Spaces:
Running
Running
jhj0517
commited on
Commit
·
7c3ff16
1
Parent(s):
0a9bdfb
initial commit
Browse files- __init__.py +0 -0
- dataset/dance_image.py +130 -0
- dataset/dance_video.py +150 -0
- models/attention.py +443 -0
- models/motion_module.py +388 -0
- models/mutual_self_attention.py +363 -0
- models/pose_guider.py +57 -0
- models/resnet.py +252 -0
- models/transformer_2d.py +395 -0
- models/transformer_3d.py +169 -0
- models/unet_2d_blocks.py +1074 -0
- models/unet_2d_condition.py +1307 -0
- models/unet_3d.py +675 -0
- models/unet_3d_blocks.py +871 -0
- musepose/__init__.py +0 -0
- musepose/dataset/dance_image.py +130 -0
- musepose/dataset/dance_video.py +150 -0
- musepose/models/attention.py +443 -0
- musepose/models/motion_module.py +388 -0
- musepose/models/mutual_self_attention.py +363 -0
- musepose/models/pose_guider.py +57 -0
- musepose/models/resnet.py +252 -0
- musepose/models/transformer_2d.py +395 -0
- musepose/models/transformer_3d.py +169 -0
- musepose/models/unet_2d_blocks.py +1074 -0
- musepose/models/unet_2d_condition.py +1307 -0
- musepose/models/unet_3d.py +675 -0
- musepose/models/unet_3d_blocks.py +871 -0
- musepose/pipelines/__init__.py +0 -0
- musepose/pipelines/context.py +76 -0
- musepose/pipelines/pipeline_pose2img.py +360 -0
- musepose/pipelines/pipeline_pose2vid.py +458 -0
- musepose/pipelines/pipeline_pose2vid_long.py +571 -0
- musepose/pipelines/utils.py +29 -0
- musepose/utils/util.py +133 -0
- pipelines/__init__.py +0 -0
- pipelines/context.py +76 -0
- pipelines/pipeline_pose2img.py +360 -0
- pipelines/pipeline_pose2vid.py +458 -0
- pipelines/pipeline_pose2vid_long.py +571 -0
- pipelines/utils.py +29 -0
- utils/util.py +133 -0
__init__.py
ADDED
File without changes
|
dataset/dance_image.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from decord import VideoReader
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
from transformers import CLIPImageProcessor
|
10 |
+
|
11 |
+
|
12 |
+
class HumanDanceDataset(Dataset):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
img_size,
|
16 |
+
img_scale=(1.0, 1.0),
|
17 |
+
img_ratio=(0.9, 1.0),
|
18 |
+
drop_ratio=0.1,
|
19 |
+
data_meta_paths=["./data/fahsion_meta.json"],
|
20 |
+
sample_margin=30,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.img_size = img_size
|
25 |
+
self.img_scale = img_scale
|
26 |
+
self.img_ratio = img_ratio
|
27 |
+
self.sample_margin = sample_margin
|
28 |
+
|
29 |
+
# -----
|
30 |
+
# vid_meta format:
|
31 |
+
# [{'video_path': , 'kps_path': , 'other':},
|
32 |
+
# {'video_path': , 'kps_path': , 'other':}]
|
33 |
+
# -----
|
34 |
+
vid_meta = []
|
35 |
+
for data_meta_path in data_meta_paths:
|
36 |
+
vid_meta.extend(json.load(open(data_meta_path, "r")))
|
37 |
+
self.vid_meta = vid_meta
|
38 |
+
|
39 |
+
self.clip_image_processor = CLIPImageProcessor()
|
40 |
+
|
41 |
+
self.transform = transforms.Compose(
|
42 |
+
[
|
43 |
+
# transforms.RandomResizedCrop(
|
44 |
+
# self.img_size,
|
45 |
+
# scale=self.img_scale,
|
46 |
+
# ratio=self.img_ratio,
|
47 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
48 |
+
# ),
|
49 |
+
transforms.Resize(
|
50 |
+
self.img_size,
|
51 |
+
),
|
52 |
+
transforms.ToTensor(),
|
53 |
+
transforms.Normalize([0.5], [0.5]),
|
54 |
+
]
|
55 |
+
)
|
56 |
+
|
57 |
+
self.cond_transform = transforms.Compose(
|
58 |
+
[
|
59 |
+
# transforms.RandomResizedCrop(
|
60 |
+
# self.img_size,
|
61 |
+
# scale=self.img_scale,
|
62 |
+
# ratio=self.img_ratio,
|
63 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
64 |
+
# ),
|
65 |
+
transforms.Resize(
|
66 |
+
self.img_size,
|
67 |
+
),
|
68 |
+
transforms.ToTensor(),
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
self.drop_ratio = drop_ratio
|
73 |
+
|
74 |
+
def augmentation(self, image, transform, state=None):
|
75 |
+
if state is not None:
|
76 |
+
torch.set_rng_state(state)
|
77 |
+
return transform(image)
|
78 |
+
|
79 |
+
def __getitem__(self, index):
|
80 |
+
video_meta = self.vid_meta[index]
|
81 |
+
video_path = video_meta["video_path"]
|
82 |
+
kps_path = video_meta["kps_path"]
|
83 |
+
|
84 |
+
video_reader = VideoReader(video_path)
|
85 |
+
kps_reader = VideoReader(kps_path)
|
86 |
+
|
87 |
+
assert len(video_reader) == len(
|
88 |
+
kps_reader
|
89 |
+
), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"
|
90 |
+
|
91 |
+
video_length = len(video_reader)
|
92 |
+
|
93 |
+
margin = min(self.sample_margin, video_length)
|
94 |
+
|
95 |
+
ref_img_idx = random.randint(0, video_length - 1)
|
96 |
+
if ref_img_idx + margin < video_length:
|
97 |
+
tgt_img_idx = random.randint(ref_img_idx + margin, video_length - 1)
|
98 |
+
elif ref_img_idx - margin > 0:
|
99 |
+
tgt_img_idx = random.randint(0, ref_img_idx - margin)
|
100 |
+
else:
|
101 |
+
tgt_img_idx = random.randint(0, video_length - 1)
|
102 |
+
|
103 |
+
ref_img = video_reader[ref_img_idx]
|
104 |
+
ref_img_pil = Image.fromarray(ref_img.asnumpy())
|
105 |
+
tgt_img = video_reader[tgt_img_idx]
|
106 |
+
tgt_img_pil = Image.fromarray(tgt_img.asnumpy())
|
107 |
+
|
108 |
+
tgt_pose = kps_reader[tgt_img_idx]
|
109 |
+
tgt_pose_pil = Image.fromarray(tgt_pose.asnumpy())
|
110 |
+
|
111 |
+
state = torch.get_rng_state()
|
112 |
+
tgt_img = self.augmentation(tgt_img_pil, self.transform, state)
|
113 |
+
tgt_pose_img = self.augmentation(tgt_pose_pil, self.cond_transform, state)
|
114 |
+
ref_img_vae = self.augmentation(ref_img_pil, self.transform, state)
|
115 |
+
clip_image = self.clip_image_processor(
|
116 |
+
images=ref_img_pil, return_tensors="pt"
|
117 |
+
).pixel_values[0]
|
118 |
+
|
119 |
+
sample = dict(
|
120 |
+
video_dir=video_path,
|
121 |
+
img=tgt_img,
|
122 |
+
tgt_pose=tgt_pose_img,
|
123 |
+
ref_img=ref_img_vae,
|
124 |
+
clip_images=clip_image,
|
125 |
+
)
|
126 |
+
|
127 |
+
return sample
|
128 |
+
|
129 |
+
def __len__(self):
|
130 |
+
return len(self.vid_meta)
|
dataset/dance_video.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
from decord import VideoReader
|
10 |
+
from PIL import Image
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
from transformers import CLIPImageProcessor
|
13 |
+
|
14 |
+
|
15 |
+
class HumanDanceVideoDataset(Dataset):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
sample_rate,
|
19 |
+
n_sample_frames,
|
20 |
+
width,
|
21 |
+
height,
|
22 |
+
img_scale=(1.0, 1.0),
|
23 |
+
img_ratio=(0.9, 1.0),
|
24 |
+
drop_ratio=0.1,
|
25 |
+
data_meta_paths=["./data/fashion_meta.json"],
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.sample_rate = sample_rate
|
29 |
+
self.n_sample_frames = n_sample_frames
|
30 |
+
self.width = width
|
31 |
+
self.height = height
|
32 |
+
self.img_scale = img_scale
|
33 |
+
self.img_ratio = img_ratio
|
34 |
+
|
35 |
+
vid_meta = []
|
36 |
+
for data_meta_path in data_meta_paths:
|
37 |
+
vid_meta.extend(json.load(open(data_meta_path, "r")))
|
38 |
+
self.vid_meta = vid_meta
|
39 |
+
|
40 |
+
self.clip_image_processor = CLIPImageProcessor()
|
41 |
+
|
42 |
+
self.pixel_transform = transforms.Compose(
|
43 |
+
[
|
44 |
+
# transforms.RandomResizedCrop(
|
45 |
+
# (height, width),
|
46 |
+
# scale=self.img_scale,
|
47 |
+
# ratio=self.img_ratio,
|
48 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
49 |
+
# ),
|
50 |
+
transforms.Resize(
|
51 |
+
(height, width),
|
52 |
+
),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize([0.5], [0.5]),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
self.cond_transform = transforms.Compose(
|
59 |
+
[
|
60 |
+
# transforms.RandomResizedCrop(
|
61 |
+
# (height, width),
|
62 |
+
# scale=self.img_scale,
|
63 |
+
# ratio=self.img_ratio,
|
64 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
65 |
+
# ),
|
66 |
+
transforms.Resize(
|
67 |
+
(height, width),
|
68 |
+
),
|
69 |
+
transforms.ToTensor(),
|
70 |
+
]
|
71 |
+
)
|
72 |
+
|
73 |
+
self.drop_ratio = drop_ratio
|
74 |
+
|
75 |
+
def augmentation(self, images, transform, state=None):
|
76 |
+
if state is not None:
|
77 |
+
torch.set_rng_state(state)
|
78 |
+
if isinstance(images, List):
|
79 |
+
transformed_images = [transform(img) for img in images]
|
80 |
+
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
|
81 |
+
else:
|
82 |
+
ret_tensor = transform(images) # (c, h, w)
|
83 |
+
return ret_tensor
|
84 |
+
|
85 |
+
def __getitem__(self, index):
|
86 |
+
video_meta = self.vid_meta[index]
|
87 |
+
video_path = video_meta["video_path"]
|
88 |
+
kps_path = video_meta["kps_path"]
|
89 |
+
|
90 |
+
video_reader = VideoReader(video_path)
|
91 |
+
kps_reader = VideoReader(kps_path)
|
92 |
+
|
93 |
+
assert len(video_reader) == len(
|
94 |
+
kps_reader
|
95 |
+
), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"
|
96 |
+
|
97 |
+
video_length = len(video_reader)
|
98 |
+
video_fps = video_reader.get_avg_fps()
|
99 |
+
# print("fps", video_fps)
|
100 |
+
if video_fps > 30: # 30-60
|
101 |
+
sample_rate = self.sample_rate*2
|
102 |
+
else:
|
103 |
+
sample_rate = self.sample_rate
|
104 |
+
|
105 |
+
|
106 |
+
clip_length = min(
|
107 |
+
video_length, (self.n_sample_frames - 1) * sample_rate + 1
|
108 |
+
)
|
109 |
+
start_idx = random.randint(0, video_length - clip_length)
|
110 |
+
batch_index = np.linspace(
|
111 |
+
start_idx, start_idx + clip_length - 1, self.n_sample_frames, dtype=int
|
112 |
+
).tolist()
|
113 |
+
|
114 |
+
# read frames and kps
|
115 |
+
vid_pil_image_list = []
|
116 |
+
pose_pil_image_list = []
|
117 |
+
for index in batch_index:
|
118 |
+
img = video_reader[index]
|
119 |
+
vid_pil_image_list.append(Image.fromarray(img.asnumpy()))
|
120 |
+
img = kps_reader[index]
|
121 |
+
pose_pil_image_list.append(Image.fromarray(img.asnumpy()))
|
122 |
+
|
123 |
+
ref_img_idx = random.randint(0, video_length - 1)
|
124 |
+
ref_img = Image.fromarray(video_reader[ref_img_idx].asnumpy())
|
125 |
+
|
126 |
+
# transform
|
127 |
+
state = torch.get_rng_state()
|
128 |
+
pixel_values_vid = self.augmentation(
|
129 |
+
vid_pil_image_list, self.pixel_transform, state
|
130 |
+
)
|
131 |
+
pixel_values_pose = self.augmentation(
|
132 |
+
pose_pil_image_list, self.cond_transform, state
|
133 |
+
)
|
134 |
+
pixel_values_ref_img = self.augmentation(ref_img, self.pixel_transform, state)
|
135 |
+
clip_ref_img = self.clip_image_processor(
|
136 |
+
images=ref_img, return_tensors="pt"
|
137 |
+
).pixel_values[0]
|
138 |
+
|
139 |
+
sample = dict(
|
140 |
+
video_dir=video_path,
|
141 |
+
pixel_values_vid=pixel_values_vid,
|
142 |
+
pixel_values_pose=pixel_values_pose,
|
143 |
+
pixel_values_ref_img=pixel_values_ref_img,
|
144 |
+
clip_ref_img=clip_ref_img,
|
145 |
+
)
|
146 |
+
|
147 |
+
return sample
|
148 |
+
|
149 |
+
def __len__(self):
|
150 |
+
return len(self.vid_meta)
|
models/attention.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
|
7 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
8 |
+
from einops import rearrange
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
class BasicTransformerBlock(nn.Module):
|
13 |
+
r"""
|
14 |
+
A basic Transformer block.
|
15 |
+
|
16 |
+
Parameters:
|
17 |
+
dim (`int`): The number of channels in the input and output.
|
18 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
19 |
+
attention_head_dim (`int`): The number of channels in each head.
|
20 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
21 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
22 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
23 |
+
num_embeds_ada_norm (:
|
24 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
25 |
+
attention_bias (:
|
26 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
27 |
+
only_cross_attention (`bool`, *optional*):
|
28 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
29 |
+
double_self_attention (`bool`, *optional*):
|
30 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
31 |
+
upcast_attention (`bool`, *optional*):
|
32 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
33 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
34 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
35 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
36 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
37 |
+
final_dropout (`bool` *optional*, defaults to False):
|
38 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
39 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
40 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
41 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
42 |
+
The type of positional embeddings to apply to.
|
43 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
44 |
+
The maximum number of positional embeddings to apply.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
dim: int,
|
50 |
+
num_attention_heads: int,
|
51 |
+
attention_head_dim: int,
|
52 |
+
dropout=0.0,
|
53 |
+
cross_attention_dim: Optional[int] = None,
|
54 |
+
activation_fn: str = "geglu",
|
55 |
+
num_embeds_ada_norm: Optional[int] = None,
|
56 |
+
attention_bias: bool = False,
|
57 |
+
only_cross_attention: bool = False,
|
58 |
+
double_self_attention: bool = False,
|
59 |
+
upcast_attention: bool = False,
|
60 |
+
norm_elementwise_affine: bool = True,
|
61 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
62 |
+
norm_eps: float = 1e-5,
|
63 |
+
final_dropout: bool = False,
|
64 |
+
attention_type: str = "default",
|
65 |
+
positional_embeddings: Optional[str] = None,
|
66 |
+
num_positional_embeddings: Optional[int] = None,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
self.only_cross_attention = only_cross_attention
|
70 |
+
|
71 |
+
self.use_ada_layer_norm_zero = (
|
72 |
+
num_embeds_ada_norm is not None
|
73 |
+
) and norm_type == "ada_norm_zero"
|
74 |
+
self.use_ada_layer_norm = (
|
75 |
+
num_embeds_ada_norm is not None
|
76 |
+
) and norm_type == "ada_norm"
|
77 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
78 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
79 |
+
|
80 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
81 |
+
raise ValueError(
|
82 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
83 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
84 |
+
)
|
85 |
+
|
86 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
87 |
+
raise ValueError(
|
88 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
89 |
+
)
|
90 |
+
|
91 |
+
if positional_embeddings == "sinusoidal":
|
92 |
+
self.pos_embed = SinusoidalPositionalEmbedding(
|
93 |
+
dim, max_seq_length=num_positional_embeddings
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
self.pos_embed = None
|
97 |
+
|
98 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
99 |
+
# 1. Self-Attn
|
100 |
+
if self.use_ada_layer_norm:
|
101 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
102 |
+
elif self.use_ada_layer_norm_zero:
|
103 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
104 |
+
else:
|
105 |
+
self.norm1 = nn.LayerNorm(
|
106 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
107 |
+
)
|
108 |
+
|
109 |
+
self.attn1 = Attention(
|
110 |
+
query_dim=dim,
|
111 |
+
heads=num_attention_heads,
|
112 |
+
dim_head=attention_head_dim,
|
113 |
+
dropout=dropout,
|
114 |
+
bias=attention_bias,
|
115 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
116 |
+
upcast_attention=upcast_attention,
|
117 |
+
)
|
118 |
+
|
119 |
+
# 2. Cross-Attn
|
120 |
+
if cross_attention_dim is not None or double_self_attention:
|
121 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
122 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
123 |
+
# the second cross attention block.
|
124 |
+
self.norm2 = (
|
125 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
126 |
+
if self.use_ada_layer_norm
|
127 |
+
else nn.LayerNorm(
|
128 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
129 |
+
)
|
130 |
+
)
|
131 |
+
self.attn2 = Attention(
|
132 |
+
query_dim=dim,
|
133 |
+
cross_attention_dim=cross_attention_dim
|
134 |
+
if not double_self_attention
|
135 |
+
else None,
|
136 |
+
heads=num_attention_heads,
|
137 |
+
dim_head=attention_head_dim,
|
138 |
+
dropout=dropout,
|
139 |
+
bias=attention_bias,
|
140 |
+
upcast_attention=upcast_attention,
|
141 |
+
) # is self-attn if encoder_hidden_states is none
|
142 |
+
else:
|
143 |
+
self.norm2 = None
|
144 |
+
self.attn2 = None
|
145 |
+
|
146 |
+
# 3. Feed-forward
|
147 |
+
if not self.use_ada_layer_norm_single:
|
148 |
+
self.norm3 = nn.LayerNorm(
|
149 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
150 |
+
)
|
151 |
+
|
152 |
+
self.ff = FeedForward(
|
153 |
+
dim,
|
154 |
+
dropout=dropout,
|
155 |
+
activation_fn=activation_fn,
|
156 |
+
final_dropout=final_dropout,
|
157 |
+
)
|
158 |
+
|
159 |
+
# 4. Fuser
|
160 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
161 |
+
self.fuser = GatedSelfAttentionDense(
|
162 |
+
dim, cross_attention_dim, num_attention_heads, attention_head_dim
|
163 |
+
)
|
164 |
+
|
165 |
+
# 5. Scale-shift for PixArt-Alpha.
|
166 |
+
if self.use_ada_layer_norm_single:
|
167 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
168 |
+
|
169 |
+
# let chunk size default to None
|
170 |
+
self._chunk_size = None
|
171 |
+
self._chunk_dim = 0
|
172 |
+
|
173 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
174 |
+
# Sets chunk feed-forward
|
175 |
+
self._chunk_size = chunk_size
|
176 |
+
self._chunk_dim = dim
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
hidden_states: torch.FloatTensor,
|
181 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
182 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
183 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
184 |
+
timestep: Optional[torch.LongTensor] = None,
|
185 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
186 |
+
class_labels: Optional[torch.LongTensor] = None,
|
187 |
+
) -> torch.FloatTensor:
|
188 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
189 |
+
# 0. Self-Attention
|
190 |
+
batch_size = hidden_states.shape[0]
|
191 |
+
|
192 |
+
if self.use_ada_layer_norm:
|
193 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
194 |
+
elif self.use_ada_layer_norm_zero:
|
195 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
196 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
197 |
+
)
|
198 |
+
elif self.use_layer_norm:
|
199 |
+
norm_hidden_states = self.norm1(hidden_states)
|
200 |
+
elif self.use_ada_layer_norm_single:
|
201 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
202 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
203 |
+
).chunk(6, dim=1)
|
204 |
+
norm_hidden_states = self.norm1(hidden_states)
|
205 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
206 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
207 |
+
else:
|
208 |
+
raise ValueError("Incorrect norm used")
|
209 |
+
|
210 |
+
if self.pos_embed is not None:
