Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,7 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -19,8 +19,12 @@ asr_pipe = pipeline(
|
|
19 |
device=device)
|
20 |
|
21 |
# load text-to-speech checkpoint and speaker embeddings
|
22 |
-
processor =
|
23 |
-
model =
|
|
|
|
|
|
|
|
|
24 |
|
25 |
|
26 |
def translate(audio):
|
@@ -29,17 +33,15 @@ def translate(audio):
|
|
29 |
|
30 |
|
31 |
def synthesise(text):
|
32 |
-
inputs = processor(text,
|
33 |
-
speech = model.
|
34 |
-
return speech
|
35 |
|
36 |
|
37 |
def speech_to_speech_translation(audio):
|
38 |
translated_text = translate(audio)
|
39 |
synthesised_speech = synthesise(translated_text)
|
40 |
-
synthesised_speech = synthesised_speech.numpy()
|
41 |
-
synthesised_speech = np.clip(synthesised_speech, -1.0, 1.0)
|
42 |
-
synthesised_speech = (synthesised_speech * 32767).astype(np.int16)
|
43 |
return 16000, synthesised_speech
|
44 |
|
45 |
|
@@ -73,4 +75,4 @@ file_translate = gr.Interface(
|
|
73 |
with demo:
|
74 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
75 |
|
76 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline, WhisperProcessor
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
19 |
device=device)
|
20 |
|
21 |
# load text-to-speech checkpoint and speaker embeddings
|
22 |
+
processor = SpeechT5Processor.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish")
|
23 |
+
model = SpeechT5ForTextToSpeech.from_pretrained("Sandiago21/speecht5_finetuned_facebook_voxpopuli_spanish").to(device)
|
24 |
+
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
25 |
+
|
26 |
+
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
27 |
+
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
28 |
|
29 |
|
30 |
def translate(audio):
|
|
|
33 |
|
34 |
|
35 |
def synthesise(text):
|
36 |
+
inputs = processor(text=text, return_tensors="pt")
|
37 |
+
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
38 |
+
return speech.cpu()
|
39 |
|
40 |
|
41 |
def speech_to_speech_translation(audio):
|
42 |
translated_text = translate(audio)
|
43 |
synthesised_speech = synthesise(translated_text)
|
44 |
+
synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16)
|
|
|
|
|
45 |
return 16000, synthesised_speech
|
46 |
|
47 |
|
|
|
75 |
with demo:
|
76 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
77 |
|
78 |
+
demo.launch()
|