model_path)
self.model.load_state_dict(torch.load(last_epoch_model_path, map_location=self.device), strict=False)
else:
best_model_path = os.path.join(
self.model_dir, self.model_file_name + '_Epoch' + str(self.best_epoch) + '.pth')
print("Testing uses best epoch selected using model selection as non-pretrained model!")
print(best_model_path)
self.model.load_state_dict(torch.load(best_model_path, map_location=self.device), strict=False)
self.model = self.model.to(self.device)
self.model.eval()
print("Running model evaluation on the testing dataset!")
with torch.no_grad():
for _, test_batch in enumerate(tqdm(data_loader["test"], ncols=80)):
batch_size = test_batch[0].shape[0]
data, labels_test = test_batch[0].to(self.device), test_batch[1].to(self.device)
if len(labels_test.shape) > 2:
labels_test = labels_test[..., 0] # Compatibility wigth multi-signal labelled data
labels_test = (labels_test - torch.mean(labels_test)) / torch.std(labels_test) # normalize
last_frame = torch.unsqueeze(data[:, :, -1, :, :], 2).repeat(1, 1, max(self.num_of_gpu, 1), 1, 1)
data = torch.cat((data, last_frame), 2)
# last_sample = torch.unsqueeze(labels_test[-1, :], 0).repeat(max(self.num_of_gpu, 1), 1)
# labels_test = torch.cat((labels_test, last_sample), 0)
# labels_test = torch.diff(labels_test, dim=0)
# labels_test = labels_test/ torch.std(labels_test) # normalize
# labels_test[torch.isnan(labels_test)] = 0
if self.md_infer and self.use_fsam:
pred_ppg_test, vox_embed, factorized_embed, appx_error = self.model(data)
else:
pred_ppg_test, vox_embed = self.model(data)
pred_ppg_test = (pred_ppg_test - torch.mean(pred_ppg_test)) / torch.std(pred_ppg_test) # normalize
if self.config.TEST.OUTPUT_SAVE_DIR:
labels_test = labels_test.cpu()
pred_ppg_test = pred_ppg_test.cpu()
for idx in range(batch_size):
subj_index = test_batch[2][idx]
sort_index = int(test_batch[3][idx])
if subj_index not in predictions.keys():
predictions[subj_index] = dict()
labels[subj_index] = dict()
predictions[subj_index][sort_index] = pred_ppg_test[idx]
labels[subj_index][sort_index] = labels_test[idx]
print('')
calculate_metrics(predictions, labels, self.config)
if self.config.TEST.OUTPUT_SAVE_DIR: # saving test outputs
self.save_test_outputs(predictions, labels, self.config)
def save_model(self, index):
if not os.path.exists(self.model_dir):
os.makedirs(self.model_dir)
model_path = os.path.join(
self.model_dir, self.model_file_name + '_Epoch' + str(index) + '.pth')
torch.save(self.model.state_dict(), model_path)
print('Saved Model Path: ', model_path)