|
211 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
212 |
+
|
213 |
+
# 1. Retrieve lora scale.
|
214 |
+
lora_scale = (
|
215 |
+
cross_attention_kwargs.get("scale", 1.0)
|
216 |
+
if cross_attention_kwargs is not None
|
217 |
+
else 1.0
|
218 |
+
)
|
219 |
+
|
220 |
+
# 2. Prepare GLIGEN inputs
|
221 |
+
cross_attention_kwargs = (
|
222 |
+
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
223 |
+
)
|
224 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
225 |
+
|
226 |
+
attn_output = self.attn1(
|
227 |
+
norm_hidden_states,
|
228 |
+
encoder_hidden_states=encoder_hidden_states
|
229 |
+
if self.only_cross_attention
|
230 |
+
else None,
|
231 |
+
attention_mask=attention_mask,
|
232 |
+
**cross_attention_kwargs,
|
233 |
+
)
|
234 |
+
if self.use_ada_layer_norm_zero:
|
235 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
236 |
+
elif self.use_ada_layer_norm_single:
|
237 |
+
attn_output = gate_msa * attn_output
|
238 |
+
|
239 |
+
hidden_states = attn_output + hidden_states
|
240 |
+
if hidden_states.ndim == 4:
|
241 |
+
hidden_states = hidden_states.squeeze(1)
|
242 |
+
|
243 |
+
# 2.5 GLIGEN Control
|
244 |
+
if gligen_kwargs is not None:
|
245 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
246 |
+
|
247 |
+
# 3. Cross-Attention
|
248 |
+
if self.attn2 is not None:
|
249 |
+
if self.use_ada_layer_norm:
|
250 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
251 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
252 |
+
norm_hidden_states = self.norm2(hidden_states)
|
253 |
+
elif self.use_ada_layer_norm_single:
|
254 |
+
# For PixArt norm2 isn't applied here:
|
255 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
256 |
+
norm_hidden_states = hidden_states
|
257 |
+
else:
|
258 |
+
raise ValueError("Incorrect norm")
|
259 |
+
|
260 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
261 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
262 |
+
|
263 |
+
attn_output = self.attn2(
|
264 |
+
norm_hidden_states,
|
265 |
+
encoder_hidden_states=encoder_hidden_states,
|
266 |
+
attention_mask=encoder_attention_mask,
|
267 |
+
**cross_attention_kwargs,
|
268 |
+
)
|
269 |
+
hidden_states = attn_output + hidden_states
|
270 |
+
|
271 |
+
# 4. Feed-forward
|
272 |
+
if not self.use_ada_layer_norm_single:
|
273 |
+
norm_hidden_states = self.norm3(hidden_states)
|
274 |
+
|
275 |
+
if self.use_ada_layer_norm_zero:
|
276 |
+
norm_hidden_states = (
|
277 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
278 |
+
)
|
279 |
+
|
280 |
+
if self.use_ada_layer_norm_single:
|
281 |
+
norm_hidden_states = self.norm2(hidden_states)
|
282 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
283 |
+
|
284 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
285 |
+
|
286 |
+
if self.use_ada_layer_norm_zero:
|
287 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
288 |
+
elif self.use_ada_layer_norm_single:
|
289 |
+
ff_output = gate_mlp * ff_output
|
290 |
+
|
291 |
+
hidden_states = ff_output + hidden_states
|
292 |
+
if hidden_states.ndim == 4:
|
293 |
+
hidden_states = hidden_states.squeeze(1)
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
299 |
+
def __init__(
|
300 |
+
self,
|
301 |
+
dim: int,
|
302 |
+
num_attention_heads: int,
|
303 |
+
attention_head_dim: int,
|
304 |
+
dropout=0.0,
|
305 |
+
cross_attention_dim: Optional[int] = None,
|
306 |
+
activation_fn: str = "geglu",
|
307 |
+
num_embeds_ada_norm: Optional[int] = None,
|
308 |
+
attention_bias: bool = False,
|
309 |
+
only_cross_attention: bool = False,
|
310 |
+
upcast_attention: bool = False,
|
311 |
+
unet_use_cross_frame_attention=None,
|
312 |
+
unet_use_temporal_attention=None,
|
313 |
+
):
|
314 |
+
super().__init__()
|
315 |
+
self.only_cross_attention = only_cross_attention
|
316 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
317 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
318 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
319 |
+
|
320 |
+
# SC-Attn
|
321 |
+
self.attn1 = Attention(
|
322 |
+
query_dim=dim,
|
323 |
+
heads=num_attention_heads,
|
324 |
+
dim_head=attention_head_dim,
|
325 |
+
dropout=dropout,
|
326 |
+
bias=attention_bias,
|
327 |
+
upcast_attention=upcast_attention,
|
328 |
+
)
|
329 |
+
self.norm1 = (
|
330 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
331 |
+
if self.use_ada_layer_norm
|
332 |
+
else nn.LayerNorm(dim)
|
333 |
+
)
|
334 |
+
|
335 |
+
# Cross-Attn
|
336 |
+
if cross_attention_dim is not None:
|
337 |
+
self.attn2 = Attention(
|
338 |
+
query_dim=dim,
|
339 |
+
cross_attention_dim=cross_attention_dim,
|
340 |
+
heads=num_attention_heads,
|
341 |
+
dim_head=attention_head_dim,
|
342 |
+
dropout=dropout,
|
343 |
+
bias=attention_bias,
|
344 |
+
upcast_attention=upcast_attention,
|
345 |
+
)
|
346 |
+
else:
|
347 |
+
self.attn2 = None
|
348 |
+
|
349 |
+
if cross_attention_dim is not None:
|
350 |
+
self.norm2 = (
|
351 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
352 |
+
if self.use_ada_layer_norm
|
353 |
+
else nn.LayerNorm(dim)
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
self.norm2 = None
|
357 |
+
|
358 |
+
# Feed-forward
|
359 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
360 |
+
self.norm3 = nn.LayerNorm(dim)
|
361 |
+
self.use_ada_layer_norm_zero = False
|
362 |
+
|
363 |
+
# Temp-Attn
|
364 |
+
assert unet_use_temporal_attention is not None
|
365 |
+
if unet_use_temporal_attention:
|
366 |
+
self.attn_temp = Attention(
|
367 |
+
query_dim=dim,
|
368 |
+
heads=num_attention_heads,
|
369 |
+
dim_head=attention_head_dim,
|
370 |
+
dropout=dropout,
|
371 |
+
bias=attention_bias,
|
372 |
+
upcast_attention=upcast_attention,
|
373 |
+
)
|
374 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
375 |
+
self.norm_temp = (
|
376 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
377 |
+
if self.use_ada_layer_norm
|
378 |
+
else nn.LayerNorm(dim)
|
379 |
+
)
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states,
|
384 |
+
encoder_hidden_states=None,
|
385 |
+
timestep=None,
|
386 |
+
attention_mask=None,
|
387 |
+
video_length=None,
|
388 |
+
):
|
389 |
+
norm_hidden_states = (
|
390 |
+
self.norm1(hidden_states, timestep)
|
391 |
+
if self.use_ada_layer_norm
|
392 |
+
else self.norm1(hidden_states)
|
393 |
+
)
|
394 |
+
|
395 |
+
if self.unet_use_cross_frame_attention:
|
396 |
+
hidden_states = (
|
397 |
+
self.attn1(
|
398 |
+
norm_hidden_states,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
video_length=video_length,
|
401 |
+
)
|
402 |
+
+ hidden_states
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
hidden_states = (
|
406 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask)
|
407 |
+
+ hidden_states
|
408 |
+
)
|
409 |
+
|
410 |
+
if self.attn2 is not None:
|
411 |
+
# Cross-Attention
|
412 |
+
norm_hidden_states = (
|
413 |
+
self.norm2(hidden_states, timestep)
|
414 |
+
if self.use_ada_layer_norm
|
415 |
+
else self.norm2(hidden_states)
|
416 |
+
)
|
417 |
+
hidden_states = (
|
418 |
+
self.attn2(
|
419 |
+
norm_hidden_states,
|
420 |
+
encoder_hidden_states=encoder_hidden_states,
|
421 |
+
attention_mask=attention_mask,
|
422 |
+
)
|
423 |
+
+ hidden_states
|
424 |
+
)
|
425 |
+
|
426 |
+
# Feed-forward
|
427 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
428 |
+
|
429 |
+
# Temporal-Attention
|
430 |
+
if self.unet_use_temporal_attention:
|
431 |
+
d = hidden_states.shape[1]
|
432 |
+
hidden_states = rearrange(
|
433 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
434 |
+
)
|
435 |
+
norm_hidden_states = (
|
436 |
+
self.norm_temp(hidden_states, timestep)
|
437 |
+
if self.use_ada_layer_norm
|
438 |
+
else self.norm_temp(hidden_states)
|
439 |
+
)
|
440 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
441 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
442 |
+
|
443 |
+
return hidden_states
|
models/motion_module.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapt from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
2 |
+
import math
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Callable, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers.models.attention import FeedForward
|
8 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
9 |
+
from diffusers.utils import BaseOutput
|
10 |
+
from diffusers.utils.import_utils import is_xformers_available
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
|
15 |
+
def zero_module(module):
|
16 |
+
# Zero out the parameters of a module and return it.
|
17 |
+
for p in module.parameters():
|
18 |
+
p.detach().zero_()
|
19 |
+
return module
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
24 |
+
sample: torch.FloatTensor
|
25 |
+
|
26 |
+
|
27 |
+
if is_xformers_available():
|
28 |
+
import xformers
|
29 |
+
import xformers.ops
|
30 |
+
else:
|
31 |
+
xformers = None
|
32 |
+
|
33 |
+
|
34 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
35 |
+
if motion_module_type == "Vanilla":
|
36 |
+
return VanillaTemporalModule(
|
37 |
+
in_channels=in_channels,
|
38 |
+
**motion_module_kwargs,
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
raise ValueError
|
42 |
+
|
43 |
+
|
44 |
+
class VanillaTemporalModule(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
in_channels,
|
48 |
+
num_attention_heads=8,
|
49 |
+
num_transformer_block=2,
|
50 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
51 |
+
cross_frame_attention_mode=None,
|
52 |
+
temporal_position_encoding=False,
|
53 |
+
temporal_position_encoding_max_len=24,
|
54 |
+
temporal_attention_dim_div=1,
|
55 |
+
zero_initialize=True,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
60 |
+
in_channels=in_channels,
|
61 |
+
num_attention_heads=num_attention_heads,
|
62 |
+
attention_head_dim=in_channels
|
63 |
+
// num_attention_heads
|
64 |
+
// temporal_attention_dim_div,
|
65 |
+
num_layers=num_transformer_block,
|
66 |
+
attention_block_types=attention_block_types,
|
67 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
68 |
+
temporal_position_encoding=temporal_position_encoding,
|
69 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
70 |
+
)
|
71 |
+
|
72 |
+
if zero_initialize:
|
73 |
+
self.temporal_transformer.proj_out = zero_module(
|
74 |
+
self.temporal_transformer.proj_out
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
input_tensor,
|
80 |
+
temb,
|
81 |
+
encoder_hidden_states,
|
82 |
+
attention_mask=None,
|
83 |
+
anchor_frame_idx=None,
|
84 |
+
):
|
85 |
+
hidden_states = input_tensor
|
86 |
+
hidden_states = self.temporal_transformer(
|
87 |
+
hidden_states, encoder_hidden_states, attention_mask
|
88 |
+
)
|
89 |
+
|
90 |
+
output = hidden_states
|
91 |
+
return output
|
92 |
+
|
93 |
+
|
94 |
+
class TemporalTransformer3DModel(nn.Module):
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
in_channels,
|
98 |
+
num_attention_heads,
|
99 |
+
attention_head_dim,
|
100 |
+
num_layers,
|
101 |
+
attention_block_types=(
|
102 |
+
"Temporal_Self",
|
103 |
+
"Temporal_Self",
|
104 |
+
),
|
105 |
+
dropout=0.0,
|
106 |
+
norm_num_groups=32,
|
107 |
+
cross_attention_dim=768,
|
108 |
+
activation_fn="geglu",
|
109 |
+
attention_bias=False,
|
110 |
+
upcast_attention=False,
|
111 |
+
cross_frame_attention_mode=None,
|
112 |
+
temporal_position_encoding=False,
|
113 |
+
temporal_position_encoding_max_len=24,
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
inner_dim = num_attention_heads * attention_head_dim
|
118 |
+
|
119 |
+
self.norm = torch.nn.GroupNorm(
|
120 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
121 |
+
)
|
122 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
123 |
+
|
124 |
+
self.transformer_blocks = nn.ModuleList(
|
125 |
+
[
|
126 |
+
TemporalTransformerBlock(
|
127 |
+
dim=inner_dim,
|
128 |
+
num_attention_heads=num_attention_heads,
|
129 |
+
attention_head_dim=attention_head_dim,
|
130 |
+
attention_block_types=attention_block_types,
|
131 |
+
dropout=dropout,
|
132 |
+
norm_num_groups=norm_num_groups,
|
133 |
+
cross_attention_dim=cross_attention_dim,
|
134 |
+
activation_fn=activation_fn,
|
135 |
+
attention_bias=attention_bias,
|
136 |
+
upcast_attention=upcast_attention,
|
137 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
138 |
+
temporal_position_encoding=temporal_position_encoding,
|
139 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
140 |
+
)
|
141 |
+
for d in range(num_layers)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
145 |
+
|
146 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
147 |
+
assert (
|
148 |
+
hidden_states.dim() == 5
|
149 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
150 |
+
video_length = hidden_states.shape[2]
|
151 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
152 |
+
|
153 |
+
batch, channel, height, weight = hidden_states.shape
|
154 |
+
residual = hidden_states
|
155 |
+
|
156 |
+
hidden_states = self.norm(hidden_states)
|
157 |
+
inner_dim = hidden_states.shape[1]
|
158 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
159 |
+
batch, height * weight, inner_dim
|
160 |
+
)
|
161 |
+
hidden_states = self.proj_in(hidden_states)
|
162 |
+
|
163 |
+
# Transformer Blocks
|
164 |
+
for block in self.transformer_blocks:
|
165 |
+
hidden_states = block(
|
166 |
+
hidden_states,
|
167 |
+
encoder_hidden_states=encoder_hidden_states,
|
168 |
+
video_length=video_length,
|
169 |
+
)
|
170 |
+
|
171 |
+
# output
|
172 |
+
hidden_states = self.proj_out(hidden_states)
|
173 |
+
hidden_states = (
|
174 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
175 |
+
.permute(0, 3, 1, 2)
|
176 |
+
.contiguous()
|
177 |
+
)
|
178 |
+
|
179 |
+
output = hidden_states + residual
|
180 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
181 |
+
|
182 |
+
return output
|
183 |
+
|
184 |
+
|
185 |
+
class TemporalTransformerBlock(nn.Module):
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
dim,
|
189 |
+
num_attention_heads,
|
190 |
+
attention_head_dim,
|
191 |
+
attention_block_types=(
|
192 |
+
"Temporal_Self",
|
193 |
+
"Temporal_Self",
|
194 |
+
),
|
195 |
+
dropout=0.0,
|
196 |
+
norm_num_groups=32,
|
197 |
+
cross_attention_dim=768,
|
198 |
+
activation_fn="geglu",
|
199 |
+
attention_bias=False,
|
200 |
+
upcast_attention=False,
|
201 |
+
cross_frame_attention_mode=None,
|
202 |
+
temporal_position_encoding=False,
|
203 |
+
temporal_position_encoding_max_len=24,
|
204 |
+
):
|
205 |
+
super().__init__()
|
206 |
+
|
207 |
+
attention_blocks = []
|
208 |
+
norms = []
|
209 |
+
|
210 |
+
for block_name in attention_block_types:
|
211 |
+
attention_blocks.append(
|
212 |
+
VersatileAttention(
|
213 |
+
attention_mode=block_name.split("_")[0],
|
214 |
+
cross_attention_dim=cross_attention_dim
|
215 |
+
if block_name.endswith("_Cross")
|
216 |
+
else None,
|
217 |
+
query_dim=dim,
|
218 |
+
heads=num_attention_heads,
|
219 |
+
dim_head=attention_head_dim,
|
220 |
+
dropout=dropout,
|
221 |
+
bias=attention_bias,
|
222 |
+
upcast_attention=upcast_attention,
|
223 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
224 |
+
temporal_position_encoding=temporal_position_encoding,
|
225 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
226 |
+
)
|
227 |
+
)
|
228 |
+
norms.append(nn.LayerNorm(dim))
|
229 |
+
|
230 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
231 |
+
self.norms = nn.ModuleList(norms)
|
232 |
+
|
233 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
234 |
+
self.ff_norm = nn.LayerNorm(dim)
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states,
|
239 |
+
encoder_hidden_states=None,
|
240 |
+
attention_mask=None,
|
241 |
+
video_length=None,
|
242 |
+
):
|
243 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
244 |
+
norm_hidden_states = norm(hidden_states)
|
245 |
+
hidden_states = (
|
246 |
+
attention_block(
|
247 |
+
norm_hidden_states,
|
248 |
+
encoder_hidden_states=encoder_hidden_states
|
249 |
+
if attention_block.is_cross_attention
|
250 |
+
else None,
|
251 |
+
video_length=video_length,
|
252 |
+
)
|
253 |
+
+ hidden_states
|
254 |
+
)
|
255 |
+
|
256 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
257 |
+
|
258 |
+
output = hidden_states
|
259 |
+
return output
|
260 |
+
|
261 |
+
|
262 |
+
class PositionalEncoding(nn.Module):
|
263 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
264 |
+
super().__init__()
|
265 |
+
self.dropout = nn.Dropout(p=dropout)
|
266 |
+
position = torch.arange(max_len).unsqueeze(1)
|
267 |
+
div_term = torch.exp(
|
268 |
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
269 |
+
)
|
270 |
+
pe = torch.zeros(1, max_len, d_model)
|
271 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
272 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
273 |
+
self.register_buffer("pe", pe)
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
x = x + self.pe[:, : x.size(1)]
|
277 |
+
return self.dropout(x)
|
278 |
+
|
279 |
+
|
280 |
+
class VersatileAttention(Attention):
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
attention_mode=None,
|
284 |
+
cross_frame_attention_mode=None,
|
285 |
+
temporal_position_encoding=False,
|
286 |
+
temporal_position_encoding_max_len=24,
|
287 |
+
*args,
|
288 |
+
**kwargs,
|
289 |
+
):
|
290 |
+
super().__init__(*args, **kwargs)
|
291 |
+
assert attention_mode == "Temporal"
|
292 |
+
|
293 |
+
self.attention_mode = attention_mode
|
294 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
295 |
+
|
296 |
+
self.pos_encoder = (
|
297 |
+
PositionalEncoding(
|
298 |
+
kwargs["query_dim"],
|
299 |
+
dropout=0.0,
|
300 |
+
max_len=temporal_position_encoding_max_len,
|
301 |
+
)
|
302 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
303 |
+
else None
|
304 |
+
)
|
305 |
+
|
306 |
+
def extra_repr(self):
|
307 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
308 |
+
|
309 |
+
def set_use_memory_efficient_attention_xformers(
|
310 |
+
self,
|
311 |
+
use_memory_efficient_attention_xformers: bool,
|
312 |
+
attention_op: Optional[Callable] = None,
|
313 |
+
):
|
314 |
+
if use_memory_efficient_attention_xformers:
|
315 |
+
if not is_xformers_available():
|
316 |
+
raise ModuleNotFoundError(
|
317 |
+
(
|
318 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
319 |
+
" xformers"
|
320 |
+
),
|
321 |
+
name="xformers",
|
322 |
+
)
|
323 |
+
elif not torch.cuda.is_available():
|
324 |
+
raise ValueError(
|
325 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
326 |
+
" only available for GPU "
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
try:
|
330 |
+
# Make sure we can run the memory efficient attention
|
331 |
+
_ = xformers.ops.memory_efficient_attention(
|
332 |
+
torch.randn((1, 2, 40), device="cuda"),
|
333 |
+
torch.randn((1, 2, 40), device="cuda"),
|
334 |
+
torch.randn((1, 2, 40), device="cuda"),
|
335 |
+
)
|
336 |
+
except Exception as e:
|
337 |
+
raise e
|
338 |
+
|
339 |
+
# XFormersAttnProcessor corrupts video generation and work with Pytorch 1.13.
|
340 |
+
# Pytorch 2.0.1 AttnProcessor works the same as XFormersAttnProcessor in Pytorch 1.13.
|
341 |
+
# You don't need XFormersAttnProcessor here.
|
342 |
+
# processor = XFormersAttnProcessor(
|
343 |
+
# attention_op=attention_op,
|
344 |
+
# )
|
345 |
+
processor = AttnProcessor()
|
346 |
+
else:
|
347 |
+
processor = AttnProcessor()
|
348 |
+
|
349 |
+
self.set_processor(processor)
|
350 |
+
|
351 |
+
def forward(
|
352 |
+
self,
|
353 |
+
hidden_states,
|
354 |
+
encoder_hidden_states=None,
|
355 |
+
attention_mask=None,
|
356 |
+
video_length=None,
|
357 |
+
**cross_attention_kwargs,
|
358 |
+
):
|
359 |
+
if self.attention_mode == "Temporal":
|
360 |
+
d = hidden_states.shape[1] # d means HxW
|
361 |
+
hidden_states = rearrange(
|
362 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
363 |
+
)
|
364 |
+
|
365 |
+
if self.pos_encoder is not None:
|
366 |
+
hidden_states = self.pos_encoder(hidden_states)
|
367 |
+
|
368 |
+
encoder_hidden_states = (
|
369 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
370 |
+
if encoder_hidden_states is not None
|
371 |
+
else encoder_hidden_states
|
372 |
+
)
|
373 |
+
|
374 |
+
else:
|
375 |
+
raise NotImplementedError
|
376 |
+
|
377 |
+
hidden_states = self.processor(
|
378 |
+
self,
|
379 |
+
hidden_states,
|
380 |
+
encoder_hidden_states=encoder_hidden_states,
|
381 |
+
attention_mask=attention_mask,
|
382 |
+
**cross_attention_kwargs,
|
383 |
+
)
|
384 |
+
|
385 |
+
if self.attention_mode == "Temporal":
|
386 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
387 |
+
|
388 |
+
return hidden_states
|
models/mutual_self_attention.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py
|
2 |
+
from typing import Any, Dict, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
from musepose.models.attention import TemporalBasicTransformerBlock
|
8 |
+
|
9 |
+
from .attention import BasicTransformerBlock
|
10 |
+
|
11 |
+
|
12 |
+
def torch_dfs(model: torch.nn.Module):
|
13 |
+
result = [model]
|
14 |
+
for child in model.children():
|
15 |
+
result += torch_dfs(child)
|
16 |
+
return result
|
17 |
+
|
18 |
+
|
19 |
+
class ReferenceAttentionControl:
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
unet,
|
23 |
+
mode="write",
|
24 |
+
do_classifier_free_guidance=False,
|
25 |
+
attention_auto_machine_weight=float("inf"),
|
26 |
+
gn_auto_machine_weight=1.0,
|
27 |
+
style_fidelity=1.0,
|
28 |
+
reference_attn=True,
|
29 |
+
reference_adain=False,
|
30 |
+
fusion_blocks="midup",
|
31 |
+
batch_size=1,
|
32 |
+
) -> None:
|
33 |
+
# 10. Modify self attention and group norm
|
34 |
+
self.unet = unet
|
35 |
+
assert mode in ["read", "write"]
|
36 |
+
assert fusion_blocks in ["midup", "full"]
|
37 |
+
self.reference_attn = reference_attn
|
38 |
+
self.reference_adain = reference_adain
|
39 |
+
self.fusion_blocks = fusion_blocks
|
40 |
+
self.register_reference_hooks(
|
41 |
+
mode,
|
42 |
+
do_classifier_free_guidance,
|
43 |
+
attention_auto_machine_weight,
|
44 |
+
gn_auto_machine_weight,
|
45 |
+
style_fidelity,
|
46 |
+
reference_attn,
|
47 |
+
reference_adain,
|
48 |
+
fusion_blocks,
|
49 |
+
batch_size=batch_size,
|
50 |
+
)
|
51 |
+
|
52 |
+
def register_reference_hooks(
|
53 |
+
self,
|
54 |
+
mode,
|
55 |
+
do_classifier_free_guidance,
|
56 |
+
attention_auto_machine_weight,
|
57 |
+
gn_auto_machine_weight,
|
58 |
+
style_fidelity,
|
59 |
+
reference_attn,
|
60 |
+
reference_adain,
|
61 |
+
dtype=torch.float16,
|
62 |
+
batch_size=1,
|
63 |
+
num_images_per_prompt=1,
|
64 |
+
device=torch.device("cpu"),
|
65 |
+
fusion_blocks="midup",
|
66 |
+
):
|
67 |
+
MODE = mode
|
68 |
+
do_classifier_free_guidance = do_classifier_free_guidance
|
69 |
+
attention_auto_machine_weight = attention_auto_machine_weight
|
70 |
+
gn_auto_machine_weight = gn_auto_machine_weight
|
71 |
+
style_fidelity = style_fidelity
|
72 |
+
reference_attn = reference_attn
|
73 |
+
reference_adain = reference_adain
|
74 |
+
fusion_blocks = fusion_blocks
|
75 |
+
num_images_per_prompt = num_images_per_prompt
|
76 |
+
dtype = dtype
|
77 |
+
if do_classifier_free_guidance:
|
78 |
+
uc_mask = (
|
79 |
+
torch.Tensor(
|
80 |
+
[1] * batch_size * num_images_per_prompt * 16
|
81 |
+
+ [0] * batch_size * num_images_per_prompt * 16
|
82 |
+
)
|
83 |
+
.to(device)
|
84 |
+
.bool()
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
uc_mask = (
|
88 |
+
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
|
89 |
+
.to(device)
|
90 |
+
.bool()
|
91 |
+
)
|
92 |
+
|
93 |
+
def hacked_basic_transformer_inner_forward(
|
94 |
+
self,
|
95 |
+
hidden_states: torch.FloatTensor,
|
96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
97 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
98 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
99 |
+
timestep: Optional[torch.LongTensor] = None,
|
100 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
101 |
+
class_labels: Optional[torch.LongTensor] = None,
|
102 |
+
video_length=None,
|
103 |
+
):
|
104 |
+
if self.use_ada_layer_norm: # False
|
105 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
106 |
+
elif self.use_ada_layer_norm_zero:
|
107 |
+
(
|
108 |
+
norm_hidden_states,
|
109 |
+
gate_msa,
|
110 |
+
shift_mlp,
|
111 |
+
scale_mlp,
|
112 |
+
gate_mlp,
|
113 |
+
) = self.norm1(
|
114 |
+
hidden_states,
|
115 |
+
timestep,
|
116 |
+
class_labels,
|
117 |
+
hidden_dtype=hidden_states.dtype,
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
norm_hidden_states = self.norm1(hidden_states)
|
121 |
+
|
122 |
+
# 1. Self-Attention
|
123 |
+
# self.only_cross_attention = False
|
124 |
+
cross_attention_kwargs = (
|
125 |
+
cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
126 |
+
)
|
127 |
+
if self.only_cross_attention:
|
128 |
+
attn_output = self.attn1(
|
129 |
+
norm_hidden_states,
|
130 |
+
encoder_hidden_states=encoder_hidden_states
|
131 |
+
if self.only_cross_attention
|
132 |
+
else None,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
**cross_attention_kwargs,
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
if MODE == "write":
|
138 |
+
self.bank.append(norm_hidden_states.clone())
|
139 |
+
attn_output = self.attn1(
|
140 |
+
norm_hidden_states,
|
141 |
+
encoder_hidden_states=encoder_hidden_states
|
142 |
+
if self.only_cross_attention
|
143 |
+
else None,
|
144 |
+
attention_mask=attention_mask,
|
145 |
+
**cross_attention_kwargs,
|
146 |
+
)
|
147 |
+
if MODE == "read":
|
148 |
+
bank_fea = [
|
149 |
+
rearrange(
|
150 |
+
d.unsqueeze(1).repeat(1, video_length, 1, 1),
|
151 |
+
"b t l c -> (b t) l c",
|
152 |
+
)
|
153 |
+
for d in self.bank
|
154 |
