sweetfelinity's picture
Update app.py
a4e6f8e verified
import tensorflow as tf
from tensorflow import keras
import gradio as gr
import numpy as np
import cv2
import os
classes = ["Abyssinian", "Bengal", "Birman", "Bombay", "British Shorthair", "Egyptian Mau", "Maine Coon", "Persian", "Ragdoll", "Russian Blue", "Siamese", "Sphynx"]
example_images = ["examples/" + f for f in os.listdir("examples")]
img_size = 400
model = tf.keras.models.load_model("CatClassifier")
def model_predict(image):
image = cv2.resize(image, (img_size, img_size))
image = np.expand_dims(image, axis=0)
predictions = model.predict(image)
predictions = predictions[0]
predicted_class_index = np.argmax(predictions)
predicted_class = classes[predicted_class_index]
pred_dict = {}
for i in range(len(classes)):
pred_dict[classes[i]] = predictions[i]
return predicted_class, pred_dict
def predict_breed(image):
if image is None:
return "Please attach an image first!", None
return model_predict(image)
with gr.Blocks() as demo:
with gr.Row():
with gr.Column():
image_input = gr.Image(label="Cat Image")
run_button = gr.Button(variant="primary")
examples = gr.Examples(example_images,inputs=image_input)
with gr.Column():
breed_output = gr.Text(label="Predicted Breed", interactive=False)
predict_labels = gr.Label(label="Class Probabilties")
run_button.click(fn=predict_breed, inputs=image_input, outputs=[breed_output, predict_labels])
if __name__ == "__main__":
demo.launch()