swangfr commited on
Commit
0e6b024
1 Parent(s): 5d1fd46

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +29 -0
app.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from transformers import pipeline
3
+ from PIL import Image
4
+
5
+ #pipeline 1
6
+ generator = pipeline("fill-mask", model="distilbert/distilbert-base-uncased")
7
+
8
+ #pipeline 2
9
+ classifier = pipeline("text-classification", model="swangfr/distilbert-multi-label-amazon", return_all_scores=True)
10
+
11
+
12
+ # Streamlit application title
13
+ st.title("Amazon Product Image classifier")
14
+ st.write("Classification for 24 categories")
15
+
16
+ #upload image file
17
+ file_name = st.file_uploader("Upload a product image file")
18
+
19
+ if st.button("Classify") & file_name is not None:
20
+ col1, col2 = st.columns(2)
21
+
22
+ image = Image.open(file_name)
23
+ col1.image(image, use_column_width=True)
24
+ generation = generator(image)
25
+ prediction = classifier(str(generation[0]['generated_text']))
26
+
27
+ col2.header("Probabilities")
28
+ for p in predictions:
29
+ col2.subheader(f"{ p['label'] }: { round(p['score'] * 100, 1)}%")