+
]
|
155 |
+
modify_norm_hidden_states = torch.cat(
|
156 |
+
[norm_hidden_states] + bank_fea, dim=1
|
157 |
+
)
|
158 |
+
hidden_states_uc = (
|
159 |
+
self.attn1(
|
160 |
+
norm_hidden_states,
|
161 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
162 |
+
attention_mask=attention_mask,
|
163 |
+
)
|
164 |
+
+ hidden_states
|
165 |
+
)
|
166 |
+
if do_classifier_free_guidance:
|
167 |
+
hidden_states_c = hidden_states_uc.clone()
|
168 |
+
_uc_mask = uc_mask.clone()
|
169 |
+
if hidden_states.shape[0] != _uc_mask.shape[0]:
|
170 |
+
_uc_mask = (
|
171 |
+
torch.Tensor(
|
172 |
+
[1] * (hidden_states.shape[0] // 2)
|
173 |
+
+ [0] * (hidden_states.shape[0] // 2)
|
174 |
+
)
|
175 |
+
.to(device)
|
176 |
+
.bool()
|
177 |
+
)
|
178 |
+
hidden_states_c[_uc_mask] = (
|
179 |
+
self.attn1(
|
180 |
+
norm_hidden_states[_uc_mask],
|
181 |
+
encoder_hidden_states=norm_hidden_states[_uc_mask],
|
182 |
+
attention_mask=attention_mask,
|
183 |
+
)
|
184 |
+
+ hidden_states[_uc_mask]
|
185 |
+
)
|
186 |
+
hidden_states = hidden_states_c.clone()
|
187 |
+
else:
|
188 |
+
hidden_states = hidden_states_uc
|
189 |
+
|
190 |
+
# self.bank.clear()
|
191 |
+
if self.attn2 is not None:
|
192 |
+
# Cross-Attention
|
193 |
+
norm_hidden_states = (
|
194 |
+
self.norm2(hidden_states, timestep)
|
195 |
+
if self.use_ada_layer_norm
|
196 |
+
else self.norm2(hidden_states)
|
197 |
+
)
|
198 |
+
hidden_states = (
|
199 |
+
self.attn2(
|
200 |
+
norm_hidden_states,
|
201 |
+
encoder_hidden_states=encoder_hidden_states,
|
202 |
+
attention_mask=attention_mask,
|
203 |
+
)
|
204 |
+
+ hidden_states
|
205 |
+
)
|
206 |
+
|
207 |
+
# Feed-forward
|
208 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
209 |
+
|
210 |
+
# Temporal-Attention
|
211 |
+
if self.unet_use_temporal_attention:
|
212 |
+
d = hidden_states.shape[1]
|
213 |
+
hidden_states = rearrange(
|
214 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
215 |
+
)
|
216 |
+
norm_hidden_states = (
|
217 |
+
self.norm_temp(hidden_states, timestep)
|
218 |
+
if self.use_ada_layer_norm
|
219 |
+
else self.norm_temp(hidden_states)
|
220 |
+
)
|
221 |
+
hidden_states = (
|
222 |
+
self.attn_temp(norm_hidden_states) + hidden_states
|
223 |
+
)
|
224 |
+
hidden_states = rearrange(
|
225 |
+
hidden_states, "(b d) f c -> (b f) d c", d=d
|
226 |
+
)
|
227 |
+
|
228 |
+
return hidden_states
|
229 |
+
|
230 |
+
if self.use_ada_layer_norm_zero:
|
231 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
232 |
+
hidden_states = attn_output + hidden_states
|
233 |
+
|
234 |
+
if self.attn2 is not None:
|
235 |
+
norm_hidden_states = (
|
236 |
+
self.norm2(hidden_states, timestep)
|
237 |
+
if self.use_ada_layer_norm
|
238 |
+
else self.norm2(hidden_states)
|
239 |
+
)
|
240 |
+
|
241 |
+
# 2. Cross-Attention
|
242 |
+
attn_output = self.attn2(
|
243 |
+
norm_hidden_states,
|
244 |
+
encoder_hidden_states=encoder_hidden_states,
|
245 |
+
attention_mask=encoder_attention_mask,
|
246 |
+
**cross_attention_kwargs,
|
247 |
+
)
|
248 |
+
hidden_states = attn_output + hidden_states
|
249 |
+
|
250 |
+
# 3. Feed-forward
|
251 |
+
norm_hidden_states = self.norm3(hidden_states)
|
252 |
+
|
253 |
+
if self.use_ada_layer_norm_zero:
|
254 |
+
norm_hidden_states = (
|
255 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
256 |
+
)
|
257 |
+
|
258 |
+
ff_output = self.ff(norm_hidden_states)
|
259 |
+
|
260 |
+
if self.use_ada_layer_norm_zero:
|
261 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
262 |
+
|
263 |
+
hidden_states = ff_output + hidden_states
|
264 |
+
|
265 |
+
return hidden_states
|
266 |
+
|
267 |
+
if self.reference_attn:
|
268 |
+
if self.fusion_blocks == "midup":
|
269 |
+
attn_modules = [
|
270 |
+
module
|
271 |
+
for module in (
|
272 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
273 |
+
)
|
274 |
+
if isinstance(module, BasicTransformerBlock)
|
275 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
276 |
+
]
|
277 |
+
elif self.fusion_blocks == "full":
|
278 |
+
attn_modules = [
|
279 |
+
module
|
280 |
+
for module in torch_dfs(self.unet)
|
281 |
+
if isinstance(module, BasicTransformerBlock)
|
282 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
283 |
+
]
|
284 |
+
attn_modules = sorted(
|
285 |
+
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
286 |
+
)
|
287 |
+
|
288 |
+
for i, module in enumerate(attn_modules):
|
289 |
+
module._original_inner_forward = module.forward
|
290 |
+
if isinstance(module, BasicTransformerBlock):
|
291 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
292 |
+
module, BasicTransformerBlock
|
293 |
+
)
|
294 |
+
if isinstance(module, TemporalBasicTransformerBlock):
|
295 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
296 |
+
module, TemporalBasicTransformerBlock
|
297 |
+
)
|
298 |
+
|
299 |
+
module.bank = []
|
300 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
301 |
+
|
302 |
+
def update(self, writer, dtype=torch.float16):
|
303 |
+
if self.reference_attn:
|
304 |
+
if self.fusion_blocks == "midup":
|
305 |
+
reader_attn_modules = [
|
306 |
+
module
|
307 |
+
for module in (
|
308 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
309 |
+
)
|
310 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
311 |
+
]
|
312 |
+
writer_attn_modules = [
|
313 |
+
module
|
314 |
+
for module in (
|
315 |
+
torch_dfs(writer.unet.mid_block)
|
316 |
+
+ torch_dfs(writer.unet.up_blocks)
|
317 |
+
)
|
318 |
+
if isinstance(module, BasicTransformerBlock)
|
319 |
+
]
|
320 |
+
elif self.fusion_blocks == "full":
|
321 |
+
reader_attn_modules = [
|
322 |
+
module
|
323 |
+
for module in torch_dfs(self.unet)
|
324 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
325 |
+
]
|
326 |
+
writer_attn_modules = [
|
327 |
+
module
|
328 |
+
for module in torch_dfs(writer.unet)
|
329 |
+
if isinstance(module, BasicTransformerBlock)
|
330 |
+
]
|
331 |
+
reader_attn_modules = sorted(
|
332 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
333 |
+
)
|
334 |
+
writer_attn_modules = sorted(
|
335 |
+
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
336 |
+
)
|
337 |
+
for r, w in zip(reader_attn_modules, writer_attn_modules):
|
338 |
+
r.bank = [v.clone().to(dtype) for v in w.bank]
|
339 |
+
# w.bank.clear()
|
340 |
+
|
341 |
+
def clear(self):
|
342 |
+
if self.reference_attn:
|
343 |
+
if self.fusion_blocks == "midup":
|
344 |
+
reader_attn_modules = [
|
345 |
+
module
|
346 |
+
for module in (
|
347 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
348 |
+
)
|
349 |
+
if isinstance(module, BasicTransformerBlock)
|
350 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
351 |
+
]
|
352 |
+
elif self.fusion_blocks == "full":
|
353 |
+
reader_attn_modules = [
|
354 |
+
module
|
355 |
+
for module in torch_dfs(self.unet)
|
356 |
+
if isinstance(module, BasicTransformerBlock)
|
357 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
358 |
+
]
|
359 |
+
reader_attn_modules = sorted(
|
360 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
361 |
+
)
|
362 |
+
for r in reader_attn_modules:
|
363 |
+
r.bank.clear()
|
models/pose_guider.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.nn.init as init
|
6 |
+
from diffusers.models.modeling_utils import ModelMixin
|
7 |
+
|
8 |
+
from musepose.models.motion_module import zero_module
|
9 |
+
from musepose.models.resnet import InflatedConv3d
|
10 |
+
|
11 |
+
|
12 |
+
class PoseGuider(ModelMixin):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
conditioning_embedding_channels: int,
|
16 |
+
conditioning_channels: int = 3,
|
17 |
+
block_out_channels: Tuple[int] = (16, 32, 64, 128),
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.conv_in = InflatedConv3d(
|
21 |
+
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
22 |
+
)
|
23 |
+
|
24 |
+
self.blocks = nn.ModuleList([])
|
25 |
+
|
26 |
+
for i in range(len(block_out_channels) - 1):
|
27 |
+
channel_in = block_out_channels[i]
|
28 |
+
channel_out = block_out_channels[i + 1]
|
29 |
+
self.blocks.append(
|
30 |
+
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
|
31 |
+
)
|
32 |
+
self.blocks.append(
|
33 |
+
InflatedConv3d(
|
34 |
+
channel_in, channel_out, kernel_size=3, padding=1, stride=2
|
35 |
+
)
|
36 |
+
)
|
37 |
+
|
38 |
+
self.conv_out = zero_module(
|
39 |
+
InflatedConv3d(
|
40 |
+
block_out_channels[-1],
|
41 |
+
conditioning_embedding_channels,
|
42 |
+
kernel_size=3,
|
43 |
+
padding=1,
|
44 |
+
)
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, conditioning):
|
48 |
+
embedding = self.conv_in(conditioning)
|
49 |
+
embedding = F.silu(embedding)
|
50 |
+
|
51 |
+
for block in self.blocks:
|
52 |
+
embedding = block(embedding)
|
53 |
+
embedding = F.silu(embedding)
|
54 |
+
|
55 |
+
embedding = self.conv_out(embedding)
|
56 |
+
|
57 |
+
return embedding
|
models/resnet.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
|
9 |
+
class InflatedConv3d(nn.Conv2d):
|
10 |
+
def forward(self, x):
|
11 |
+
video_length = x.shape[2]
|
12 |
+
|
13 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
14 |
+
x = super().forward(x)
|
15 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
16 |
+
|
17 |
+
return x
|
18 |
+
|
19 |
+
|
20 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
21 |
+
def forward(self, x):
|
22 |
+
video_length = x.shape[2]
|
23 |
+
|
24 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
25 |
+
x = super().forward(x)
|
26 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
27 |
+
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
class Upsample3D(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
channels,
|
35 |
+
use_conv=False,
|
36 |
+
use_conv_transpose=False,
|
37 |
+
out_channels=None,
|
38 |
+
name="conv",
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
self.channels = channels
|
42 |
+
self.out_channels = out_channels or channels
|
43 |
+
self.use_conv = use_conv
|
44 |
+
self.use_conv_transpose = use_conv_transpose
|
45 |
+
self.name = name
|
46 |
+
|
47 |
+
conv = None
|
48 |
+
if use_conv_transpose:
|
49 |
+
raise NotImplementedError
|
50 |
+
elif use_conv:
|
51 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
52 |
+
|
53 |
+
def forward(self, hidden_states, output_size=None):
|
54 |
+
assert hidden_states.shape[1] == self.channels
|
55 |
+
|
56 |
+
if self.use_conv_transpose:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
60 |
+
dtype = hidden_states.dtype
|
61 |
+
if dtype == torch.bfloat16:
|
62 |
+
hidden_states = hidden_states.to(torch.float32)
|
63 |
+
|
64 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
65 |
+
if hidden_states.shape[0] >= 64:
|
66 |
+
hidden_states = hidden_states.contiguous()
|
67 |
+
|
68 |
+
# if `output_size` is passed we force the interpolation output
|
69 |
+
# size and do not make use of `scale_factor=2`
|
70 |
+
if output_size is None:
|
71 |
+
hidden_states = F.interpolate(
|
72 |
+
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest"
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
hidden_states = F.interpolate(
|
76 |
+
hidden_states, size=output_size, mode="nearest"
|
77 |
+
)
|
78 |
+
|
79 |
+
# If the input is bfloat16, we cast back to bfloat16
|
80 |
+
if dtype == torch.bfloat16:
|
81 |
+
hidden_states = hidden_states.to(dtype)
|
82 |
+
|
83 |
+
# if self.use_conv:
|
84 |
+
# if self.name == "conv":
|
85 |
+
# hidden_states = self.conv(hidden_states)
|
86 |
+
# else:
|
87 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
88 |
+
hidden_states = self.conv(hidden_states)
|
89 |
+
|
90 |
+
return hidden_states
|
91 |
+
|
92 |
+
|
93 |
+
class Downsample3D(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self, channels, use_conv=False, out_channels=None, padding=1, name="conv"
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
self.channels = channels
|
99 |
+
self.out_channels = out_channels or channels
|
100 |
+
self.use_conv = use_conv
|
101 |
+
self.padding = padding
|
102 |
+
stride = 2
|
103 |
+
self.name = name
|
104 |
+
|
105 |
+
if use_conv:
|
106 |
+
self.conv = InflatedConv3d(
|
107 |
+
self.channels, self.out_channels, 3, stride=stride, padding=padding
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
raise NotImplementedError
|
111 |
+
|
112 |
+
def forward(self, hidden_states):
|
113 |
+
assert hidden_states.shape[1] == self.channels
|
114 |
+
if self.use_conv and self.padding == 0:
|
115 |
+
raise NotImplementedError
|
116 |
+
|
117 |
+
assert hidden_states.shape[1] == self.channels
|
118 |
+
hidden_states = self.conv(hidden_states)
|
119 |
+
|
120 |
+
return hidden_states
|
121 |
+
|
122 |
+
|
123 |
+
class ResnetBlock3D(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
*,
|
127 |
+
in_channels,
|
128 |
+
out_channels=None,
|
129 |
+
conv_shortcut=False,
|
130 |
+
dropout=0.0,
|
131 |
+
temb_channels=512,
|
132 |
+
groups=32,
|
133 |
+
groups_out=None,
|
134 |
+
pre_norm=True,
|
135 |
+
eps=1e-6,
|
136 |
+
non_linearity="swish",
|
137 |
+
time_embedding_norm="default",
|
138 |
+
output_scale_factor=1.0,
|
139 |
+
use_in_shortcut=None,
|
140 |
+
use_inflated_groupnorm=None,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.pre_norm = pre_norm
|
144 |
+
self.pre_norm = True
|
145 |
+
self.in_channels = in_channels
|
146 |
+
out_channels = in_channels if out_channels is None else out_channels
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.use_conv_shortcut = conv_shortcut
|
149 |
+
self.time_embedding_norm = time_embedding_norm
|
150 |
+
self.output_scale_factor = output_scale_factor
|
151 |
+
|
152 |
+
if groups_out is None:
|
153 |
+
groups_out = groups
|
154 |
+
|
155 |
+
assert use_inflated_groupnorm != None
|
156 |
+
if use_inflated_groupnorm:
|
157 |
+
self.norm1 = InflatedGroupNorm(
|
158 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
self.norm1 = torch.nn.GroupNorm(
|
162 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
163 |
+
)
|
164 |
+
|
165 |
+
self.conv1 = InflatedConv3d(
|
166 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
167 |
+
)
|
168 |
+
|
169 |
+
if temb_channels is not None:
|
170 |
+
if self.time_embedding_norm == "default":
|
171 |
+
time_emb_proj_out_channels = out_channels
|
172 |
+
elif self.time_embedding_norm == "scale_shift":
|
173 |
+
time_emb_proj_out_channels = out_channels * 2
|
174 |
+
else:
|
175 |
+
raise ValueError(
|
176 |
+
f"unknown time_embedding_norm : {self.time_embedding_norm} "
|
177 |
+
)
|
178 |
+
|
179 |
+
self.time_emb_proj = torch.nn.Linear(
|
180 |
+
temb_channels, time_emb_proj_out_channels
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
self.time_emb_proj = None
|
184 |
+
|
185 |
+
if use_inflated_groupnorm:
|
186 |
+
self.norm2 = InflatedGroupNorm(
|
187 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
self.norm2 = torch.nn.GroupNorm(
|
191 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
192 |
+
)
|
193 |
+
self.dropout = torch.nn.Dropout(dropout)
|
194 |
+
self.conv2 = InflatedConv3d(
|
195 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
196 |
+
)
|
197 |
+
|
198 |
+
if non_linearity == "swish":
|
199 |
+
self.nonlinearity = lambda x: F.silu(x)
|
200 |
+
elif non_linearity == "mish":
|
201 |
+
self.nonlinearity = Mish()
|
202 |
+
elif non_linearity == "silu":
|
203 |
+
self.nonlinearity = nn.SiLU()
|
204 |
+
|
205 |
+
self.use_in_shortcut = (
|
206 |
+
self.in_channels != self.out_channels
|
207 |
+
if use_in_shortcut is None
|
208 |
+
else use_in_shortcut
|
209 |
+
)
|
210 |
+
|
211 |
+
self.conv_shortcut = None
|
212 |
+
if self.use_in_shortcut:
|
213 |
+
self.conv_shortcut = InflatedConv3d(
|
214 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
215 |
+
)
|
216 |
+
|
217 |
+
def forward(self, input_tensor, temb):
|
218 |
+
hidden_states = input_tensor
|
219 |
+
|
220 |
+
hidden_states = self.norm1(hidden_states)
|
221 |
+
hidden_states = self.nonlinearity(hidden_states)
|
222 |
+
|
223 |
+
hidden_states = self.conv1(hidden_states)
|
224 |
+
|
225 |
+
if temb is not None:
|
226 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
227 |
+
|
228 |
+
if temb is not None and self.time_embedding_norm == "default":
|
229 |
+
hidden_states = hidden_states + temb
|
230 |
+
|
231 |
+
hidden_states = self.norm2(hidden_states)
|
232 |
+
|
233 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
234 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
235 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
236 |
+
|
237 |
+
hidden_states = self.nonlinearity(hidden_states)
|
238 |
+
|
239 |
+
hidden_states = self.dropout(hidden_states)
|
240 |
+
hidden_states = self.conv2(hidden_states)
|
241 |
+
|
242 |
+
if self.conv_shortcut is not None:
|
243 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
244 |
+
|
245 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
246 |
+
|
247 |
+
return output_tensor
|
248 |
+
|
249 |
+
|
250 |
+
class Mish(torch.nn.Module):
|
251 |
+
def forward(self, hidden_states):
|
252 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
models/transformer_2d.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
7 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
8 |
+
from diffusers.models.modeling_utils import ModelMixin
|
9 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
10 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from .attention import BasicTransformerBlock
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class Transformer2DModelOutput(BaseOutput):
|
18 |
+
"""
|
19 |
+
The output of [`Transformer2DModel`].
|
20 |
+
|
21 |
+
Args:
|
22 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
23 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
24 |
+
distributions for the unnoised latent pixels.
|
25 |
+
"""
|
26 |
+
|
27 |
+
sample: torch.FloatTensor
|
28 |
+
ref_feature: torch.FloatTensor
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
32 |
+
"""
|
33 |
+
A 2D Transformer model for image-like data.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
37 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
38 |
+
in_channels (`int`, *optional*):
|
39 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
40 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
41 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
42 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
43 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
44 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
45 |
+
num_vector_embeds (`int`, *optional*):
|
46 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
47 |
+
Includes the class for the masked latent pixel.
|
48 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
49 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
50 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
51 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
52 |
+
added to the hidden states.
|
53 |
+
|
54 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
55 |
+
attention_bias (`bool`, *optional*):
|
56 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_supports_gradient_checkpointing = True
|
60 |
+
|
61 |
+
@register_to_config
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
num_attention_heads: int = 16,
|
65 |
+
attention_head_dim: int = 88,
|
66 |
+
in_channels: Optional[int] = None,
|
67 |
+
out_channels: Optional[int] = None,
|
68 |
+
num_layers: int = 1,
|
69 |
+
dropout: float = 0.0,
|
70 |
+
norm_num_groups: int = 32,
|
71 |
+
cross_attention_dim: Optional[int] = None,
|
72 |
+
attention_bias: bool = False,
|
73 |
+
sample_size: Optional[int] = None,
|
74 |
+
num_vector_embeds: Optional[int] = None,
|
75 |
+
patch_size: Optional[int] = None,
|
76 |
+
activation_fn: str = "geglu",
|
77 |
+
num_embeds_ada_norm: Optional[int] = None,
|
78 |
+
use_linear_projection: bool = False,
|
79 |
+
only_cross_attention: bool = False,
|
80 |
+
double_self_attention: bool = False,
|
81 |
+
upcast_attention: bool = False,
|
82 |
+
norm_type: str = "layer_norm",
|
83 |
+
norm_elementwise_affine: bool = True,
|
84 |
+
norm_eps: float = 1e-5,
|
85 |
+
attention_type: str = "default",
|
86 |
+
caption_channels: int = None,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
self.use_linear_projection = use_linear_projection
|
90 |
+
self.num_attention_heads = num_attention_heads
|
91 |
+
self.attention_head_dim = attention_head_dim
|
92 |
+
inner_dim = num_attention_heads * attention_head_dim
|
93 |
+
|
94 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
95 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
96 |
+
|
97 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
98 |
+
# Define whether input is continuous or discrete depending on configuration
|
99 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
100 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
101 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
102 |
+
|
103 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
104 |
+
deprecation_message = (
|
105 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
106 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
107 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
108 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
109 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
110 |
+
)
|
111 |
+
deprecate(
|
112 |
+
"norm_type!=num_embeds_ada_norm",
|
113 |
+
"1.0.0",
|
114 |
+
deprecation_message,
|
115 |
+
standard_warn=False,
|
116 |
+
)
|
117 |
+
norm_type = "ada_norm"
|
118 |
+
|
119 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
120 |
+
raise ValueError(
|
121 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
122 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
123 |
+
)
|
124 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
125 |
+
raise ValueError(
|
126 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
127 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
128 |
+
)
|
129 |
+
elif (
|
130 |
+
not self.is_input_continuous
|
131 |
+
and not self.is_input_vectorized
|
132 |
+
and not self.is_input_patches
|
133 |
+
):
|
134 |
+
raise ValueError(
|
135 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
136 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
137 |
+
)
|
138 |
+
|
139 |
+
# 2. Define input layers
|
140 |
+
self.in_channels = in_channels
|
141 |
+
|
142 |
+
self.norm = torch.nn.GroupNorm(
|
143 |
+
num_groups=norm_num_groups,
|
144 |
+
num_channels=in_channels,
|
145 |
+
eps=1e-6,
|
146 |
+
affine=True,
|
147 |
+
)
|
148 |
+
if use_linear_projection:
|
149 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
150 |
+
else:
|
151 |
+
self.proj_in = conv_cls(
|
152 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
153 |
+
)
|
154 |
+
|
155 |
+
# 3. Define transformers blocks
|
156 |
+
self.transformer_blocks = nn.ModuleList(
|
157 |
+
[
|
158 |
+
BasicTransformerBlock(
|
159 |
+
inner_dim,
|
160 |
+
num_attention_heads,
|
161 |
+
attention_head_dim,
|
162 |
+
dropout=dropout,
|
163 |
+
cross_attention_dim=cross_attention_dim,
|
164 |
+
activation_fn=activation_fn,
|
165 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
166 |
+
attention_bias=attention_bias,
|
167 |
+
only_cross_attention=only_cross_attention,
|
168 |
+
double_self_attention=double_self_attention,
|
169 |
+
upcast_attention=upcast_attention,
|
170 |
+
norm_type=norm_type,
|
171 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
172 |
+
norm_eps=norm_eps,
|
173 |
+
attention_type=attention_type,
|
174 |
+
)
|
175 |
+
for d in range(num_layers)
|
176 |
+
]
|
177 |
+
)
|
178 |
+
|
179 |
+
# 4. Define output layers
|
180 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
181 |
+
# TODO: should use out_channels for continuous projections
|
182 |
+
if use_linear_projection:
|
183 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
184 |
+
else:
|
185 |
+
self.proj_out = conv_cls(
|
186 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
187 |
+
)
|
188 |
+
|
189 |
+
# 5. PixArt-Alpha blocks.
|
190 |
+
self.adaln_single = None
|
191 |
+
self.use_additional_conditions = False
|
192 |
+
if norm_type == "ada_norm_single":
|
193 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
194 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
195 |
+
# additional conditions until we find better name
|
196 |
+
self.adaln_single = AdaLayerNormSingle(
|
197 |
+
inner_dim, use_additional_conditions=self.use_additional_conditions
|
198 |
+
)
|
199 |
+
|
200 |
+
self.caption_projection = None
|
201 |
+
if caption_channels is not None:
|
202 |
+
self.caption_projection = CaptionProjection(
|
203 |
+
in_features=caption_channels, hidden_size=inner_dim
|
204 |
+
)
|
205 |
+
|
206 |
+
self.gradient_checkpointing = False
|
207 |
+
|
208 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
209 |
+
if hasattr(module, "gradient_checkpointing"):
|
210 |
+
module.gradient_checkpointing = value
|
211 |
+
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
hidden_states: torch.Tensor,
|
215 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
216 |
+
timestep: Optional[torch.LongTensor] = None,
|
217 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
218 |
+
class_labels: Optional[torch.LongTensor] = None,
|
219 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
220 |
+
attention_mask: Optional[torch.Tensor] = None,
|
221 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
222 |
+
return_dict: bool = True,
|
223 |
+
):
|
224 |
+
"""
|
225 |
+
The [`Transformer2DModel`] forward method.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
229 |
+
Input `hidden_states`.
