Create hf_model_adapter.py
Browse files- hf_model_adapter.py +36 -0
hf_model_adapter.py
ADDED
|
@@ -0,0 +1,36 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 2 |
+
import torch
|
| 3 |
+
|
| 4 |
+
class HFLocalModelAdapter:
|
| 5 |
+
"""
|
| 6 |
+
Minimal Hugging Face model adapter for text generation.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
def __init__(self, model_name="stabilityai/stablelm-3b-4e1t", device=None):
|
| 10 |
+
self.model_name = model_name
|
| 11 |
+
self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
|
| 12 |
+
print(f"Loading {model_name} on {self.device} ...")
|
| 13 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 14 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 15 |
+
model_name,
|
| 16 |
+
torch_dtype=torch.float16 if "cuda" in self.device else torch.float32,
|
| 17 |
+
low_cpu_mem_usage=True,
|
| 18 |
+
device_map="auto" if "cuda" in self.device else None,
|
| 19 |
+
)
|
| 20 |
+
self.model.to(self.device)
|
| 21 |
+
print("Model loaded.")
|
| 22 |
+
|
| 23 |
+
def generate(self, prompt, max_new_tokens=250, temperature=0.7, top_p=0.95):
|
| 24 |
+
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
|
| 25 |
+
out = self.model.generate(
|
| 26 |
+
**inputs,
|
| 27 |
+
max_new_tokens=max_new_tokens,
|
| 28 |
+
do_sample=True,
|
| 29 |
+
temperature=temperature,
|
| 30 |
+
top_p=top_p,
|
| 31 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 32 |
+
)
|
| 33 |
+
decoded = self.tokenizer.decode(out[0], skip_special_tokens=True)
|
| 34 |
+
if decoded.startswith(prompt):
|
| 35 |
+
return decoded[len(prompt):].strip()
|
| 36 |
+
return decoded.strip()
|