bokeh-detector / bokeh.py
Stavros Niafas
update bokeh space
630886e
raw
history blame
5.53 kB
import argparse
import json
import gdown
import os
import matplotlib.pyplot as plt
import numpy as np
import streamlit as st
from pathlib import Path
os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
import tensorflow as tf
from tensorflow.keras.models import load_model
@st.cache(show_spinner=False)
def download_weights(model_choice):
"""
Downloads model weights for deployment
"""
# Create directory
save_dest = Path("models")
save_dest.mkdir(exist_ok=True)
# Download weights for the chosen model
if model_choice == "DenseNet (baseline)":
url = "https://drive.google.com/uc?id=10-TWkCW_BAZLpGXkxPqXFV8lg-jnWNJD"
output = "models/densenet.h5"
if not Path(output).exists():
with st.spinner("Model weights were not found, downloading them. This may take a while."):
gdown.download(url, output, quiet=False)
elif model_choice == "VGG16 (baseline)":
url = "https://drive.google.com/uc?id=1UaNIHQ-HYeN5v6egV9kAdwU0Nb4CfLBF"
output = "models/vgg16.h5"
if not Path(output).exists():
with st.spinner("Model weights were not found, downloading them. This may take a while."):
gdown.download(url, output, quiet=False)
elif model_choice == "DenseNet (best)":
url = "https://drive.google.com/uc?id=1JUvuzyGQpScHyq2q25yhG962g3PMJ1eu"
output = "models/densenet_best.h5"
if not Path(output).exists():
with st.spinner("Model weights were not found, downloading them. This may take a while."):
gdown.download(url, output, quiet=False)
elif model_choice == "VGG16 (best)":
url = "https://drive.google.com/uc?id=19iu-Qhaofczgl6iMt6DSB_OHDBs9ggsr"
output = "models/vgg16_best.h5"
if not Path(output).exists():
with st.spinner("Model weights were not found, downloading them. This may take a while."):
gdown.download(url, output, quiet=False)
else:
raise ValueError("Unknown model: {}".format(model_choice))
def preprocess_image(image_file):
"""Preprocess image"""
x, _ = process_path(image_file)
x = np.expand_dims(x, axis=0)
return x
def app_dof_predict(model_choice, image_file):
# Download weights for the chosen model
download_weights(model_choice)
image = preprocess_image(image_file)
prediction = {}
if model_choice == "DenseNet (baseline)":
model = load_model("models/densenet.h5", compile=False)
elif model_choice == "VGG16 (baseline)":
model = load_model("models/vgg16.h5", compile=False)
elif model_choice == "DenseNet (best)":
model = load_model("models/densenet_best.h5", compile=False)
elif model_choice == "VGG16 (best)":
model = load_model("models/vgg16_best.h5", compile=False)
preds = model.predict(image)
prediction = {
"class": int(np.argmax(preds)),
"probability": float(preds[0][np.argmax(preds)]),
}
return prediction
def decode_img(img):
"""Decode image and resize"""
img = tf.image.decode_jpeg(img, channels=3)
img = tf.image.resize(img, [200, 300])
return img
def process_path(file_path):
"""Process input path"""
img = tf.io.read_file(file_path)
img = decode_img(img)
return img, file_path
def plot_results(infer_images, inference_predicted_class, inference_predictions, class_names=["bokeh", "no bokeh"]):
"""Plot four images with predicted class and probabilities"""
plt.figure(figsize=(40, 60))
for i, (infer_img, _) in enumerate(infer_images.take(10)):
ax = plt.subplot(2, 5, i + 1)
plt.imshow(infer_img.numpy() / 255)
# Find the predicted class from predictions
m = "Predicted: {}, {:.2f}%".format(class_names[inference_predicted_class[i]], inference_predictions[i] * 100)
plt.title(m)
plt.axis("off")
plt.show()
def dof_predict(infer_images, model_path):
trained_model = load_model(model_path, compile=False)
inference_predicted_class = []
inference_predictions = []
results = {}
for infer_img, img_name in infer_images:
print(img_name)
preds = trained_model.predict(tf.expand_dims(infer_img, axis=0))
inference_predicted_class.append(np.argmax(preds))
print(preds)
inference_predictions.append(preds[0][np.argmax(preds)])
results[str(img_name.numpy().decode("utf8").split("/")[-1])] = {
"class": int(np.argmax(preds)),
"prob": float(preds[0][np.argmax(preds)]),
}
plot_results(infer_images, inference_predicted_class, inference_predictions)
return results
def save_results(results):
"""Save results to json"""
json.dump(results, open("results.json", "w"))
def main(test_dir, model_path):
# get the count of image files in the train directory
inference_ds = tf.data.Dataset.list_files(test_dir + "/*", shuffle=False)
infer_images = inference_ds.map(process_path)
# inference
results = dof_predict(infer_images, model_path)
# save results
save_results(results)
if __name__ == "__main__":
# Initiate the parser
parser = argparse.ArgumentParser()
parser.add_argument("-data", action="store", help="Dataset path")
parser.add_argument("-model", action="store", help="Model path")
arguments = parser.parse_args()
dataset = arguments.data
model = arguments.model
main(dataset, model)