|
230 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
231 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
232 |
+
self-attention.
|
233 |
+
timestep ( `torch.LongTensor`, *optional*):
|
234 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
235 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
236 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
237 |
+
`AdaLayerZeroNorm`.
|
238 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
239 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
240 |
+
`self.processor` in
|
241 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
242 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
243 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
244 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
245 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
246 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
247 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
248 |
+
|
249 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
250 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
251 |
+
|
252 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
253 |
+
above. This bias will be added to the cross-attention scores.
|
254 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
255 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
256 |
+
tuple.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
260 |
+
`tuple` where the first element is the sample tensor.
|
261 |
+
"""
|
262 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
263 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
264 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
265 |
+
# expects mask of shape:
|
266 |
+
# [batch, key_tokens]
|
267 |
+
# adds singleton query_tokens dimension:
|
268 |
+
# [batch, 1, key_tokens]
|
269 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
270 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
271 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
272 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
273 |
+
# assume that mask is expressed as:
|
274 |
+
# (1 = keep, 0 = discard)
|
275 |
+
# convert mask into a bias that can be added to attention scores:
|
276 |
+
# (keep = +0, discard = -10000.0)
|
277 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
278 |
+
attention_mask = attention_mask.unsqueeze(1)
|
279 |
+
|
280 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
281 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
282 |
+
encoder_attention_mask = (
|
283 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
284 |
+
) * -10000.0
|
285 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
286 |
+
|
287 |
+
# Retrieve lora scale.
|
288 |
+
lora_scale = (
|
289 |
+
cross_attention_kwargs.get("scale", 1.0)
|
290 |
+
if cross_attention_kwargs is not None
|
291 |
+
else 1.0
|
292 |
+
)
|
293 |
+
|
294 |
+
# 1. Input
|
295 |
+
batch, _, height, width = hidden_states.shape
|
296 |
+
residual = hidden_states
|
297 |
+
|
298 |
+
hidden_states = self.norm(hidden_states)
|
299 |
+
if not self.use_linear_projection:
|
300 |
+
hidden_states = (
|
301 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
302 |
+
if not USE_PEFT_BACKEND
|
303 |
+
else self.proj_in(hidden_states)
|
304 |
+
)
|
305 |
+
inner_dim = hidden_states.shape[1]
|
306 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
307 |
+
batch, height * width, inner_dim
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
inner_dim = hidden_states.shape[1]
|
311 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
312 |
+
batch, height * width, inner_dim
|
313 |
+
)
|
314 |
+
hidden_states = (
|
315 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
316 |
+
if not USE_PEFT_BACKEND
|
317 |
+
else self.proj_in(hidden_states)
|
318 |
+
)
|
319 |
+
|
320 |
+
# 2. Blocks
|
321 |
+
if self.caption_projection is not None:
|
322 |
+
batch_size = hidden_states.shape[0]
|
323 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
324 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
325 |
+
batch_size, -1, hidden_states.shape[-1]
|
326 |
+
)
|
327 |
+
|
328 |
+
ref_feature = hidden_states.reshape(batch, height, width, inner_dim)
|
329 |
+
for block in self.transformer_blocks:
|
330 |
+
if self.training and self.gradient_checkpointing:
|
331 |
+
|
332 |
+
def create_custom_forward(module, return_dict=None):
|
333 |
+
def custom_forward(*inputs):
|
334 |
+
if return_dict is not None:
|
335 |
+
return module(*inputs, return_dict=return_dict)
|
336 |
+
else:
|
337 |
+
return module(*inputs)
|
338 |
+
|
339 |
+
return custom_forward
|
340 |
+
|
341 |
+
ckpt_kwargs: Dict[str, Any] = (
|
342 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
343 |
+
)
|
344 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
345 |
+
create_custom_forward(block),
|
346 |
+
hidden_states,
|
347 |
+
attention_mask,
|
348 |
+
encoder_hidden_states,
|
349 |
+
encoder_attention_mask,
|
350 |
+
timestep,
|
351 |
+
cross_attention_kwargs,
|
352 |
+
class_labels,
|
353 |
+
**ckpt_kwargs,
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
hidden_states = block(
|
357 |
+
hidden_states,
|
358 |
+
attention_mask=attention_mask,
|
359 |
+
encoder_hidden_states=encoder_hidden_states,
|
360 |
+
encoder_attention_mask=encoder_attention_mask,
|
361 |
+
timestep=timestep,
|
362 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
363 |
+
class_labels=class_labels,
|
364 |
+
)
|
365 |
+
|
366 |
+
# 3. Output
|
367 |
+
if self.is_input_continuous:
|
368 |
+
if not self.use_linear_projection:
|
369 |
+
hidden_states = (
|
370 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
371 |
+
.permute(0, 3, 1, 2)
|
372 |
+
.contiguous()
|
373 |
+
)
|
374 |
+
hidden_states = (
|
375 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
376 |
+
if not USE_PEFT_BACKEND
|
377 |
+
else self.proj_out(hidden_states)
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
hidden_states = (
|
381 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
382 |
+
if not USE_PEFT_BACKEND
|
383 |
+
else self.proj_out(hidden_states)
|
384 |
+
)
|
385 |
+
hidden_states = (
|
386 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
387 |
+
.permute(0, 3, 1, 2)
|
388 |
+
.contiguous()
|
389 |
+
)
|
390 |
+
|
391 |
+
output = hidden_states + residual
|
392 |
+
if not return_dict:
|
393 |
+
return (output, ref_feature)
|
394 |
+
|
395 |
+
return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
|
models/transformer_3d.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
6 |
+
from diffusers.models import ModelMixin
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
from diffusers.utils.import_utils import is_xformers_available
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from .attention import TemporalBasicTransformerBlock
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class Transformer3DModelOutput(BaseOutput):
|
17 |
+
sample: torch.FloatTensor
|
18 |
+
|
19 |
+
|
20 |
+
if is_xformers_available():
|
21 |
+
import xformers
|
22 |
+
import xformers.ops
|
23 |
+
else:
|
24 |
+
xformers = None
|
25 |
+
|
26 |
+
|
27 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
28 |
+
_supports_gradient_checkpointing = True
|
29 |
+
|
30 |
+
@register_to_config
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
num_attention_heads: int = 16,
|
34 |
+
attention_head_dim: int = 88,
|
35 |
+
in_channels: Optional[int] = None,
|
36 |
+
num_layers: int = 1,
|
37 |
+
dropout: float = 0.0,
|
38 |
+
norm_num_groups: int = 32,
|
39 |
+
cross_attention_dim: Optional[int] = None,
|
40 |
+
attention_bias: bool = False,
|
41 |
+
activation_fn: str = "geglu",
|
42 |
+
num_embeds_ada_norm: Optional[int] = None,
|
43 |
+
use_linear_projection: bool = False,
|
44 |
+
only_cross_attention: bool = False,
|
45 |
+
upcast_attention: bool = False,
|
46 |
+
unet_use_cross_frame_attention=None,
|
47 |
+
unet_use_temporal_attention=None,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.use_linear_projection = use_linear_projection
|
51 |
+
self.num_attention_heads = num_attention_heads
|
52 |
+
self.attention_head_dim = attention_head_dim
|
53 |
+
inner_dim = num_attention_heads * attention_head_dim
|
54 |
+
|
55 |
+
# Define input layers
|
56 |
+
self.in_channels = in_channels
|
57 |
+
|
58 |
+
self.norm = torch.nn.GroupNorm(
|
59 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
60 |
+
)
|
61 |
+
if use_linear_projection:
|
62 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
63 |
+
else:
|
64 |
+
self.proj_in = nn.Conv2d(
|
65 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
66 |
+
)
|
67 |
+
|
68 |
+
# Define transformers blocks
|
69 |
+
self.transformer_blocks = nn.ModuleList(
|
70 |
+
[
|
71 |
+
TemporalBasicTransformerBlock(
|
72 |
+
inner_dim,
|
73 |
+
num_attention_heads,
|
74 |
+
attention_head_dim,
|
75 |
+
dropout=dropout,
|
76 |
+
cross_attention_dim=cross_attention_dim,
|
77 |
+
activation_fn=activation_fn,
|
78 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
79 |
+
attention_bias=attention_bias,
|
80 |
+
only_cross_attention=only_cross_attention,
|
81 |
+
upcast_attention=upcast_attention,
|
82 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
83 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
84 |
+
)
|
85 |
+
for d in range(num_layers)
|
86 |
+
]
|
87 |
+
)
|
88 |
+
|
89 |
+
# 4. Define output layers
|
90 |
+
if use_linear_projection:
|
91 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
92 |
+
else:
|
93 |
+
self.proj_out = nn.Conv2d(
|
94 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
95 |
+
)
|
96 |
+
|
97 |
+
self.gradient_checkpointing = False
|
98 |
+
|
99 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
100 |
+
if hasattr(module, "gradient_checkpointing"):
|
101 |
+
module.gradient_checkpointing = value
|
102 |
+
|
103 |
+
def forward(
|
104 |
+
self,
|
105 |
+
hidden_states,
|
106 |
+
encoder_hidden_states=None,
|
107 |
+
timestep=None,
|
108 |
+
return_dict: bool = True,
|
109 |
+
):
|
110 |
+
# Input
|
111 |
+
assert (
|
112 |
+
hidden_states.dim() == 5
|
113 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
114 |
+
video_length = hidden_states.shape[2]
|
115 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
116 |
+
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
|
117 |
+
encoder_hidden_states = repeat(
|
118 |
+
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
|
119 |
+
)
|
120 |
+
|
121 |
+
batch, channel, height, weight = hidden_states.shape
|
122 |
+
residual = hidden_states
|
123 |
+
|
124 |
+
hidden_states = self.norm(hidden_states)
|
125 |
+
if not self.use_linear_projection:
|
126 |
+
hidden_states = self.proj_in(hidden_states)
|
127 |
+
inner_dim = hidden_states.shape[1]
|
128 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
129 |
+
batch, height * weight, inner_dim
|
130 |
+
)
|
131 |
+
else:
|
132 |
+
inner_dim = hidden_states.shape[1]
|
133 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
134 |
+
batch, height * weight, inner_dim
|
135 |
+
)
|
136 |
+
hidden_states = self.proj_in(hidden_states)
|
137 |
+
|
138 |
+
# Blocks
|
139 |
+
for i, block in enumerate(self.transformer_blocks):
|
140 |
+
hidden_states = block(
|
141 |
+
hidden_states,
|
142 |
+
encoder_hidden_states=encoder_hidden_states,
|
143 |
+
timestep=timestep,
|
144 |
+
video_length=video_length,
|
145 |
+
)
|
146 |
+
|
147 |
+
# Output
|
148 |
+
if not self.use_linear_projection:
|
149 |
+
hidden_states = (
|
150 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
151 |
+
.permute(0, 3, 1, 2)
|
152 |
+
.contiguous()
|
153 |
+
)
|
154 |
+
hidden_states = self.proj_out(hidden_states)
|
155 |
+
else:
|
156 |
+
hidden_states = self.proj_out(hidden_states)
|
157 |
+
hidden_states = (
|
158 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
159 |
+
.permute(0, 3, 1, 2)
|
160 |
+
.contiguous()
|
161 |
+
)
|
162 |
+
|
163 |
+
output = hidden_states + residual
|
164 |
+
|
165 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
166 |
+
if not return_dict:
|
167 |
+
return (output,)
|
168 |
+
|
169 |
+
return Transformer3DModelOutput(sample=output)
|
models/unet_2d_blocks.py
ADDED
@@ -0,0 +1,1074 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from diffusers.models.activations import get_activation
|
8 |
+
from diffusers.models.attention_processor import Attention
|
9 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
10 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
11 |
+
from diffusers.utils import is_torch_version, logging
|
12 |
+
from diffusers.utils.torch_utils import apply_freeu
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from .transformer_2d import Transformer2DModel
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
18 |
+
|
19 |
+
|
20 |
+
def get_down_block(
|
21 |
+
down_block_type: str,
|
22 |
+
num_layers: int,
|
23 |
+
in_channels: int,
|
24 |
+
out_channels: int,
|
25 |
+
temb_channels: int,
|
26 |
+
add_downsample: bool,
|
27 |
+
resnet_eps: float,
|
28 |
+
resnet_act_fn: str,
|
29 |
+
transformer_layers_per_block: int = 1,
|
30 |
+
num_attention_heads: Optional[int] = None,
|
31 |
+
resnet_groups: Optional[int] = None,
|
32 |
+
cross_attention_dim: Optional[int] = None,
|
33 |
+
downsample_padding: Optional[int] = None,
|
34 |
+
dual_cross_attention: bool = False,
|
35 |
+
use_linear_projection: bool = False,
|
36 |
+
only_cross_attention: bool = False,
|
37 |
+
upcast_attention: bool = False,
|
38 |
+
resnet_time_scale_shift: str = "default",
|
39 |
+
attention_type: str = "default",
|
40 |
+
resnet_skip_time_act: bool = False,
|
41 |
+
resnet_out_scale_factor: float = 1.0,
|
42 |
+
cross_attention_norm: Optional[str] = None,
|
43 |
+
attention_head_dim: Optional[int] = None,
|
44 |
+
downsample_type: Optional[str] = None,
|
45 |
+
dropout: float = 0.0,
|
46 |
+
):
|
47 |
+
# If attn head dim is not defined, we default it to the number of heads
|
48 |
+
if attention_head_dim is None:
|
49 |
+
logger.warn(
|
50 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
51 |
+
)
|
52 |
+
attention_head_dim = num_attention_heads
|
53 |
+
|
54 |
+
down_block_type = (
|
55 |
+
down_block_type[7:]
|
56 |
+
if down_block_type.startswith("UNetRes")
|
57 |
+
else down_block_type
|
58 |
+
)
|
59 |
+
if down_block_type == "DownBlock2D":
|
60 |
+
return DownBlock2D(
|
61 |
+
num_layers=num_layers,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=out_channels,
|
64 |
+
temb_channels=temb_channels,
|
65 |
+
dropout=dropout,
|
66 |
+
add_downsample=add_downsample,
|
67 |
+
resnet_eps=resnet_eps,
|
68 |
+
resnet_act_fn=resnet_act_fn,
|
69 |
+
resnet_groups=resnet_groups,
|
70 |
+
downsample_padding=downsample_padding,
|
71 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
72 |
+
)
|
73 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
74 |
+
if cross_attention_dim is None:
|
75 |
+
raise ValueError(
|
76 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
|
77 |
+
)
|
78 |
+
return CrossAttnDownBlock2D(
|
79 |
+
num_layers=num_layers,
|
80 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
81 |
+
in_channels=in_channels,
|
82 |
+
out_channels=out_channels,
|
83 |
+
temb_channels=temb_channels,
|
84 |
+
dropout=dropout,
|
85 |
+
add_downsample=add_downsample,
|
86 |
+
resnet_eps=resnet_eps,
|
87 |
+
resnet_act_fn=resnet_act_fn,
|
88 |
+
resnet_groups=resnet_groups,
|
89 |
+
downsample_padding=downsample_padding,
|
90 |
+
cross_attention_dim=cross_attention_dim,
|
91 |
+
num_attention_heads=num_attention_heads,
|
92 |
+
dual_cross_attention=dual_cross_attention,
|
93 |
+
use_linear_projection=use_linear_projection,
|
94 |
+
only_cross_attention=only_cross_attention,
|
95 |
+
upcast_attention=upcast_attention,
|
96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
97 |
+
attention_type=attention_type,
|
98 |
+
)
|
99 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
100 |
+
|
101 |
+
|
102 |
+
def get_up_block(
|
103 |
+
up_block_type: str,
|
104 |
+
num_layers: int,
|
105 |
+
in_channels: int,
|
106 |
+
out_channels: int,
|
107 |
+
prev_output_channel: int,
|
108 |
+
temb_channels: int,
|
109 |
+
add_upsample: bool,
|
110 |
+
resnet_eps: float,
|
111 |
+
resnet_act_fn: str,
|
112 |
+
resolution_idx: Optional[int] = None,
|
113 |
+
transformer_layers_per_block: int = 1,
|
114 |
+
num_attention_heads: Optional[int] = None,
|
115 |
+
resnet_groups: Optional[int] = None,
|
116 |
+
cross_attention_dim: Optional[int] = None,
|
117 |
+
dual_cross_attention: bool = False,
|
118 |
+
use_linear_projection: bool = False,
|
119 |
+
only_cross_attention: bool = False,
|
120 |
+
upcast_attention: bool = False,
|
121 |
+
resnet_time_scale_shift: str = "default",
|
122 |
+
attention_type: str = "default",
|
123 |
+
resnet_skip_time_act: bool = False,
|
124 |
+
resnet_out_scale_factor: float = 1.0,
|
125 |
+
cross_attention_norm: Optional[str] = None,
|
126 |
+
attention_head_dim: Optional[int] = None,
|
127 |
+
upsample_type: Optional[str] = None,
|
128 |
+
dropout: float = 0.0,
|
129 |
+
) -> nn.Module:
|
130 |
+
# If attn head dim is not defined, we default it to the number of heads
|
131 |
+
if attention_head_dim is None:
|
132 |
+
logger.warn(
|
133 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
134 |
+
)
|
135 |
+
attention_head_dim = num_attention_heads
|
136 |
+
|
137 |
+
up_block_type = (
|
138 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
139 |
+
)
|
140 |
+
if up_block_type == "UpBlock2D":
|
141 |
+
return UpBlock2D(
|
142 |
+
num_layers=num_layers,
|
143 |
+
in_channels=in_channels,
|
144 |
+
out_channels=out_channels,
|
145 |
+
prev_output_channel=prev_output_channel,
|
146 |
+
temb_channels=temb_channels,
|
147 |
+
resolution_idx=resolution_idx,
|
148 |
+
dropout=dropout,
|
149 |
+
add_upsample=add_upsample,
|
150 |
+
resnet_eps=resnet_eps,
|
151 |
+
resnet_act_fn=resnet_act_fn,
|
152 |
+
resnet_groups=resnet_groups,
|
153 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
154 |
+
)
|
155 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
156 |
+
if cross_attention_dim is None:
|
157 |
+
raise ValueError(
|
158 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
|
159 |
+
)
|
160 |
+
return CrossAttnUpBlock2D(
|
161 |
+
num_layers=num_layers,
|
162 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
163 |
+
in_channels=in_channels,
|
164 |
+
out_channels=out_channels,
|
165 |
+
prev_output_channel=prev_output_channel,
|
166 |
+
temb_channels=temb_channels,
|
167 |
+
resolution_idx=resolution_idx,
|
168 |
+
dropout=dropout,
|
169 |
+
add_upsample=add_upsample,
|
170 |
+
resnet_eps=resnet_eps,
|
171 |
+
resnet_act_fn=resnet_act_fn,
|
172 |
+
resnet_groups=resnet_groups,
|
173 |
+
cross_attention_dim=cross_attention_dim,
|
174 |
+
num_attention_heads=num_attention_heads,
|
175 |
+
dual_cross_attention=dual_cross_attention,
|
176 |
+
use_linear_projection=use_linear_projection,
|
177 |
+
only_cross_attention=only_cross_attention,
|
178 |
+
upcast_attention=upcast_attention,
|
179 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
180 |
+
attention_type=attention_type,
|
181 |
+
)
|
182 |
+
|
183 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
184 |
+
|
185 |
+
|
186 |
+
class AutoencoderTinyBlock(nn.Module):
|
187 |
+
"""
|
188 |
+
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
189 |
+
blocks.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
in_channels (`int`): The number of input channels.
|
193 |
+
out_channels (`int`): The number of output channels.
|
194 |
+
act_fn (`str`):
|
195 |
+
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
199 |
+
`out_channels`.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
203 |
+
super().__init__()
|
204 |
+
act_fn = get_activation(act_fn)
|
205 |
+
self.conv = nn.Sequential(
|
206 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
207 |
+
act_fn,
|
208 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
209 |
+
act_fn,
|
210 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
211 |
+
)
|
212 |
+
self.skip = (
|
213 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
214 |
+
if in_channels != out_channels
|
215 |
+
else nn.Identity()
|
216 |
+
)
|
217 |
+
self.fuse = nn.ReLU()
|
218 |
+
|
219 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
220 |
+
return self.fuse(self.conv(x) + self.skip(x))
|
221 |
+
|
222 |
+
|
223 |
+
class UNetMidBlock2D(nn.Module):
|
224 |
+
"""
|
225 |
+
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
in_channels (`int`): The number of input channels.
|
229 |
+
temb_channels (`int`): The number of temporal embedding channels.
|
230 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
231 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
232 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
233 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
234 |
+
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
235 |
+
model on tasks with long-range temporal dependencies.
|
236 |
+
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
237 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
238 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
239 |
+
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
240 |
+
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
241 |
+
Whether to use pre-normalization for the resnet blocks.
|
242 |
+
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
243 |
+
attention_head_dim (`int`, *optional*, defaults to 1):
|
244 |
+
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
245 |
+
the number of input channels.
|
246 |
+
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
250 |
+
in_channels, height, width)`.
