Spaces:
Sleeping
Sleeping
import tensorflow as tf | |
from tensorflow import keras | |
import gradio as gr | |
import numpy as np | |
import cv2 | |
import os | |
classes = ["Abyssinian", "Bengal", "Birman", "Bombay", "British Shorthair", "Egyptian Mau", "Maine Coon", "Persian", "Ragdoll", "Russian Blue", "Siamese", "Sphynx"] | |
example_images = ["examples/" + f for f in os.listdir("examples")] | |
img_size = 400 | |
model = tf.keras.models.load_model("CatClassifier") | |
def model_predict(image): | |
image = cv2.resize(image, (img_size, img_size)) | |
image = np.expand_dims(image, axis=0) | |
predictions = model.predict(image) | |
predictions = predictions[0] | |
predicted_class_index = np.argmax(predictions) | |
predicted_class = classes[predicted_class_index] | |
pred_dict = {} | |
for i in range(len(classes)): | |
pred_dict[classes[i]] = predictions[i] | |
return predicted_class, pred_dict | |
def predict_breed(image): | |
if image is None: | |
return "Please attach an image first!", None | |
return model_predict(image) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
image_input = gr.Image(label="Cat Image") | |
run_button = gr.Button(variant="primary") | |
examples = gr.Examples(example_images,inputs=image_input) | |
with gr.Column(): | |
breed_output = gr.Text(label="Predicted Breed", interactive=False) | |
predict_labels = gr.Label(label="Class Probabilties") | |
run_button.click(fn=predict_breed, inputs=image_input, outputs=[breed_output, predict_labels]) | |
if __name__ == "__main__": | |
demo.launch() |