|
251 |
+
|
252 |
+
"""
|
253 |
+
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
in_channels: int,
|
257 |
+
temb_channels: int,
|
258 |
+
dropout: float = 0.0,
|
259 |
+
num_layers: int = 1,
|
260 |
+
resnet_eps: float = 1e-6,
|
261 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
262 |
+
resnet_act_fn: str = "swish",
|
263 |
+
resnet_groups: int = 32,
|
264 |
+
attn_groups: Optional[int] = None,
|
265 |
+
resnet_pre_norm: bool = True,
|
266 |
+
add_attention: bool = True,
|
267 |
+
attention_head_dim: int = 1,
|
268 |
+
output_scale_factor: float = 1.0,
|
269 |
+
):
|
270 |
+
super().__init__()
|
271 |
+
resnet_groups = (
|
272 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
273 |
+
)
|
274 |
+
self.add_attention = add_attention
|
275 |
+
|
276 |
+
if attn_groups is None:
|
277 |
+
attn_groups = (
|
278 |
+
resnet_groups if resnet_time_scale_shift == "default" else None
|
279 |
+
)
|
280 |
+
|
281 |
+
# there is always at least one resnet
|
282 |
+
resnets = [
|
283 |
+
ResnetBlock2D(
|
284 |
+
in_channels=in_channels,
|
285 |
+
out_channels=in_channels,
|
286 |
+
temb_channels=temb_channels,
|
287 |
+
eps=resnet_eps,
|
288 |
+
groups=resnet_groups,
|
289 |
+
dropout=dropout,
|
290 |
+
time_embedding_norm=resnet_time_scale_shift,
|
291 |
+
non_linearity=resnet_act_fn,
|
292 |
+
output_scale_factor=output_scale_factor,
|
293 |
+
pre_norm=resnet_pre_norm,
|
294 |
+
)
|
295 |
+
]
|
296 |
+
attentions = []
|
297 |
+
|
298 |
+
if attention_head_dim is None:
|
299 |
+
logger.warn(
|
300 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
301 |
+
)
|
302 |
+
attention_head_dim = in_channels
|
303 |
+
|
304 |
+
for _ in range(num_layers):
|
305 |
+
if self.add_attention:
|
306 |
+
attentions.append(
|
307 |
+
Attention(
|
308 |
+
in_channels,
|
309 |
+
heads=in_channels // attention_head_dim,
|
310 |
+
dim_head=attention_head_dim,
|
311 |
+
rescale_output_factor=output_scale_factor,
|
312 |
+
eps=resnet_eps,
|
313 |
+
norm_num_groups=attn_groups,
|
314 |
+
spatial_norm_dim=temb_channels
|
315 |
+
if resnet_time_scale_shift == "spatial"
|
316 |
+
else None,
|
317 |
+
residual_connection=True,
|
318 |
+
bias=True,
|
319 |
+
upcast_softmax=True,
|
320 |
+
_from_deprecated_attn_block=True,
|
321 |
+
)
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
attentions.append(None)
|
325 |
+
|
326 |
+
resnets.append(
|
327 |
+
ResnetBlock2D(
|
328 |
+
in_channels=in_channels,
|
329 |
+
out_channels=in_channels,
|
330 |
+
temb_channels=temb_channels,
|
331 |
+
eps=resnet_eps,
|
332 |
+
groups=resnet_groups,
|
333 |
+
dropout=dropout,
|
334 |
+
time_embedding_norm=resnet_time_scale_shift,
|
335 |
+
non_linearity=resnet_act_fn,
|
336 |
+
output_scale_factor=output_scale_factor,
|
337 |
+
pre_norm=resnet_pre_norm,
|
338 |
+
)
|
339 |
+
)
|
340 |
+
|
341 |
+
self.attentions = nn.ModuleList(attentions)
|
342 |
+
self.resnets = nn.ModuleList(resnets)
|
343 |
+
|
344 |
+
def forward(
|
345 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
|
346 |
+
) -> torch.FloatTensor:
|
347 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
348 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
349 |
+
if attn is not None:
|
350 |
+
hidden_states = attn(hidden_states, temb=temb)
|
351 |
+
hidden_states = resnet(hidden_states, temb)
|
352 |
+
|
353 |
+
return hidden_states
|
354 |
+
|
355 |
+
|
356 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
357 |
+
def __init__(
|
358 |
+
self,
|
359 |
+
in_channels: int,
|
360 |
+
temb_channels: int,
|
361 |
+
dropout: float = 0.0,
|
362 |
+
num_layers: int = 1,
|
363 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
364 |
+
resnet_eps: float = 1e-6,
|
365 |
+
resnet_time_scale_shift: str = "default",
|
366 |
+
resnet_act_fn: str = "swish",
|
367 |
+
resnet_groups: int = 32,
|
368 |
+
resnet_pre_norm: bool = True,
|
369 |
+
num_attention_heads: int = 1,
|
370 |
+
output_scale_factor: float = 1.0,
|
371 |
+
cross_attention_dim: int = 1280,
|
372 |
+
dual_cross_attention: bool = False,
|
373 |
+
use_linear_projection: bool = False,
|
374 |
+
upcast_attention: bool = False,
|
375 |
+
attention_type: str = "default",
|
376 |
+
):
|
377 |
+
super().__init__()
|
378 |
+
|
379 |
+
self.has_cross_attention = True
|
380 |
+
self.num_attention_heads = num_attention_heads
|
381 |
+
resnet_groups = (
|
382 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
383 |
+
)
|
384 |
+
|
385 |
+
# support for variable transformer layers per block
|
386 |
+
if isinstance(transformer_layers_per_block, int):
|
387 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
388 |
+
|
389 |
+
# there is always at least one resnet
|
390 |
+
resnets = [
|
391 |
+
ResnetBlock2D(
|
392 |
+
in_channels=in_channels,
|
393 |
+
out_channels=in_channels,
|
394 |
+
temb_channels=temb_channels,
|
395 |
+
eps=resnet_eps,
|
396 |
+
groups=resnet_groups,
|
397 |
+
dropout=dropout,
|
398 |
+
time_embedding_norm=resnet_time_scale_shift,
|
399 |
+
non_linearity=resnet_act_fn,
|
400 |
+
output_scale_factor=output_scale_factor,
|
401 |
+
pre_norm=resnet_pre_norm,
|
402 |
+
)
|
403 |
+
]
|
404 |
+
attentions = []
|
405 |
+
|
406 |
+
for i in range(num_layers):
|
407 |
+
if not dual_cross_attention:
|
408 |
+
attentions.append(
|
409 |
+
Transformer2DModel(
|
410 |
+
num_attention_heads,
|
411 |
+
in_channels // num_attention_heads,
|
412 |
+
in_channels=in_channels,
|
413 |
+
num_layers=transformer_layers_per_block[i],
|
414 |
+
cross_attention_dim=cross_attention_dim,
|
415 |
+
norm_num_groups=resnet_groups,
|
416 |
+
use_linear_projection=use_linear_projection,
|
417 |
+
upcast_attention=upcast_attention,
|
418 |
+
attention_type=attention_type,
|
419 |
+
)
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
attentions.append(
|
423 |
+
DualTransformer2DModel(
|
424 |
+
num_attention_heads,
|
425 |
+
in_channels // num_attention_heads,
|
426 |
+
in_channels=in_channels,
|
427 |
+
num_layers=1,
|
428 |
+
cross_attention_dim=cross_attention_dim,
|
429 |
+
norm_num_groups=resnet_groups,
|
430 |
+
)
|
431 |
+
)
|
432 |
+
resnets.append(
|
433 |
+
ResnetBlock2D(
|
434 |
+
in_channels=in_channels,
|
435 |
+
out_channels=in_channels,
|
436 |
+
temb_channels=temb_channels,
|
437 |
+
eps=resnet_eps,
|
438 |
+
groups=resnet_groups,
|
439 |
+
dropout=dropout,
|
440 |
+
time_embedding_norm=resnet_time_scale_shift,
|
441 |
+
non_linearity=resnet_act_fn,
|
442 |
+
output_scale_factor=output_scale_factor,
|
443 |
+
pre_norm=resnet_pre_norm,
|
444 |
+
)
|
445 |
+
)
|
446 |
+
|
447 |
+
self.attentions = nn.ModuleList(attentions)
|
448 |
+
self.resnets = nn.ModuleList(resnets)
|
449 |
+
|
450 |
+
self.gradient_checkpointing = False
|
451 |
+
|
452 |
+
def forward(
|
453 |
+
self,
|
454 |
+
hidden_states: torch.FloatTensor,
|
455 |
+
temb: Optional[torch.FloatTensor] = None,
|
456 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
457 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
458 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
459 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
460 |
+
) -> torch.FloatTensor:
|
461 |
+
lora_scale = (
|
462 |
+
cross_attention_kwargs.get("scale", 1.0)
|
463 |
+
if cross_attention_kwargs is not None
|
464 |
+
else 1.0
|
465 |
+
)
|
466 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
467 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
468 |
+
if self.training and self.gradient_checkpointing:
|
469 |
+
|
470 |
+
def create_custom_forward(module, return_dict=None):
|
471 |
+
def custom_forward(*inputs):
|
472 |
+
if return_dict is not None:
|
473 |
+
return module(*inputs, return_dict=return_dict)
|
474 |
+
else:
|
475 |
+
return module(*inputs)
|
476 |
+
|
477 |
+
return custom_forward
|
478 |
+
|
479 |
+
ckpt_kwargs: Dict[str, Any] = (
|
480 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
481 |
+
)
|
482 |
+
hidden_states, ref_feature = attn(
|
483 |
+
hidden_states,
|
484 |
+
encoder_hidden_states=encoder_hidden_states,
|
485 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
486 |
+
attention_mask=attention_mask,
|
487 |
+
encoder_attention_mask=encoder_attention_mask,
|
488 |
+
return_dict=False,
|
489 |
+
)
|
490 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
491 |
+
create_custom_forward(resnet),
|
492 |
+
hidden_states,
|
493 |
+
temb,
|
494 |
+
**ckpt_kwargs,
|
495 |
+
)
|
496 |
+
else:
|
497 |
+
hidden_states, ref_feature = attn(
|
498 |
+
hidden_states,
|
499 |
+
encoder_hidden_states=encoder_hidden_states,
|
500 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
501 |
+
attention_mask=attention_mask,
|
502 |
+
encoder_attention_mask=encoder_attention_mask,
|
503 |
+
return_dict=False,
|
504 |
+
)
|
505 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
506 |
+
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class CrossAttnDownBlock2D(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self,
|
513 |
+
in_channels: int,
|
514 |
+
out_channels: int,
|
515 |
+
temb_channels: int,
|
516 |
+
dropout: float = 0.0,
|
517 |
+
num_layers: int = 1,
|
518 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
519 |
+
resnet_eps: float = 1e-6,
|
520 |
+
resnet_time_scale_shift: str = "default",
|
521 |
+
resnet_act_fn: str = "swish",
|
522 |
+
resnet_groups: int = 32,
|
523 |
+
resnet_pre_norm: bool = True,
|
524 |
+
num_attention_heads: int = 1,
|
525 |
+
cross_attention_dim: int = 1280,
|
526 |
+
output_scale_factor: float = 1.0,
|
527 |
+
downsample_padding: int = 1,
|
528 |
+
add_downsample: bool = True,
|
529 |
+
dual_cross_attention: bool = False,
|
530 |
+
use_linear_projection: bool = False,
|
531 |
+
only_cross_attention: bool = False,
|
532 |
+
upcast_attention: bool = False,
|
533 |
+
attention_type: str = "default",
|
534 |
+
):
|
535 |
+
super().__init__()
|
536 |
+
resnets = []
|
537 |
+
attentions = []
|
538 |
+
|
539 |
+
self.has_cross_attention = True
|
540 |
+
self.num_attention_heads = num_attention_heads
|
541 |
+
if isinstance(transformer_layers_per_block, int):
|
542 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
543 |
+
|
544 |
+
for i in range(num_layers):
|
545 |
+
in_channels = in_channels if i == 0 else out_channels
|
546 |
+
resnets.append(
|
547 |
+
ResnetBlock2D(
|
548 |
+
in_channels=in_channels,
|
549 |
+
out_channels=out_channels,
|
550 |
+
temb_channels=temb_channels,
|
551 |
+
eps=resnet_eps,
|
552 |
+
groups=resnet_groups,
|
553 |
+
dropout=dropout,
|
554 |
+
time_embedding_norm=resnet_time_scale_shift,
|
555 |
+
non_linearity=resnet_act_fn,
|
556 |
+
output_scale_factor=output_scale_factor,
|
557 |
+
pre_norm=resnet_pre_norm,
|
558 |
+
)
|
559 |
+
)
|
560 |
+
if not dual_cross_attention:
|
561 |
+
attentions.append(
|
562 |
+
Transformer2DModel(
|
563 |
+
num_attention_heads,
|
564 |
+
out_channels // num_attention_heads,
|
565 |
+
in_channels=out_channels,
|
566 |
+
num_layers=transformer_layers_per_block[i],
|
567 |
+
cross_attention_dim=cross_attention_dim,
|
568 |
+
norm_num_groups=resnet_groups,
|
569 |
+
use_linear_projection=use_linear_projection,
|
570 |
+
only_cross_attention=only_cross_attention,
|
571 |
+
upcast_attention=upcast_attention,
|
572 |
+
attention_type=attention_type,
|
573 |
+
)
|
574 |
+
)
|
575 |
+
else:
|
576 |
+
attentions.append(
|
577 |
+
DualTransformer2DModel(
|
578 |
+
num_attention_heads,
|
579 |
+
out_channels // num_attention_heads,
|
580 |
+
in_channels=out_channels,
|
581 |
+
num_layers=1,
|
582 |
+
cross_attention_dim=cross_attention_dim,
|
583 |
+
norm_num_groups=resnet_groups,
|
584 |
+
)
|
585 |
+
)
|
586 |
+
self.attentions = nn.ModuleList(attentions)
|
587 |
+
self.resnets = nn.ModuleList(resnets)
|
588 |
+
|
589 |
+
if add_downsample:
|
590 |
+
self.downsamplers = nn.ModuleList(
|
591 |
+
[
|
592 |
+
Downsample2D(
|
593 |
+
out_channels,
|
594 |
+
use_conv=True,
|
595 |
+
out_channels=out_channels,
|
596 |
+
padding=downsample_padding,
|
597 |
+
name="op",
|
598 |
+
)
|
599 |
+
]
|
600 |
+
)
|
601 |
+
else:
|
602 |
+
self.downsamplers = None
|
603 |
+
|
604 |
+
self.gradient_checkpointing = False
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self,
|
608 |
+
hidden_states: torch.FloatTensor,
|
609 |
+
temb: Optional[torch.FloatTensor] = None,
|
610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
613 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
614 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
615 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
616 |
+
output_states = ()
|
617 |
+
|
618 |
+
lora_scale = (
|
619 |
+
cross_attention_kwargs.get("scale", 1.0)
|
620 |
+
if cross_attention_kwargs is not None
|
621 |
+
else 1.0
|
622 |
+
)
|
623 |
+
|
624 |
+
blocks = list(zip(self.resnets, self.attentions))
|
625 |
+
|
626 |
+
for i, (resnet, attn) in enumerate(blocks):
|
627 |
+
if self.training and self.gradient_checkpointing:
|
628 |
+
|
629 |
+
def create_custom_forward(module, return_dict=None):
|
630 |
+
def custom_forward(*inputs):
|
631 |
+
if return_dict is not None:
|
632 |
+
return module(*inputs, return_dict=return_dict)
|
633 |
+
else:
|
634 |
+
return module(*inputs)
|
635 |
+
|
636 |
+
return custom_forward
|
637 |
+
|
638 |
+
ckpt_kwargs: Dict[str, Any] = (
|
639 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
640 |
+
)
|
641 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
642 |
+
create_custom_forward(resnet),
|
643 |
+
hidden_states,
|
644 |
+
temb,
|
645 |
+
**ckpt_kwargs,
|
646 |
+
)
|
647 |
+
hidden_states, ref_feature = attn(
|
648 |
+
hidden_states,
|
649 |
+
encoder_hidden_states=encoder_hidden_states,
|
650 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
651 |
+
attention_mask=attention_mask,
|
652 |
+
encoder_attention_mask=encoder_attention_mask,
|
653 |
+
return_dict=False,
|
654 |
+
)
|
655 |
+
else:
|
656 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
657 |
+
hidden_states, ref_feature = attn(
|
658 |
+
hidden_states,
|
659 |
+
encoder_hidden_states=encoder_hidden_states,
|
660 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
661 |
+
attention_mask=attention_mask,
|
662 |
+
encoder_attention_mask=encoder_attention_mask,
|
663 |
+
return_dict=False,
|
664 |
+
)
|
665 |
+
|
666 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
667 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
668 |
+
hidden_states = hidden_states + additional_residuals
|
669 |
+
|
670 |
+
output_states = output_states + (hidden_states,)
|
671 |
+
|
672 |
+
if self.downsamplers is not None:
|
673 |
+
for downsampler in self.downsamplers:
|
674 |
+
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
675 |
+
|
676 |
+
output_states = output_states + (hidden_states,)
|
677 |
+
|
678 |
+
return hidden_states, output_states
|
679 |
+
|
680 |
+
|
681 |
+
class DownBlock2D(nn.Module):
|
682 |
+
def __init__(
|
683 |
+
self,
|
684 |
+
in_channels: int,
|
685 |
+
out_channels: int,
|
686 |
+
temb_channels: int,
|
687 |
+
dropout: float = 0.0,
|
688 |
+
num_layers: int = 1,
|
689 |
+
resnet_eps: float = 1e-6,
|
690 |
+
resnet_time_scale_shift: str = "default",
|
691 |
+
resnet_act_fn: str = "swish",
|
692 |
+
resnet_groups: int = 32,
|
693 |
+
resnet_pre_norm: bool = True,
|
694 |
+
output_scale_factor: float = 1.0,
|
695 |
+
add_downsample: bool = True,
|
696 |
+
downsample_padding: int = 1,
|
697 |
+
):
|
698 |
+
super().__init__()
|
699 |
+
resnets = []
|
700 |
+
|
701 |
+
for i in range(num_layers):
|
702 |
+
in_channels = in_channels if i == 0 else out_channels
|
703 |
+
resnets.append(
|
704 |
+
ResnetBlock2D(
|
705 |
+
in_channels=in_channels,
|
706 |
+
out_channels=out_channels,
|
707 |
+
temb_channels=temb_channels,
|
708 |
+
eps=resnet_eps,
|
709 |
+
groups=resnet_groups,
|
710 |
+
dropout=dropout,
|
711 |
+
time_embedding_norm=resnet_time_scale_shift,
|
712 |
+
non_linearity=resnet_act_fn,
|
713 |
+
output_scale_factor=output_scale_factor,
|
714 |
+
pre_norm=resnet_pre_norm,
|
715 |
+
)
|
716 |
+
)
|
717 |
+
|
718 |
+
self.resnets = nn.ModuleList(resnets)
|
719 |
+
|
720 |
+
if add_downsample:
|
721 |
+
self.downsamplers = nn.ModuleList(
|
722 |
+
[
|
723 |
+
Downsample2D(
|
724 |
+
out_channels,
|
725 |
+
use_conv=True,
|
726 |
+
out_channels=out_channels,
|
727 |
+
padding=downsample_padding,
|
728 |
+
name="op",
|
729 |
+
)
|
730 |
+
]
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
self.downsamplers = None
|
734 |
+
|
735 |
+
self.gradient_checkpointing = False
|
736 |
+
|
737 |
+
def forward(
|
738 |
+
self,
|
739 |
+
hidden_states: torch.FloatTensor,
|
740 |
+
temb: Optional[torch.FloatTensor] = None,
|
741 |
+
scale: float = 1.0,
|
742 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
743 |
+
output_states = ()
|
744 |
+
|
745 |
+
for resnet in self.resnets:
|
746 |
+
if self.training and self.gradient_checkpointing:
|
747 |
+
|
748 |
+
def create_custom_forward(module):
|
749 |
+
def custom_forward(*inputs):
|
750 |
+
return module(*inputs)
|
751 |
+
|
752 |
+
return custom_forward
|
753 |
+
|
754 |
+
if is_torch_version(">=", "1.11.0"):
|
755 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
756 |
+
create_custom_forward(resnet),
|
757 |
+
hidden_states,
|
758 |
+
temb,
|
759 |
+
use_reentrant=False,
|
760 |
+
)
|
761 |
+
else:
|
762 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
763 |
+
create_custom_forward(resnet), hidden_states, temb
|
764 |
+
)
|
765 |
+
else:
|
766 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
767 |
+
|
768 |
+
output_states = output_states + (hidden_states,)
|
769 |
+
|
770 |
+
if self.downsamplers is not None:
|
771 |
+
for downsampler in self.downsamplers:
|
772 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
773 |
+
|
774 |
+
output_states = output_states + (hidden_states,)
|
775 |
+
|
776 |
+
return hidden_states, output_states
|
777 |
+
|
778 |
+
|
779 |
+
class CrossAttnUpBlock2D(nn.Module):
|
780 |
+
def __init__(
|
781 |
+
self,
|
782 |
+
in_channels: int,
|
783 |
+
out_channels: int,
|
784 |
+
prev_output_channel: int,
|
785 |
+
temb_channels: int,
|
786 |
+
resolution_idx: Optional[int] = None,
|
787 |
+
dropout: float = 0.0,
|
788 |
+
num_layers: int = 1,
|
789 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
790 |
+
resnet_eps: float = 1e-6,
|
791 |
+
resnet_time_scale_shift: str = "default",
|
792 |
+
resnet_act_fn: str = "swish",
|
793 |
+
resnet_groups: int = 32,
|
794 |
+
resnet_pre_norm: bool = True,
|
795 |
+
num_attention_heads: int = 1,
|
796 |
+
cross_attention_dim: int = 1280,
|
797 |
+
output_scale_factor: float = 1.0,
|
798 |
+
add_upsample: bool = True,
|
799 |
+
dual_cross_attention: bool = False,
|
800 |
+
use_linear_projection: bool = False,
|
801 |
+
only_cross_attention: bool = False,
|
802 |
+
upcast_attention: bool = False,
|
803 |
+
attention_type: str = "default",
|
804 |
+
):
|
805 |
+
super().__init__()
|
806 |
+
resnets = []
|
807 |
+
attentions = []
|
808 |
+
|
809 |
+
self.has_cross_attention = True
|
810 |
+
self.num_attention_heads = num_attention_heads
|
811 |
+
|
812 |
+
if isinstance(transformer_layers_per_block, int):
|
813 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
814 |
+
|
815 |
+
for i in range(num_layers):
|
816 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
817 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
818 |
+
|
819 |
+
resnets.append(
|
820 |
+
ResnetBlock2D(
|
821 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
822 |
+
out_channels=out_channels,
|
823 |
+
temb_channels=temb_channels,
|
824 |
+
eps=resnet_eps,
|
825 |
+
groups=resnet_groups,
|
826 |
+
dropout=dropout,
|
827 |
+
time_embedding_norm=resnet_time_scale_shift,
|
828 |
+
non_linearity=resnet_act_fn,
|
829 |
+
output_scale_factor=output_scale_factor,
|
830 |
+
pre_norm=resnet_pre_norm,
|
831 |
+
)
|
832 |
+
)
|
833 |
+
if not dual_cross_attention:
|
834 |
+
attentions.append(
|
835 |
+
Transformer2DModel(
|
836 |
+
num_attention_heads,
|
837 |
+
out_channels // num_attention_heads,
|
838 |
+
in_channels=out_channels,
|
839 |
+
num_layers=transformer_layers_per_block[i],
|
840 |
+
cross_attention_dim=cross_attention_dim,
|
841 |
+
norm_num_groups=resnet_groups,
|
842 |
+
use_linear_projection=use_linear_projection,
|
843 |
+
only_cross_attention=only_cross_attention,
|
844 |
+
upcast_attention=upcast_attention,
|
845 |
+
attention_type=attention_type,
|
846 |
+
)
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
attentions.append(
|
850 |
+
DualTransformer2DModel(
|
851 |
+
num_attention_heads,
|
852 |
+
out_channels // num_attention_heads,
|
853 |
+
in_channels=out_channels,
|
854 |
+
num_layers=1,
|
855 |
+
cross_attention_dim=cross_attention_dim,
|
856 |
+
norm_num_groups=resnet_groups,
|
857 |
+
)
|
858 |
+
)
|
859 |
+
self.attentions = nn.ModuleList(attentions)
|
860 |
+
self.resnets = nn.ModuleList(resnets)
|
861 |
+
|
862 |
+
if add_upsample:
|
863 |
+
self.upsamplers = nn.ModuleList(
|
864 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
self.upsamplers = None
|
868 |
+
|
869 |
+
self.gradient_checkpointing = False
|
870 |
+
self.resolution_idx = resolution_idx
|
871 |
+
|
872 |
+
def forward(
|
873 |
+
self,
|
874 |
+
hidden_states: torch.FloatTensor,
|
875 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
876 |
+
temb: Optional[torch.FloatTensor] = None,
|
877 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
878 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
879 |
+
upsample_size: Optional[int] = None,
|
880 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
881 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
882 |
+
) -> torch.FloatTensor:
|
883 |
+
lora_scale = (
|
884 |
+
cross_attention_kwargs.get("scale", 1.0)
|
885 |
+
if cross_attention_kwargs is not None
|
886 |
+
else 1.0
|
887 |
+
)
|
888 |
+
is_freeu_enabled = (
|
889 |
+
getattr(self, "s1", None)
|
890 |
+
and getattr(self, "s2", None)
|
891 |
+
and getattr(self, "b1", None)
|
892 |
+
and getattr(self, "b2", None)
|
893 |
+
)
|
894 |
+
|
895 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
896 |
+
# pop res hidden states
|
897 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
898 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
899 |
+
|
900 |
+
# FreeU: Only operate on the first two stages
|
901 |
+
if is_freeu_enabled:
|
902 |
+
hidden_states, res_hidden_states = apply_freeu(
|
903 |
+
self.resolution_idx,
|
904 |
+
hidden_states,
|
905 |
+
res_hidden_states,
|
906 |
+
s1=self.s1,
|
907 |
+
s2=self.s2,
|
908 |
+
b1=self.b1,
|
909 |
+
b2=self.b2,
|
910 |
+
)
|
911 |
+
|
912 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
913 |
+
|
914 |
+
if self.training and self.gradient_checkpointing:
|
915 |
+
|
916 |
+
def create_custom_forward(module, return_dict=None):
|
917 |
+
def custom_forward(*inputs):
|
918 |
+
if return_dict is not None:
|
919 |
+
return module(*inputs, return_dict=return_dict)
|
920 |
+
else:
|
921 |
+
return module(*inputs)
|
922 |
+
|
923 |
+
return custom_forward
|
924 |
+
|
925 |
+
ckpt_kwargs: Dict[str, Any] = (
|
926 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
927 |
+
)
|
928 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
929 |
+
create_custom_forward(resnet),
|
930 |
+
hidden_states,
|
931 |
+
temb,
|
932 |
+
**ckpt_kwargs,
|
933 |
+
)
|
934 |
+
hidden_states, ref_feature = attn(
|
935 |
+
hidden_states,
|
936 |
+
encoder_hidden_states=encoder_hidden_states,
|
937 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
938 |
+
attention_mask=attention_mask,
|
939 |
+
encoder_attention_mask=encoder_attention_mask,
|
940 |
+
return_dict=False,
|
941 |
+
)
|
942 |
+
else:
|
943 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
944 |
+
hidden_states, ref_feature = attn(
|
945 |
+
hidden_states,
|
946 |
+
encoder_hidden_states=encoder_hidden_states,
|
947 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
948 |
+
attention_mask=attention_mask,
|
949 |
+
encoder_attention_mask=encoder_attention_mask,
|
950 |
+
return_dict=False,
|
951 |
+
)
|
952 |
+
|
953 |
+
if self.upsamplers is not None:
|
954 |
+
for upsampler in self.upsamplers:
|
955 |
+
hidden_states = upsampler(
|
956 |
+
hidden_states, upsample_size, scale=lora_scale
|
957 |
+
)
|
958 |
+
|
959 |
+
return hidden_states
|
960 |
+
|
961 |
+
|
962 |
+
class UpBlock2D(nn.Module):
|
963 |
+
def __init__(
|
964 |
+
self,
|
965 |
+
in_channels: int,
|
966 |
+
prev_output_channel: int,
|
967 |
+
out_channels: int,
|
968 |
+
temb_channels: int,
|
969 |
+
resolution_idx: Optional[int] = None,
|
970 |
+
dropout: float = 0.0,
|
971 |
+
num_layers: int = 1,
|
972 |
+
resnet_eps: float = 1e-6,
|
973 |
+
resnet_time_scale_shift: str = "default",
|
974 |
+
resnet_act_fn: str = "swish",
|
975 |
+
resnet_groups: int = 32,
|
976 |
+
resnet_pre_norm: bool = True,
|
977 |
+
output_scale_factor: float = 1.0,
|
978 |
+
add_upsample: bool = True,
|
979 |
+
):
|
980 |
+
super().__init__()
|
981 |
+
resnets = []
|
982 |
+
|
983 |
+
for i in range(num_layers):
|
984 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
985 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
986 |
+
|
987 |
+
resnets.append(
|
988 |
+
ResnetBlock2D(
|
989 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
990 |
+
out_channels=out_channels,
|
991 |
+
temb_channels=temb_channels,
|
992 |
+
eps=resnet_eps,
|
993 |
+
groups=resnet_groups,
|
994 |
+
dropout=dropout,
|
995 |
+
time_embedding_norm=resnet_time_scale_shift,
|
996 |
+
non_linearity=resnet_act_fn,
|
997 |
+
output_scale_factor=output_scale_factor,
|
998 |
+
pre_norm=resnet_pre_norm,
|
999 |
+
)
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
self.resnets = nn.ModuleList(resnets)
|
1003 |
+
|
1004 |
+
if add_upsample:
|
1005 |
+
self.upsamplers = nn.ModuleList(
|
1006 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
1007 |
+
)
|
1008 |
+
else:
|
1009 |
+
self.upsamplers = None
|
1010 |
+
|
1011 |
+
self.gradient_checkpointing = False
|
1012 |
+
self.resolution_idx = resolution_idx
|
1013 |
+
|
1014 |
+
def forward(
|
1015 |
+
self,
|
1016 |
+
hidden_states: torch.FloatTensor,
|
1017 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1018 |
+
temb: Optional[torch.FloatTensor] = None,
|
1019 |
+
upsample_size: Optional[int] = None,
|
1020 |
+
scale: float = 1.0,
|
1021 |
+
) -> torch.FloatTensor:
|
1022 |
+
is_freeu_enabled = (
|
1023 |
+
getattr(self, "s1", None)
|
1024 |
+
and getattr(self, "s2", None)
|
1025 |
+
and getattr(self, "b1", None)
|
1026 |
+
and getattr(self, "b2", None)
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
for resnet in self.resnets:
|
1030 |
+
# pop res hidden states
|
1031 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1032 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1033 |
+
|
1034 |
+
# FreeU: Only operate on the first two stages
|
1035 |
+
if is_freeu_enabled:
|
1036 |
+
hidden_states, res_hidden_states = apply_freeu(
|
1037 |
+
self.resolution_idx,
|
1038 |
+
hidden_states,
|
1039 |
+
res_hidden_states,
|
1040 |
+
s1=self.s1,
|
1041 |
+
s2=self.s2,
|
1042 |
+
b1=self.b1,
|
1043 |
+
b2=self.b2,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1047 |
+
|
1048 |
+
if self.training and self.gradient_checkpointing:
|
1049 |
+
|
1050 |
+
def create_custom_forward(module):
|
1051 |
+
def custom_forward(*inputs):
|
1052 |
+
return module(*inputs)
|
1053 |
+
|
1054 |
+
return custom_forward
|
1055 |
+
|
1056 |
+
if is_torch_version(">=", "1.11.0"):
|
1057 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1058 |
+
create_custom_forward(resnet),
|
1059 |
+
hidden_states,
|
1060 |
+
temb,
|
1061 |
+
use_reentrant=False,
|
1062 |
+
)
|
1063 |
+
else:
|
1064 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1065 |
+
create_custom_forward(resnet), hidden_states, temb
|
1066 |
+
)
|
1067 |
+
else:
|
1068 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1069 |
+
|
1070 |
+
if self.upsamplers is not None:
|
1071 |
+
for upsampler in self.upsamplers:
|
1072 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
1073 |
+
|
1074 |
+
return hidden_states
|
models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
10 |
+
from diffusers.models.activations import get_activation
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
13 |
+
CROSS_ATTENTION_PROCESSORS,
|
14 |
+
AttentionProcessor,
|
15 |
+
AttnAddedKVProcessor,
|
16 |
+
AttnProcessor,
|
17 |
+
)
|
18 |
+
from diffusers.models.embeddings import (
|
19 |
+
GaussianFourierProjection,
|
20 |
+
ImageHintTimeEmbedding,
|
21 |
+
ImageProjection,
|
22 |
+
ImageTimeEmbedding,
|
23 |
+
TextImageProjection,
|
24 |
+
TextImageTimeEmbedding,
|
25 |
+
TextTimeEmbedding,
|
26 |
+
TimestepEmbedding,
|
27 |
+
Timesteps,
|
28 |
+
)
|
29 |
+
from diffusers.models.modeling_utils import ModelMixin
|
30 |
+
from diffusers.utils import (
|
31 |
+
USE_PEFT_BACKEND,
|
32 |
+
BaseOutput,
|
33 |
+
deprecate,
|
34 |
+
logging,
|
35 |
+
scale_lora_layers,
|
36 |
+
unscale_lora_layers,
|
37 |
+
)
|
38 |
+
|
39 |
+
from .unet_2d_blocks import (
|
40 |
+
UNetMidBlock2D,
|
41 |
+
UNetMidBlock2DCrossAttn,
|
42 |
+
get_down_block,
|
43 |
+
get_up_block,
|
44 |
+
)
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class UNet2DConditionOutput(BaseOutput):
|
51 |
+
"""
|
52 |
+
The output of [`UNet2DConditionModel`].
|
53 |
+
|
54 |
+
Args:
|
55 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
56 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
57 |
+
"""
|
58 |
+
|
59 |
+
sample: torch.FloatTensor = None
|
60 |
+
ref_features: Tuple[torch.FloatTensor] = None
|
61 |
+
|
62 |
+
|
63 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
64 |
+
r"""
|
65 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
66 |
+
shaped output.
|
67 |
+
|
68 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
69 |
+
for all models (such as downloading or saving).
|
70 |
+
|
71 |
+
Parameters:
|
72 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
73 |
+
Height and width of input/output sample.
|
74 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
75 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
76 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
77 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether to flip the sin to cos in the time embedding.
|
79 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
80 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
81 |
+
The tuple of downsample blocks to use.
|
82 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
83 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
84 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
85 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
86 |
+
The tuple of upsample blocks to use.
|
87 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
88 |
+
Whether to include self-attention in the basic transformer blocks, see
|
89 |
+
[`~models.attention.BasicTransformerBlock`].
|
90 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
91 |
+
The tuple of output channels for each block.
|
92 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
93 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
94 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
95 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
96 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
97 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
98 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
99 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
100 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
101 |
+
The dimension of the cross attention features.
|
102 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
103 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
104 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
105 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
106 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
107 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
108 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
109 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
110 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
111 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
112 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
113 |
+
dimension to `cross_attention_dim`.
|
114 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
115 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
116 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
117 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
118 |
+
num_attention_heads (`int`, *optional*):
|
119 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
120 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
121 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
122 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
123 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
124 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
125 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
126 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
127 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
128 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
129 |
+
Dimension for the timestep embeddings.
|
130 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
131 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
132 |
+
class conditioning with `class_embed_type` equal to `None`.
|
133 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
134 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
135 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
136 |
+
An optional override for the dimension of the projected time embedding.
|
137 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
138 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
139 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
140 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
141 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
142 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
143 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
144 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
145 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
146 |
+
*optional*): The dimension of the `class_labels` input when
|
147 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
148 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
149 |
+
embeddings with the class embeddings.
|
150 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
151 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
152 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
153 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
154 |
+
otherwise.
|
155 |
+
"""
|
156 |
+
|
157 |
+
_supports_gradient_checkpointing = True
|
158 |
+
|
159 |
+
@register_to_config
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
sample_size: Optional[int] = None,
|
163 |
+
in_channels: int = 4,
|
164 |
+
out_channels: int = 4,
|
165 |
+
center_input_sample: bool = False,
|
166 |
+
flip_sin_to_cos: bool = True,
|
167 |
+
freq_shift: int = 0,
|
168 |
+
down_block_types: Tuple[str] = (
|
169 |
+
"CrossAttnDownBlock2D",
|
170 |
+
"CrossAttnDownBlock2D",
|
171 |
+
"CrossAttnDownBlock2D",
|
172 |
+
"DownBlock2D",
|
173 |
+
),
|
174 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
175 |
+
up_block_types: Tuple[str] = (
|
176 |
+
"UpBlock2D",
|
177 |
+
"CrossAttnUpBlock2D",
|
178 |
+
"CrossAttnUpBlock2D",
|
179 |
+
"CrossAttnUpBlock2D",
|
180 |
+
),
|
181 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
182 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
183 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
184 |
+
downsample_padding: int = 1,
|
185 |
+
mid_block_scale_factor: float = 1,
|
186 |
+
dropout: float = 0.0,
|
187 |
+
act_fn: str = "silu",
|
188 |
+
norm_num_groups: Optional[int] = 32,
|
189 |
+
norm_eps: float = 1e-5,
|
190 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
191 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
192 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
193 |
+
encoder_hid_dim: Optional[int] = None,
|
194 |
+
encoder_hid_dim_type: Optional[str] = None,
|
195 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
196 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
197 |
+
dual_cross_attention: bool = False,
|
198 |
+
use_linear_projection: bool = False,
|
199 |
+
class_embed_type: Optional[str] = None,
|
200 |
+
addition_embed_type: Optional[str] = None,
|
201 |
+
addition_time_embed_dim: Optional[int] = None,
|
202 |
+
num_class_embeds: Optional[int] = None,
|
203 |
+
upcast_attention: bool = False,
|
204 |
+
resnet_time_scale_shift: str = "default",
|
205 |
+
resnet_skip_time_act: bool = False,
|
206 |
+
resnet_out_scale_factor: int = 1.0,
|
207 |
+
time_embedding_type: str = "positional",
|
208 |
+
time_embedding_dim: Optional[int] = None,
|
209 |
+
time_embedding_act_fn: Optional[str] = None,
|
210 |
+
timestep_post_act: Optional[str] = None,
|
211 |
+
time_cond_proj_dim: Optional[int] = None,
|
212 |
+
conv_in_kernel: int = 3,
|
213 |
+
conv_out_kernel: int = 3,
|
214 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
215 |
+
attention_type: str = "default",
|
216 |
+
class_embeddings_concat: bool = False,
|
217 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
218 |
+
cross_attention_norm: Optional[str] = None,
|
219 |
+
addition_embed_type_num_heads=64,
|
220 |
+
):
|
221 |
+
super().__init__()
|
222 |
+
|
223 |
+
self.sample_size = sample_size
|
224 |
+
|
225 |
+
if num_attention_heads is not None:
|
226 |
+
raise ValueError(
|
227 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
228 |
+
)
|
229 |
+
|
230 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
231 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
232 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
233 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
234 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
235 |
+
# which is why we correct for the naming here.
|
236 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
237 |
+
|
238 |
+
# Check inputs
|
239 |
+
if len(down_block_types) != len(up_block_types):
|
240 |
+
raise ValueError(
|
241 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
242 |
+
)
|
243 |
+
|
244 |
+
if len(block_out_channels) != len(down_block_types):
|
245 |
+
raise ValueError(
|
246 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not isinstance(only_cross_attention, bool) and len(
|
250 |
+
only_cross_attention
|
251 |
+
) != len(down_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
257 |
+
down_block_types
|
258 |
+
):
|
259 |
+
raise ValueError(
|
260 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
261 |
+
)
|
262 |
+
|
263 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(
|
264 |
+
down_block_types
|
265 |
+
):
|
266 |
+
raise ValueError(
|
267 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
268 |
+
)
|
269 |
+
|
270 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(
|
271 |
+
down_block_types
|
272 |
+
):
|
273 |
+
raise ValueError(
|
274 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
275 |
+
)
|
276 |
+
|
277 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(
|
278 |
+
down_block_types
|
279 |
+
):
|
280 |
+
raise ValueError(
|
281 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
282 |
+
)
|
283 |
+
if (
|
284 |
+
isinstance(transformer_layers_per_block, list)
|
285 |
+
and reverse_transformer_layers_per_block is None
|
286 |
+
):
|
287 |
+
for layer_number_per_block in transformer_layers_per_block:
|
288 |
+
if isinstance(layer_number_per_block, list):
|
289 |
+
raise ValueError(
|
290 |
+
"Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet."
|
291 |
+
)
|
292 |
+
|
293 |
+
# input
|
294 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
295 |
+
self.conv_in = nn.Conv2d(
|
296 |
+
in_channels,
|
297 |
+
block_out_channels[0],
|
298 |
+
kernel_size=conv_in_kernel,
|
299 |
+
padding=conv_in_padding,
|
300 |
+
)
|
301 |
+
|
302 |
+
# time
|
303 |
+
if time_embedding_type == "fourier":
|
304 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
305 |
+
if time_embed_dim % 2 != 0:
|
306 |
+
raise ValueError(
|
307 |
+
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
|
308 |
+
)
|
309 |
+
self.time_proj = GaussianFourierProjection(
|
310 |
+
time_embed_dim // 2,
|
311 |
+
set_W_to_weight=False,
|
312 |
+
log=False,
|
313 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
314 |
+
)
|
315 |
+
timestep_input_dim = time_embed_dim
|
316 |
+
elif time_embedding_type == "positional":
|
317 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
318 |
+
|
319 |
+
self.time_proj = Timesteps(
|
320 |
+
block_out_channels[0], flip_sin_to_cos, freq_shift
|
321 |
+
)
|
322 |
+
timestep_input_dim = block_out_channels[0]
|
323 |
+
else:
|
324 |
+
raise ValueError(
|
325 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
326 |
+
)
|
327 |
+
|
328 |
+
self.time_embedding = TimestepEmbedding(
|
329 |
+
timestep_input_dim,
|
330 |
+
time_embed_dim,
|
331 |
+
act_fn=act_fn,
|
332 |
+
post_act_fn=timestep_post_act,
|
333 |
+
cond_proj_dim=time_cond_proj_dim,
|
334 |
+
)
|
335 |
+
|
336 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
337 |
+
encoder_hid_dim_type = "text_proj"
|
338 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
339 |
+
logger.info(
|
340 |
+
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
341 |
+
)
|
342 |
+
|
343 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
344 |
+
raise ValueError(
|
345 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
346 |
+
)
|
347 |
+
|
348 |
+
if encoder_hid_dim_type == "text_proj":
|
349 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
350 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
351 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
352 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
353 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
354 |
+
self.encoder_hid_proj = TextImageProjection(
|
355 |
+
text_embed_dim=encoder_hid_dim,
|
356 |
+
image_embed_dim=cross_attention_dim,
|
357 |
+
cross_attention_dim=cross_attention_dim,
|
358 |
+
)
|
359 |
+
elif encoder_hid_dim_type == "image_proj":
|
360 |
+
# Kandinsky 2.2
|
361 |
+
self.encoder_hid_proj = ImageProjection(
|
362 |
+
image_embed_dim=encoder_hid_dim,
|
363 |
+
cross_attention_dim=cross_attention_dim,
|
364 |
+
)
|
365 |
+
elif encoder_hid_dim_type is not None:
|
366 |
+
raise ValueError(
|
367 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
self.encoder_hid_proj = None
|
371 |
+
|
372 |
+
# class embedding
|
373 |
+
if class_embed_type is None and num_class_embeds is not None:
|
374 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
375 |
+
elif class_embed_type == "timestep":
|
376 |
+
self.class_embedding = TimestepEmbedding(
|
377 |
+
timestep_input_dim, time_embed_dim, act_fn=act_fn
|
378 |
+
)
|
379 |
+
elif class_embed_type == "identity":
|
380 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
381 |
+
elif class_embed_type == "projection":
|
382 |
+
if projection_class_embeddings_input_dim is None:
|
383 |
+
raise ValueError(
|
384 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
385 |
+
)
|
386 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
387 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
388 |
+
# 2. it projects from an arbitrary input dimension.
|
389 |
+
#
|
390 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
391 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
392 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
393 |
+
self.class_embedding = TimestepEmbedding(
|
394 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
395 |
+
)
|
396 |
+
elif class_embed_type == "simple_projection":
|
397 |
+
if projection_class_embeddings_input_dim is None:
|
398 |
+
raise ValueError(
|
399 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
400 |
+
)
|
401 |
+
self.class_embedding = nn.Linear(
|
402 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
self.class_embedding = None
|
406 |
+
|
407 |
+
if addition_embed_type == "text":
|
408 |
+
if encoder_hid_dim is not None:
|
409 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
410 |
+
else:
|
411 |
+
text_time_embedding_from_dim = cross_attention_dim
|
412 |
+
|
413 |
+
self.add_embedding = TextTimeEmbedding(
|
414 |
+
text_time_embedding_from_dim,
|
415 |
+
time_embed_dim,
|
416 |
+
num_heads=addition_embed_type_num_heads,
|
417 |
+
)
|
418 |
+
elif addition_embed_type == "text_image":
|
419 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
420 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
421 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
422 |
+
self.add_embedding = TextImageTimeEmbedding(
|
423 |
+
text_embed_dim=cross_attention_dim,
|
424 |
+
image_embed_dim=cross_attention_dim,
|
425 |
+
time_embed_dim=time_embed_dim,
|
426 |
+
)
|
427 |
+
elif addition_embed_type == "text_time":
|
428 |
+
self.add_time_proj = Timesteps(
|
429 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
430 |
+
)
|
431 |
+
self.add_embedding = TimestepEmbedding(
|
432 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
433 |
+
)
|
434 |
+
elif addition_embed_type == "image":
|
435 |
+
# Kandinsky 2.2
|
436 |
+
self.add_embedding = ImageTimeEmbedding(
|
437 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
438 |
+
)
|
439 |
+
elif addition_embed_type == "image_hint":
|
440 |
+
# Kandinsky 2.2 ControlNet
|
441 |
+
self.add_embedding = ImageHintTimeEmbedding(
|
442 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
443 |
+
)
|
444 |
+
elif addition_embed_type is not None:
|
445 |
+
raise ValueError(
|
446 |
+
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
447 |
+
)
|
448 |
+
|
449 |
+
if time_embedding_act_fn is None:
|
450 |
+
self.time_embed_act = None
|
451 |
+
else:
|
452 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
453 |
+
|
454 |
+
self.down_blocks = nn.ModuleList([])
|
455 |
+
self.up_blocks = nn.ModuleList([])
|
456 |
+
|
457 |
+
if isinstance(only_cross_attention, bool):
|
458 |
+
if mid_block_only_cross_attention is None:
|
459 |
+
mid_block_only_cross_attention = only_cross_attention
|
460 |
+
|
461 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
462 |
+
|
463 |
+
if mid_block_only_cross_attention is None:
|
464 |
+
mid_block_only_cross_attention = False
|
465 |
+
|
466 |
+
if isinstance(num_attention_heads, int):
|
467 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
468 |
+
|
469 |
+
if isinstance(attention_head_dim, int):
|
470 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
471 |
+
|
472 |
+
if isinstance(cross_attention_dim, int):
|
473 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
474 |
+
|
475 |
+
if isinstance(layers_per_block, int):
|
476 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
477 |
+
|
478 |
+
if isinstance(transformer_layers_per_block, int):
|
479 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
480 |
+
down_block_types
|
481 |
+
)
|
482 |
+
|
483 |
+
if class_embeddings_concat:
|
484 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
485 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
486 |
+
# regular time embeddings
|
487 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
488 |
+
else:
|
489 |
+
blocks_time_embed_dim = time_embed_dim
|
490 |
+
|
491 |
+
# down
|
492 |
+
output_channel = block_out_channels[0]
|
493 |
+
for i, down_block_type in enumerate(down_block_types):
|
494 |
+
input_channel = output_channel
|
495 |
+
output_channel = block_out_channels[i]
|
496 |
+
is_final_block = i == len(block_out_channels) - 1
|
497 |
+
|
498 |
+
down_block = get_down_block(
|
499 |
+
down_block_type,
|
500 |
+
num_layers=layers_per_block[i],
|
501 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
502 |
+
in_channels=input_channel,
|
503 |
+
out_channels=output_channel,
|
504 |
+
temb_channels=blocks_time_embed_dim,
|
505 |
+
add_downsample=not is_final_block,
|
506 |
+
resnet_eps=norm_eps,
|
507 |
+
resnet_act_fn=act_fn,
|
508 |
+
resnet_groups=norm_num_groups,
|
509 |
+
cross_attention_dim=cross_attention_dim[i],
|
510 |
+
num_attention_heads=num_attention_heads[i],
|
511 |
+
downsample_padding=downsample_padding,
|
512 |
+
dual_cross_attention=dual_cross_attention,
|
513 |
+
use_linear_projection=use_linear_projection,
|
514 |
+
only_cross_attention=only_cross_attention[i],
|
515 |
+
upcast_attention=upcast_attention,
|
516 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
517 |
+
attention_type=attention_type,
|
518 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
519 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
520 |
+
cross_attention_norm=cross_attention_norm,
|
521 |
+
attention_head_dim=attention_head_dim[i]
|
522 |
+
if attention_head_dim[i] is not None
|
523 |
+
else output_channel,
|
524 |
+
dropout=dropout,
|
525 |
+
)
|
526 |
+
self.down_blocks.append(down_block)
|
527 |
+
|
528 |
+
# mid
|
529 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
530 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
531 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
532 |
+
in_channels=block_out_channels[-1],
|
533 |
+
temb_channels=blocks_time_embed_dim,
|
534 |
+
dropout=dropout,
|
535 |
+
resnet_eps=norm_eps,
|
536 |
+
resnet_act_fn=act_fn,
|
537 |
+
output_scale_factor=mid_block_scale_factor,
|
538 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
539 |
+
cross_attention_dim=cross_attention_dim[-1],
|
540 |
+
num_attention_heads=num_attention_heads[-1],
|
541 |
+
resnet_groups=norm_num_groups,
|
542 |
+
dual_cross_attention=dual_cross_attention,
|
543 |
+
use_linear_projection=use_linear_projection,
|
544 |
+
upcast_attention=upcast_attention,
|
545 |
+
attention_type=attention_type,
|
546 |
+
)
|
547 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
548 |
+
raise NotImplementedError(f"Unsupport mid_block_type: {mid_block_type}")
|
549 |
+
elif mid_block_type == "UNetMidBlock2D":
|
550 |
+
self.mid_block = UNetMidBlock2D(
|
551 |
+
in_channels=block_out_channels[-1],
|
552 |
+
temb_channels=blocks_time_embed_dim,
|
553 |
+
dropout=dropout,
|
554 |
+
num_layers=0,
|
555 |
+
resnet_eps=norm_eps,
|
556 |
+
resnet_act_fn=act_fn,
|
557 |
+
output_scale_factor=mid_block_scale_factor,
|
558 |
+
resnet_groups=norm_num_groups,
|
559 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
560 |
+
add_attention=False,
|
561 |
+
)
|
562 |
+
elif mid_block_type is None:
|
563 |
+
self.mid_block = None
|
564 |
+
else:
|
565 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
566 |
+
|
567 |
+
# count how many layers upsample the images
|
568 |
+
self.num_upsamplers = 0
|
569 |
+
|
570 |
+
# up
|
571 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
572 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
573 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
574 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
575 |
+
reversed_transformer_layers_per_block = (
|
576 |
+
list(reversed(transformer_layers_per_block))
|
577 |
+
if reverse_transformer_layers_per_block is None
|
578 |
+
else reverse_transformer_layers_per_block
|
579 |
+
)
|
580 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
581 |
+
|
582 |
+
output_channel = reversed_block_out_channels[0]
|
583 |
+
for i, up_block_type in enumerate(up_block_types):
|
584 |
+
is_final_block = i == len(block_out_channels) - 1
|
585 |
+
|
586 |
+
prev_output_channel = output_channel
|
587 |
+
output_channel = reversed_block_out_channels[i]
|
588 |
+
input_channel = reversed_block_out_channels[
|
589 |
+
min(i + 1, len(block_out_channels) - 1)
|
590 |
+
]
|
591 |
+
|
592 |
+
# add upsample block for all BUT final layer
|
593 |
+
if not is_final_block:
|
594 |
+
add_upsample = True
|
595 |
+
self.num_upsamplers += 1
|
596 |
+
else:
|
597 |
+
add_upsample = False
|
598 |
+
|
599 |
+
up_block = get_up_block(
|
600 |
+
up_block_type,
|
601 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
602 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
603 |
+
in_channels=input_channel,
|
604 |
+
out_channels=output_channel,
|
605 |
+
prev_output_channel=prev_output_channel,
|
606 |
+
temb_channels=blocks_time_embed_dim,
|
607 |
+
add_upsample=add_upsample,
|
608 |
+
resnet_eps=norm_eps,
|
609 |
+
resnet_act_fn=act_fn,
|
610 |
+
resolution_idx=i,
|
611 |
+
resnet_groups=norm_num_groups,
|
612 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
613 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
614 |
+
dual_cross_attention=dual_cross_attention,
|
615 |
+
use_linear_projection=use_linear_projection,
|
616 |
+
only_cross_attention=only_cross_attention[i],
|
617 |
+
upcast_attention=upcast_attention,
|
618 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
619 |
+
attention_type=attention_type,
|
620 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
621 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
622 |
+
cross_attention_norm=cross_attention_norm,
|
623 |
+
attention_head_dim=attention_head_dim[i]
|
624 |
+
if attention_head_dim[i] is not None
|
625 |
+
else output_channel,
|
626 |
+
dropout=dropout,
|
627 |
+
)
|
628 |
+
self.up_blocks.append(up_block)
|
629 |
+
prev_output_channel = output_channel
|
630 |
+
|
631 |
+
# out
|
632 |
+
if norm_num_groups is not None:
|
633 |
+
self.conv_norm_out = nn.GroupNorm(
|
634 |
+
num_channels=block_out_channels[0],
|
635 |
+
num_groups=norm_num_groups,
|
636 |
+
eps=norm_eps,
|
637 |
+
)
|
638 |
+
|
639 |
+
self.conv_act = get_activation(act_fn)
|
640 |
+
|
641 |
+
else:
|
642 |
+
self.conv_norm_out = None
|
643 |
+
self.conv_act = None
|
644 |
+
self.conv_norm_out = None
|
645 |
+
|
646 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
647 |
+
# self.conv_out = nn.Conv2d(
|
648 |
+
# block_out_channels[0],
|
649 |
+
# out_channels,
|
650 |
+
# kernel_size=conv_out_kernel,
|
651 |
+
# padding=conv_out_padding,
|
652 |
+
# )
|
653 |
+
|
654 |
+
if attention_type in ["gated", "gated-text-image"]:
|
655 |
+
positive_len = 768
|
656 |
+
if isinstance(cross_attention_dim, int):
|
657 |
+
positive_len = cross_attention_dim
|
658 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(
|
659 |
+
cross_attention_dim, list
|
660 |
+
):
|
661 |
+
positive_len = cross_attention_dim[0]
|
662 |
+
|
663 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
664 |
+
self.position_net = PositionNet(
|
665 |
+
positive_len=positive_len,
|
666 |
+
out_dim=cross_attention_dim,
|
667 |
+
feature_type=feature_type,
|
668 |
+
)
|
669 |
+
|
670 |
+
@property
|
671 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
672 |
+
r"""
|
673 |
+
Returns:
|
674 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
675 |
+
indexed by its weight name.
|
676 |
+
"""
|
677 |
+
# set recursively
|
678 |
+
processors = {}
|
679 |
+
|
680 |
+
def fn_recursive_add_processors(
|
681 |
+
name: str,
|
682 |
+
module: torch.nn.Module,
|
683 |
+
processors: Dict[str, AttentionProcessor],
|
684 |
+
):
|
685 |
+
if hasattr(module, "get_processor"):
|
686 |
+
processors[f"{name}.processor"] = module.get_processor(
|
687 |
+
return_deprecated_lora=True
|
688 |
+
)
|
689 |
+
|
690 |
+
for sub_name, child in module.named_children():
|
691 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
692 |
+
|
693 |
+
return processors
|
694 |
+
|
695 |
+
for name, module in self.named_children():
|
696 |
+
fn_recursive_add_processors(name, module, processors)
|
697 |
+
|
698 |
+
return processors
|
699 |
+
|
700 |
+
def set_attn_processor(
|
701 |
+
self,
|
702 |
+
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
703 |
+
_remove_lora=False,
|
704 |
+
):
|
705 |
+
r"""
|
706 |
+
Sets the attention processor to use to compute attention.
|
707 |
+
|
708 |
+
Parameters:
|
709 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
710 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
711 |
+
for **all** `Attention` layers.
|
712 |
+
|
713 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
714 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
715 |
+
|
716 |
+
"""
|
717 |
+
count = len(self.attn_processors.keys())
|
718 |
+
|
719 |
+
if isinstance(processor, dict) and len(processor) != count:
|
720 |
+
raise ValueError(
|
721 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
722 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
723 |
+
)
|
724 |
+
|
725 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
726 |
+
if hasattr(module, "set_processor"):
|
727 |
+
if not isinstance(processor, dict):
|
728 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
729 |
+
else:
|
730 |
+
module.set_processor(
|
731 |
+
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
732 |
+
)
|
733 |
+
|
734 |
+
for sub_name, child in module.named_children():
|
735 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
736 |
+
|
737 |
+
for name, module in self.named_children():
|
738 |
+
fn_recursive_attn_processor(name, module, processor)
|
739 |
+
|
740 |
+
def set_default_attn_processor(self):
|
741 |
+
"""
|
742 |
+
Disables custom attention processors and sets the default attention implementation.
|
743 |
+
"""
|
744 |
+
if all(
|
745 |
+
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
746 |
+
for proc in self.attn_processors.values()
|
747 |
+
):
|
748 |
+
processor = AttnAddedKVProcessor()
|
749 |
+
elif all(
|
750 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
751 |
+
for proc in self.attn_processors.values()
|
752 |
+
):
|
753 |
+
processor = AttnProcessor()
|
754 |
+
else:
|
755 |
+
raise ValueError(
|
756 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
757 |
+
)
|
758 |
+
|
759 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
760 |
+
|
761 |
+
def set_attention_slice(self, slice_size):
|
762 |
+
r"""
|
763 |
+
Enable sliced attention computation.
|
764 |
+
|
765 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
766 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
767 |
+
|
768 |
+
Args:
|
769 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
770 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
771 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
772 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
773 |
+
must be a multiple of `slice_size`.
|
774 |
+
"""
|
775 |
+
sliceable_head_dims = []
|
776 |
+
|
777 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
778 |
+
if hasattr(module, "set_attention_slice"):
|
779 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
780 |
+
|
781 |
+
for child in module.children():
|
782 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
783 |
+
|
784 |
+
# retrieve number of attention layers
|
785 |
+
for module in self.children():
|
786 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
787 |
+
|
788 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
789 |
+
|
790 |
+
if slice_size == "auto":
|
791 |
+
# half the attention head size is usually a good trade-off between
|
792 |
+
# speed and memory
|
793 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
794 |
+
elif slice_size == "max":
|
795 |
+
# make smallest slice possible
|
796 |
+
slice_size = num_sliceable_layers * [1]
|
797 |
+
|
798 |
+
slice_size = (
|
799 |
+
num_sliceable_layers * [slice_size]
|
800 |
+
if not isinstance(slice_size, list)
|
801 |
+
else slice_size
|
802 |
+
)
|
803 |
+
|
804 |
+
if len(slice_size) != len(sliceable_head_dims):
|
805 |
+
raise ValueError(
|
806 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
807 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
808 |
+
)
|
809 |
+
|
810 |
+
for i in range(len(slice_size)):
|
811 |
+
size = slice_size[i]
|
812 |
+
dim = sliceable_head_dims[i]
|
813 |
+
if size is not None and size > dim:
|
814 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
815 |
+
|
816 |
+
# Recursively walk through all the children.
|
817 |
+
# Any children which exposes the set_attention_slice method
|
818 |
+
# gets the message
|
819 |
+
def fn_recursive_set_attention_slice(
|
820 |
+
module: torch.nn.Module, slice_size: List[int]
|
821 |
+
):
|
822 |
+
if hasattr(module, "set_attention_slice"):
|
823 |
+
module.set_attention_slice(slice_size.pop())
|
824 |
+
|
825 |
+
for child in module.children():
|
826 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
827 |
+
|
828 |
+
reversed_slice_size = list(reversed(slice_size))
|
829 |
+
for module in self.children():
|
830 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
831 |
+
|
832 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
833 |
+
if hasattr(module, "gradient_checkpointing"):
|
834 |
+
module.gradient_checkpointing = value
|
835 |
+
|
836 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
837 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
838 |
+
|
839 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
840 |
+
|
841 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
842 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
843 |
+
|
844 |
+
Args:
|
845 |
+
s1 (`float`):
|
846 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
847 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
848 |
+
s2 (`float`):
|
849 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
850 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
851 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
852 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
853 |
+
"""
|
854 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
855 |
+
setattr(upsample_block, "s1", s1)
|
856 |
+
setattr(upsample_block, "s2", s2)
|
857 |
+
setattr(upsample_block, "b1", b1)
|
858 |
+
setattr(upsample_block, "b2", b2)
|
859 |
+
|
860 |
+
def disable_freeu(self):
|
861 |
+
"""Disables the FreeU mechanism."""
|
862 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
863 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
864 |
+
for k in freeu_keys:
|
865 |
+
if (
|
866 |
+
hasattr(upsample_block, k)
|
867 |
+
or getattr(upsample_block, k, None) is not None
|
868 |
+
):
|
869 |
+
setattr(upsample_block, k, None)
|
870 |
+
|
871 |
+
def forward(
|
872 |
+
self,
|
873 |
+
sample: torch.FloatTensor,
|
874 |
+
timestep: Union[torch.Tensor, float, int],
|
875 |
+
encoder_hidden_states: torch.Tensor,
|
876 |
+
class_labels: Optional[torch.Tensor] = None,
|
877 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
878 |
+
attention_mask: Optional[torch.Tensor] = None,
|
879 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
880 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
881 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
882 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
883 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
884 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
885 |
+
return_dict: bool = True,
|
886 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
887 |
+
r"""
|
888 |
+
The [`UNet2DConditionModel`] forward method.
|
889 |
+
|
890 |
+
Args:
|
891 |
+
sample (`torch.FloatTensor`):
|
892 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
893 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
894 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
895 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
896 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
897 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
898 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
899 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
900 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
901 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
902 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
903 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
904 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
905 |
+
cross_attention_kwargs (`dict`, *optional*):
|
906 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
907 |
+
`self.processor` in
|
908 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
909 |
+
added_cond_kwargs: (`dict`, *optional*):
|
910 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
911 |
+
are passed along to the UNet blocks.
|
912 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
913 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
914 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
915 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
916 |
+
encoder_attention_mask (`torch.Tensor`):
|
917 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
918 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
919 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
920 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
921 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
922 |
+
tuple.
|
923 |
+
cross_attention_kwargs (`dict`, *optional*):
|
924 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
925 |
+
added_cond_kwargs: (`dict`, *optional*):
|
926 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
927 |
+
are passed along to the UNet blocks.
|
928 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
929 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
930 |
+
example from ControlNet side model(s)
|
931 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
932 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
933 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
934 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
935 |
+
|
936 |
+
Returns:
|
937 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
938 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
939 |
+
a `tuple` is returned where the first element is the sample tensor.
|
940 |
+
"""
|
941 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
942 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
943 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
944 |
+
# on the fly if necessary.
|
945 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
946 |
+
|
947 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
948 |
+
forward_upsample_size = False
|
949 |
+
upsample_size = None
|
950 |
+
|
951 |
+
for dim in sample.shape[-2:]:
|
952 |
+
if dim % default_overall_up_factor != 0:
|
953 |
+
# Forward upsample size to force interpolation output size.
|
954 |
+
forward_upsample_size = True
|
955 |
+
break
|
956 |
+
|
957 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
958 |
+
# expects mask of shape:
|
959 |
+
# [batch, key_tokens]
|
960 |
+
# adds singleton query_tokens dimension:
|
961 |
+
# [batch, 1, key_tokens]
|
962 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
963 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
964 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
965 |
+
if attention_mask is not None:
|
966 |
+
# assume that mask is expressed as:
|
967 |
+
# (1 = keep, 0 = discard)
|
968 |
+
# convert mask into a bias that can be added to attention scores:
|
969 |
+
# (keep = +0, discard = -10000.0)
|
970 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
971 |
+
attention_mask = attention_mask.unsqueeze(1)
|
972 |
+
|
973 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
974 |
+
if encoder_attention_mask is not None:
|
975 |
+
encoder_attention_mask = (
|
976 |
+
1 - encoder_attention_mask.to(sample.dtype)
|
977 |
+
) * -10000.0
|
978 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
979 |
+
|
980 |
+
# 0. center input if necessary
|
981 |
+
if self.config.center_input_sample:
|
982 |
+
sample = 2 * sample - 1.0
|
983 |
+
|
984 |
+
# 1. time
|
985 |
+
timesteps = timestep
|
986 |
+
if not torch.is_tensor(timesteps):
|
987 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
988 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
989 |
+
is_mps = sample.device.type == "mps"
|
990 |
+
if isinstance(timestep, float):
|
991 |
+
dtype = torch.float32 if is_mps else torch.float64
|
992 |
+
else:
|
993 |
+
dtype = torch.int32 if is_mps else torch.int64
|
994 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
995 |
+
elif len(timesteps.shape) == 0:
|
996 |
+
timesteps = timesteps[None].to(sample.device)
|
997 |
+
|
998 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
999 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1000 |
+
|
1001 |
+
t_emb = self.time_proj(timesteps)
|
1002 |
+
|
1003 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1004 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1005 |
+
# there might be better ways to encapsulate this.
|
1006 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1007 |
+
|
1008 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1009 |
+
aug_emb = None
|
1010 |
+
|
1011 |
+
if self.class_embedding is not None:
|
1012 |
+
if class_labels is None:
|
1013 |
+
raise ValueError(
|
1014 |
+
"class_labels should be provided when num_class_embeds > 0"
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
if self.config.class_embed_type == "timestep":
|
1018 |
+
class_labels = self.time_proj(class_labels)
|
1019 |
+
|
1020 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1021 |
+
# there might be better ways to encapsulate this.
|
1022 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1023 |
+
|
1024 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1025 |
+
|
1026 |
+
if self.config.class_embeddings_concat:
|
1027 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1028 |
+
else:
|
1029 |
+
emb = emb + class_emb
|
1030 |
+
|
1031 |
+
if self.config.addition_embed_type == "text":
|
1032 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1033 |
+
elif self.config.addition_embed_type == "text_image":
|
1034 |
+
# Kandinsky 2.1 - style
|
1035 |
+
if "image_embeds" not in added_cond_kwargs:
|
1036 |
+
raise ValueError(
|
1037 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1041 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1042 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1043 |
+
elif self.config.addition_embed_type == "text_time":
|
1044 |
+
# SDXL - style
|
1045 |
+
if "text_embeds" not in added_cond_kwargs:
|
1046 |
+
raise ValueError(
|
1047 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1048 |
+
)
|
1049 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1050 |
+
if "time_ids" not in added_cond_kwargs:
|
1051 |
+
raise ValueError(
|
1052 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1053 |
+
)
|
1054 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1055 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1056 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1057 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1058 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1059 |
+
aug_emb = self.add_embedding(add_embeds)
|
1060 |
+
elif self.config.addition_embed_type == "image":
|
1061 |
+
# Kandinsky 2.2 - style
|
1062 |
+
if "image_embeds" not in added_cond_kwargs:
|
1063 |
+
raise ValueError(
|
1064 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1065 |
+
)
|
1066 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1067 |
+
aug_emb = self.add_embedding(image_embs)
|
1068 |
+
elif self.config.addition_embed_type == "image_hint":
|
1069 |
+
# Kandinsky 2.2 - style
|
1070 |
+
if (
|
1071 |
+
"image_embeds" not in added_cond_kwargs
|
1072 |
+
or "hint" not in added_cond_kwargs
|
1073 |
+
):
|
1074 |
+
raise ValueError(
|
1075 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1076 |
+
)
|
1077 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1078 |
+
hint = added_cond_kwargs.get("hint")
|
1079 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1080 |
+
sample = torch.cat([sample, hint], dim=1)
|
1081 |
+
|
1082 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1083 |
+
|
1084 |
+
if self.time_embed_act is not None:
|
1085 |
+
emb = self.time_embed_act(emb)
|
1086 |
+
|
1087 |
+
if (
|
1088 |
+
self.encoder_hid_proj is not None
|
1089 |
+
and self.config.encoder_hid_dim_type == "text_proj"
|
1090 |
+
):
|
1091 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1092 |
+
elif (
|
1093 |
+
self.encoder_hid_proj is not None
|
1094 |
+
and self.config.encoder_hid_dim_type == "text_image_proj"
|
1095 |
+
):
|
1096 |
+
# Kadinsky 2.1 - style
|
1097 |
+
if "image_embeds" not in added_cond_kwargs:
|
1098 |
+
raise ValueError(
|
1099 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1103 |
+
encoder_hidden_states = self.encoder_hid_proj(
|
1104 |
+
encoder_hidden_states, image_embeds
|
1105 |
+
)
|
1106 |
+
elif (
|
1107 |
+
self.encoder_hid_proj is not None
|
1108 |
+
and self.config.encoder_hid_dim_type == "image_proj"
|
1109 |
+
):
|
1110 |
+
# Kandinsky 2.2 - style
|
1111 |
+
if "image_embeds" not in added_cond_kwargs:
|
1112 |
+
raise ValueError(
|
1113 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1114 |
+
)
|
1115 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1116 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1117 |
+
elif (
|
1118 |
+
self.encoder_hid_proj is not None
|
1119 |
+
and self.config.encoder_hid_dim_type == "ip_image_proj"
|
1120 |
+
):
|
1121 |
+
if "image_embeds" not in added_cond_kwargs:
|
1122 |
+
raise ValueError(
|
1123 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1124 |
+
)
|
1125 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1126 |
+
image_embeds = self.encoder_hid_proj(image_embeds).to(
|
1127 |
+
encoder_hidden_states.dtype
|
1128 |
+
)
|
1129 |
+
encoder_hidden_states = torch.cat(
|
1130 |
+
[encoder_hidden_states, image_embeds], dim=1
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
# 2. pre-process
|
1134 |
+
sample = self.conv_in(sample)
|
1135 |
+
|
1136 |
+
# 2.5 GLIGEN position net
|
1137 |
+
if (
|
1138 |
+
cross_attention_kwargs is not None
|
1139 |
+
and cross_attention_kwargs.get("gligen", None) is not None
|
1140 |
+
):
|
1141 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1142 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1143 |
+
cross_attention_kwargs["gligen"] = {
|
1144 |
+
"objs": self.position_net(**gligen_args)
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
# 3. down
|
1148 |
+
lora_scale = (
|
1149 |
+
cross_attention_kwargs.get("scale", 1.0)
|
1150 |
+
if cross_attention_kwargs is not None
|
1151 |
+
else 1.0
|
1152 |
+
)
|
1153 |
+
if USE_PEFT_BACKEND:
|
1154 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1155 |
+
scale_lora_layers(self, lora_scale)
|
1156 |
+
|
1157 |
+
is_controlnet = (
|
1158 |
+
mid_block_additional_residual is not None
|
1159 |
+
and down_block_additional_residuals is not None
|
1160 |
+
)
|
1161 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1162 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1163 |
+
# maintain backward compatibility for legacy usage, where
|
1164 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1165 |
+
# but can only use one or the other
|
1166 |
+
if (
|
1167 |
+
not is_adapter
|
1168 |
+
and mid_block_additional_residual is None
|
1169 |
+
and down_block_additional_residuals is not None
|
1170 |
+
):
|
1171 |
+
deprecate(
|
1172 |
+
"T2I should not use down_block_additional_residuals",
|
1173 |
+
"1.3.0",
|
1174 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1175 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1176 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1177 |
+
standard_warn=False,
|
1178 |
+
)
|
1179 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1180 |
+
is_adapter = True
|
1181 |
+
|
1182 |
+
down_block_res_samples = (sample,)
|
1183 |
+
tot_referece_features = ()
|
1184 |
+
for downsample_block in self.down_blocks:
|
1185 |
+
if (
|
1186 |
+
hasattr(downsample_block, "has_cross_attention")
|
1187 |
+
and downsample_block.has_cross_attention
|
1188 |
+
):
|
1189 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1190 |
+
additional_residuals = {}
|
1191 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1192 |
+
additional_residuals[
|
1193 |
+
"additional_residuals"
|
1194 |
+
] = down_intrablock_additional_residuals.pop(0)
|
1195 |
+
|
1196 |
+
sample, res_samples = downsample_block(
|
1197 |
+
hidden_states=sample,
|
1198 |
+
temb=emb,
|
1199 |
+
encoder_hidden_states=encoder_hidden_states,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1202 |
+
encoder_attention_mask=encoder_attention_mask,
|
1203 |
+
**additional_residuals,
|
1204 |
+
)
|
1205 |
+
else:
|
1206 |
+
sample, res_samples = downsample_block(
|
1207 |
+
hidden_states=sample, temb=emb, scale=lora_scale
|
1208 |
+
)
|
1209 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1210 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1211 |
+
|
1212 |
+
down_block_res_samples += res_samples
|
1213 |
+
|
1214 |
+
if is_controlnet:
|
1215 |
+
new_down_block_res_samples = ()
|
1216 |
+
|
1217 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1218 |
+
down_block_res_samples, down_block_additional_residuals
|
1219 |
+
):
|
1220 |
+
down_block_res_sample = (
|
1221 |
+
down_block_res_sample + down_block_additional_residual
|
1222 |
+
)
|
1223 |
+
new_down_block_res_samples = new_down_block_res_samples + (
|
1224 |
+
down_block_res_sample,
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
down_block_res_samples = new_down_block_res_samples
|
1228 |
+
|
1229 |
+
# 4. mid
|
1230 |
+
if self.mid_block is not None:
|
1231 |
+
if (
|
1232 |
+
hasattr(self.mid_block, "has_cross_attention")
|
1233 |
+
and self.mid_block.has_cross_attention
|
1234 |
+
):
|
1235 |
+
sample = self.mid_block(
|
1236 |
+
sample,
|
1237 |
+
emb,
|
1238 |
+
encoder_hidden_states=encoder_hidden_states,
|
1239 |
+
attention_mask=attention_mask,
|
1240 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1241 |
+
encoder_attention_mask=encoder_attention_mask,
|
1242 |
+
)
|
1243 |
+
else:
|
1244 |
+
sample = self.mid_block(sample, emb)
|
1245 |
+
|
1246 |
+
# To support T2I-Adapter-XL
|
1247 |
+
if (
|
1248 |
+
is_adapter
|
1249 |
+
and len(down_intrablock_additional_residuals) > 0
|
1250 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1251 |
+
):
|
1252 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1253 |
+
|
1254 |
+
if is_controlnet:
|
1255 |
+
sample = sample + mid_block_additional_residual
|
1256 |
+
|
1257 |
+
# 5. up
|
1258 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1259 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1260 |
+
|
1261 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1262 |
+
down_block_res_samples = down_block_res_samples[
|
1263 |
+
: -len(upsample_block.resnets)
|
1264 |
+
]
|
1265 |
+
|
1266 |
+
# if we have not reached the final block and need to forward the
|
1267 |
+
# upsample size, we do it here
|
1268 |
+
if not is_final_block and forward_upsample_size:
|
1269 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1270 |
+
|
1271 |
+
if (
|
1272 |
+
hasattr(upsample_block, "has_cross_attention")
|
1273 |
+
and upsample_block.has_cross_attention
|
1274 |
+
):
|
1275 |
+
sample = upsample_block(
|
1276 |
+
hidden_states=sample,
|
1277 |
+
temb=emb,
|
1278 |
+
res_hidden_states_tuple=res_samples,
|
1279 |
+
encoder_hidden_states=encoder_hidden_states,
|
1280 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1281 |
+
upsample_size=upsample_size,
|
1282 |
+
attention_mask=attention_mask,
|
1283 |
+
encoder_attention_mask=encoder_attention_mask,
|
1284 |
+
)
|
1285 |
+
else:
|
1286 |
+
sample = upsample_block(
|
1287 |
+
hidden_states=sample,
|
1288 |
+
temb=emb,
|
1289 |
+
res_hidden_states_tuple=res_samples,
|
1290 |
+
upsample_size=upsample_size,
|
1291 |
+
scale=lora_scale,
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
# 6. post-process
|
1295 |
+
# if self.conv_norm_out:
|
1296 |
+
# sample = self.conv_norm_out(sample)
|
1297 |
+
# sample = self.conv_act(sample)
|
1298 |
+
# sample = self.conv_out(sample)
|
1299 |
+
|
1300 |
+
if USE_PEFT_BACKEND:
|
1301 |
+
# remove `lora_scale` from each PEFT layer
|
1302 |
+
unscale_lora_layers(self, lora_scale)
|
1303 |
+
|
1304 |
+
if not return_dict:
|
1305 |
+
return (sample,)
|
1306 |
+
|
1307 |
+
return UNet2DConditionOutput(sample=sample)
|
models/unet_3d.py
ADDED
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
2 |
+
|
3 |
+
from collections import OrderedDict
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from os import PathLike
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
13 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging
|
17 |
+
from safetensors.torch import load_file
|
18 |
+
|
19 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
20 |
+
from .unet_3d_blocks import UNetMidBlock3DCrossAttn, get_down_block, get_up_block
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class UNet3DConditionOutput(BaseOutput):
|
27 |
+
sample: torch.FloatTensor
|
28 |
+
|
29 |
+
|
30 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
31 |
+
_supports_gradient_checkpointing = True
|
32 |
+
|
33 |
+
@register_to_config
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
sample_size: Optional[int] = None,
|
37 |
+
in_channels: int = 4,
|
38 |
+
out_channels: int = 4,
|
39 |
+
center_input_sample: bool = False,
|
40 |
+
flip_sin_to_cos: bool = True,
|
41 |
+
freq_shift: int = 0,
|
42 |
+
down_block_types: Tuple[str] = (
|
43 |
+
"CrossAttnDownBlock3D",
|
44 |
+
"CrossAttnDownBlock3D",
|
45 |
+
"CrossAttnDownBlock3D",
|
46 |
+
"DownBlock3D",
|
47 |
+
),
|
48 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
49 |
+
up_block_types: Tuple[str] = (
|
50 |
+
"UpBlock3D",
|
51 |
+
"CrossAttnUpBlock3D",
|
52 |
+
"CrossAttnUpBlock3D",
|
53 |
+
"CrossAttnUpBlock3D",
|
54 |
+
),
|
55 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
56 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
57 |
+
layers_per_block: int = 2,
|
58 |
+
downsample_padding: int = 1,
|
59 |
+
mid_block_scale_factor: float = 1,
|
60 |
+
act_fn: str = "silu",
|
61 |
+
norm_num_groups: int = 32,
|
62 |
+
norm_eps: float = 1e-5,
|
63 |
+
cross_attention_dim: int = 1280,
|
64 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
65 |
+
dual_cross_attention: bool = False,
|
66 |
+
use_linear_projection: bool = False,
|
67 |
+
class_embed_type: Optional[str] = None,
|
68 |
+
num_class_embeds: Optional[int] = None,
|
69 |
+
upcast_attention: bool = False,
|
70 |
+
resnet_time_scale_shift: str = "default",
|
71 |
+
use_inflated_groupnorm=False,
|
72 |
+
# Additional
|
73 |
+
use_motion_module=False,
|
74 |
+
motion_module_resolutions=(1, 2, 4, 8),
|
75 |
+
motion_module_mid_block=False,
|
76 |
+
motion_module_decoder_only=False,
|
77 |
+
motion_module_type=None,
|
78 |
+
motion_module_kwargs={},
|
79 |
+
unet_use_cross_frame_attention=None,
|
80 |
+
unet_use_temporal_attention=None,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.sample_size = sample_size
|
85 |
+
time_embed_dim = block_out_channels[0] * 4
|
86 |
+
|
87 |
+
# input
|
88 |
+
self.conv_in = InflatedConv3d(
|
89 |
+
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
|
90 |
+
)
|
91 |
+
|
92 |
+
# time
|
93 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
94 |
+
timestep_input_dim = block_out_channels[0]
|
95 |
+
|
96 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
97 |
+
|
98 |
+
# class embedding
|
99 |
+
if class_embed_type is None and num_class_embeds is not None:
|
100 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
101 |
+
elif class_embed_type == "timestep":
|
102 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
103 |
+
elif class_embed_type == "identity":
|
104 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
105 |
+
else:
|
106 |
+
self.class_embedding = None
|
107 |
+
|
108 |
+
self.down_blocks = nn.ModuleList([])
|
109 |
+
self.mid_block = None
|
110 |
+
self.up_blocks = nn.ModuleList([])
|
111 |
+
|
112 |
+
if isinstance(only_cross_attention, bool):
|
113 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
114 |
+
|
115 |
+
if isinstance(attention_head_dim, int):
|
116 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
117 |
+
|
118 |
+
# down
|
119 |
+
output_channel = block_out_channels[0]
|
120 |
+
for i, down_block_type in enumerate(down_block_types):
|
121 |
+
res = 2**i
|
122 |
+
input_channel = output_channel
|
123 |
+
output_channel = block_out_channels[i]
|
124 |
+
is_final_block = i == len(block_out_channels) - 1
|
125 |
+
|
126 |
+
down_block = get_down_block(
|
127 |
+
down_block_type,
|
128 |
+
num_layers=layers_per_block,
|
129 |
+
in_channels=input_channel,
|
130 |
+
out_channels=output_channel,
|
131 |
+
temb_channels=time_embed_dim,
|
132 |
+
add_downsample=not is_final_block,
|
133 |
+
resnet_eps=norm_eps,
|
134 |
+
resnet_act_fn=act_fn,
|
135 |
+
resnet_groups=norm_num_groups,
|
136 |
+
cross_attention_dim=cross_attention_dim,
|
137 |
+
attn_num_head_channels=attention_head_dim[i],
|
138 |
+
downsample_padding=downsample_padding,
|
139 |
+
dual_cross_attention=dual_cross_attention,
|
140 |
+
use_linear_projection=use_linear_projection,
|
141 |
+
only_cross_attention=only_cross_attention[i],
|
142 |
+
upcast_attention=upcast_attention,
|
143 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
144 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
145 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
146 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
147 |
+
use_motion_module=use_motion_module
|
148 |
+
and (res in motion_module_resolutions)
|
149 |
+
and (not motion_module_decoder_only),
|
150 |
+
motion_module_type=motion_module_type,
|
151 |
+
motion_module_kwargs=motion_module_kwargs,
|
152 |
+
)
|
153 |
+
self.down_blocks.append(down_block)
|
154 |
+
|
155 |
+
# mid
|
156 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
157 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
158 |
+
in_channels=block_out_channels[-1],
|
159 |
+
temb_channels=time_embed_dim,
|
160 |
+
resnet_eps=norm_eps,
|
161 |
+
resnet_act_fn=act_fn,
|
162 |
+
output_scale_factor=mid_block_scale_factor,
|
163 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
164 |
+
cross_attention_dim=cross_attention_dim,
|
165 |
+
attn_num_head_channels=attention_head_dim[-1],
|
166 |
+
resnet_groups=norm_num_groups,
|
167 |
+
dual_cross_attention=dual_cross_attention,
|
168 |
+
use_linear_projection=use_linear_projection,
|
169 |
+
upcast_attention=upcast_attention,
|
170 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
171 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
172 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
173 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
174 |
+
motion_module_type=motion_module_type,
|
175 |
+
motion_module_kwargs=motion_module_kwargs,
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
179 |
+
|
180 |
+
# count how many layers upsample the videos
|
181 |
+
self.num_upsamplers = 0
|
182 |
+
|
183 |
+
# up
|
184 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
185 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
186 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
187 |
+
output_channel = reversed_block_out_channels[0]
|
188 |
+
for i, up_block_type in enumerate(up_block_types):
|
189 |
+
res = 2 ** (3 - i)
|
190 |
+
is_final_block = i == len(block_out_channels) - 1
|
191 |
+
|
192 |
+
prev_output_channel = output_channel
|
193 |
+
output_channel = reversed_block_out_channels[i]
|
194 |
+
input_channel = reversed_block_out_channels[
|
195 |
+
min(i + 1, len(block_out_channels) - 1)
|
196 |
+
]
|
197 |
+
|
198 |
+
# add upsample block for all BUT final layer
|
199 |
+
if not is_final_block:
|
200 |
+
add_upsample = True
|
201 |
+
self.num_upsamplers += 1
|
202 |
+
else:
|
203 |
+
add_upsample = False
|
204 |
+
|
205 |
+
up_block = get_up_block(
|
206 |
+
up_block_type,
|
207 |
+
num_layers=layers_per_block + 1,
|
208 |
+
in_channels=input_channel,
|
209 |
+
out_channels=output_channel,
|
210 |
+
prev_output_channel=prev_output_channel,
|
211 |
+
temb_channels=time_embed_dim,
|
212 |
+
add_upsample=add_upsample,
|
213 |
+
resnet_eps=norm_eps,
|
214 |
+
resnet_act_fn=act_fn,
|
215 |
+
resnet_groups=norm_num_groups,
|
216 |
+
cross_attention_dim=cross_attention_dim,
|
217 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
218 |
+
dual_cross_attention=dual_cross_attention,
|
219 |
+
use_linear_projection=use_linear_projection,
|
220 |
+
only_cross_attention=only_cross_attention[i],
|
221 |
+
upcast_attention=upcast_attention,
|
222 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
223 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
224 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
225 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
226 |
+
use_motion_module=use_motion_module
|
227 |
+
and (res in motion_module_resolutions),
|
228 |
+
motion_module_type=motion_module_type,
|
229 |
+
motion_module_kwargs=motion_module_kwargs,
|
230 |
+
)
|
231 |
+
self.up_blocks.append(up_block)
|
232 |
+
prev_output_channel = output_channel
|
233 |
+
|
234 |
+
# out
|
235 |
+
if use_inflated_groupnorm:
|
236 |
+
self.conv_norm_out = InflatedGroupNorm(
|
237 |
+
num_channels=block_out_channels[0],
|
238 |
+
num_groups=norm_num_groups,
|
239 |
+
eps=norm_eps,
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
self.conv_norm_out = nn.GroupNorm(
|
243 |
+
num_channels=block_out_channels[0],
|
244 |
+
num_groups=norm_num_groups,
|
245 |
+
eps=norm_eps,
|
246 |
+
)
|
247 |
+
self.conv_act = nn.SiLU()
|
248 |
+
self.conv_out = InflatedConv3d(
|
249 |
+
block_out_channels[0], out_channels, kernel_size=3, padding=1
|
250 |
+
)
|
251 |
+
|
252 |
+
@property
|
253 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
254 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
255 |
+
r"""
|
256 |
+
Returns:
|
257 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
258 |
+
indexed by its weight name.
|
259 |
+
"""
|
260 |
+
# set recursively
|
261 |
+
processors = {}
|
262 |
+
|
263 |
+
def fn_recursive_add_processors(
|
264 |
+
name: str,
|
265 |
+
module: torch.nn.Module,
|
266 |
+
processors: Dict[str, AttentionProcessor],
|
267 |
+
):
|
268 |
+
if hasattr(module, "set_processor"):
|
269 |
+
processors[f"{name}.processor"] = module.processor
|
270 |
+
|
271 |
+
for sub_name, child in module.named_children():
|
272 |
+
if "temporal_transformer" not in sub_name:
|
273 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
274 |
+
|
275 |
+
return processors
|
276 |
+
|
277 |
+
for name, module in self.named_children():
|
278 |
+
if "temporal_transformer" not in name:
|
279 |
+
fn_recursive_add_processors(name, module, processors)
|
280 |
+
|
281 |
+
return processors
|
282 |
+
|
283 |
+
def set_attention_slice(self, slice_size):
|
284 |
+
r"""
|
285 |
+
Enable sliced attention computation.
|
286 |
+
|
287 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
288 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
292 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
293 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
294 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
295 |
+
must be a multiple of `slice_size`.
|
296 |
+
"""
|
297 |
+
sliceable_head_dims = []
|
298 |
+
|
299 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
300 |
+
if hasattr(module, "set_attention_slice"):
|
301 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
302 |
+
|
303 |
+
for child in module.children():
|
304 |
+
fn_recursive_retrieve_slicable_dims(child)
|
305 |
+
|
306 |
+
# retrieve number of attention layers
|
307 |
+
for module in self.children():
|
308 |
+
fn_recursive_retrieve_slicable_dims(module)
|
309 |
+
|
310 |
+
num_slicable_layers = len(sliceable_head_dims)
|
311 |
+
|
312 |
+
if slice_size == "auto":
|
313 |
+
# half the attention head size is usually a good trade-off between
|
314 |
+
# speed and memory
|
315 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
316 |
+
elif slice_size == "max":
|
317 |
+
# make smallest slice possible
|
318 |
+
slice_size = num_slicable_layers * [1]
|
319 |
+
|
320 |
+
slice_size = (
|
321 |
+
num_slicable_layers * [slice_size]
|
322 |
+
if not isinstance(slice_size, list)
|
323 |
+
else slice_size
|
324 |
+
)
|
325 |
+
|
326 |
+
if len(slice_size) != len(sliceable_head_dims):
|
327 |
+
raise ValueError(
|
328 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
329 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
330 |
+
)
|
331 |
+
|
332 |
+
for i in range(len(slice_size)):
|
333 |
+
size = slice_size[i]
|
334 |
+
dim = sliceable_head_dims[i]
|
335 |
+
if size is not None and size > dim:
|
336 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
337 |
+
|
338 |
+
# Recursively walk through all the children.
|
339 |
+
# Any children which exposes the set_attention_slice method
|
340 |
+
# gets the message
|
341 |
+
def fn_recursive_set_attention_slice(
|
342 |
+
module: torch.nn.Module, slice_size: List[int]
|
343 |
+
):
|
344 |
+
if hasattr(module, "set_attention_slice"):
|
345 |
+
module.set_attention_slice(slice_size.pop())
|
346 |
+
|
347 |
+
for child in module.children():
|
348 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
349 |
+
|
350 |
+
reversed_slice_size = list(reversed(slice_size))
|
351 |
+
for module in self.children():
|
352 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
353 |
+
|
354 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
355 |
+
if hasattr(module, "gradient_checkpointing"):
|
356 |
+
module.gradient_checkpointing = value
|
357 |
+
|
358 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
359 |
+
def set_attn_processor(
|
360 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
361 |
+
):
|
362 |
+
r"""
|
363 |
+
Sets the attention processor to use to compute attention.
|
364 |
+
|
365 |
+
Parameters:
|
366 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
367 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
368 |
+
for **all** `Attention` layers.
|
369 |
+
|
370 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
371 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
372 |
+
|
373 |
+
"""
|
374 |
+
count = len(self.attn_processors.keys())
|
375 |
+
|
376 |
+
if isinstance(processor, dict) and len(processor) != count:
|
377 |
+
raise ValueError(
|
378 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
379 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
380 |
+
)
|
381 |
+
|
382 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
383 |
+
if hasattr(module, "set_processor"):
|
384 |
+
if not isinstance(processor, dict):
|
385 |
+
module.set_processor(processor)
|
386 |
+
else:
|
387 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
388 |
+
|
389 |
+
for sub_name, child in module.named_children():
|
390 |
+
if "temporal_transformer" not in sub_name:
|
391 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
392 |
+
|
393 |
+
for name, module in self.named_children():
|
394 |
+
if "temporal_transformer" not in name:
|
395 |
+
fn_recursive_attn_processor(name, module, processor)
|
396 |
+
|
397 |
+
def forward(
|
398 |
+
self,
|
399 |
+
sample: torch.FloatTensor,
|
400 |
+
timestep: Union[torch.Tensor, float, int],
|
401 |
+
encoder_hidden_states: torch.Tensor,
|
402 |
+
class_labels: Optional[torch.Tensor] = None,
|
403 |
+
pose_cond_fea: Optional[torch.Tensor] = None,
|
404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
405 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
406 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
407 |
+
return_dict: bool = True,
|
408 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
409 |
+
r"""
|
410 |
+
Args:
|
411 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
412 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
413 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
414 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
415 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
419 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
420 |
+
returning a tuple, the first element is the sample tensor.
|
421 |
+
"""
|
422 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
423 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
424 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
425 |
+
# on the fly if necessary.
|
426 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
427 |
+
|
428 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
429 |
+
forward_upsample_size = False
|
430 |
+
upsample_size = None
|
431 |
+
|
432 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
433 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
434 |
+
forward_upsample_size = True
|
435 |
+
|
436 |
+
# prepare attention_mask
|
437 |
+
if attention_mask is not None:
|
438 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
439 |
+
attention_mask = attention_mask.unsqueeze(1)
|
440 |
+
|
441 |
+
# center input if necessary
|
442 |
+
if self.config.center_input_sample:
|
443 |
+
sample = 2 * sample - 1.0
|
444 |
+
|
445 |
+
# time
|
446 |
+
timesteps = timestep
|
447 |
+
if not torch.is_tensor(timesteps):
|
448 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
449 |
+
is_mps = sample.device.type == "mps"
|
450 |
+
if isinstance(timestep, float):
|
451 |
+
dtype = torch.float32 if is_mps else torch.float64
|
452 |
+
else:
|
453 |
+
dtype = torch.int32 if is_mps else torch.int64
|
454 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
455 |
+
elif len(timesteps.shape) == 0:
|
456 |
+
timesteps = timesteps[None].to(sample.device)
|
457 |
+
|
458 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
459 |
+
timesteps = timesteps.expand(sample.shape[0])
|
460 |
+
|
461 |
+
t_emb = self.time_proj(timesteps)
|
462 |
+
|
463 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
464 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
465 |
+
# there might be better ways to encapsulate this.
|
466 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
467 |
+
emb = self.time_embedding(t_emb)
|
468 |
+
|
469 |
+
if self.class_embedding is not None:
|
470 |
+
if class_labels is None:
|
471 |
+
raise ValueError(
|
472 |
+
"class_labels should be provided when num_class_embeds > 0"
|
473 |
+
)
|
474 |
+
|
475 |
+
if self.config.class_embed_type == "timestep":
|
476 |
+
class_labels = self.time_proj(class_labels)
|
477 |
+
|
478 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
479 |
+
emb = emb + class_emb
|
480 |
+
|
481 |
+
# pre-process
|
482 |
+
sample = self.conv_in(sample)
|
483 |
+
if pose_cond_fea is not None:
|
484 |
+
sample = sample + pose_cond_fea
|
485 |
+
|
486 |
+
# down
|
487 |
+
down_block_res_samples = (sample,)
|
488 |
+
for downsample_block in self.down_blocks:
|
489 |
+
if (
|
490 |
+
hasattr(downsample_block, "has_cross_attention")
|
491 |
+
and downsample_block.has_cross_attention
|
492 |
+
):
|
493 |
+
sample, res_samples = downsample_block(
|
494 |
+
hidden_states=sample,
|
495 |
+
temb=emb,
|
496 |
+
encoder_hidden_states=encoder_hidden_states,
|
497 |
+
attention_mask=attention_mask,
|
498 |
+
)
|
499 |
+
else:
|
500 |
+
sample, res_samples = downsample_block(
|
501 |
+
hidden_states=sample,
|
502 |
+
temb=emb,
|
503 |
+
encoder_hidden_states=encoder_hidden_states,
|
504 |
+
)
|
505 |
+
|
506 |
+
down_block_res_samples += res_samples
|
507 |
+
|
508 |
+
if down_block_additional_residuals is not None:
|
509 |
+
new_down_block_res_samples = ()
|
510 |
+
|
511 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
512 |
+
down_block_res_samples, down_block_additional_residuals
|
513 |
+
):
|
514 |
+
down_block_res_sample = (
|
515 |
+
down_block_res_sample + down_block_additional_residual
|
516 |
+
)
|
517 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
518 |
+
|
519 |
+
down_block_res_samples = new_down_block_res_samples
|
520 |
+
|
521 |
+
# mid
|
522 |
+
sample = self.mid_block(
|
523 |
+
sample,
|
524 |
+
emb,
|
525 |
+
encoder_hidden_states=encoder_hidden_states,
|
526 |
+
attention_mask=attention_mask,
|
527 |
+
)
|
528 |
+
|
529 |
+
if mid_block_additional_residual is not None:
|
530 |
+
sample = sample + mid_block_additional_residual
|
531 |
+
|
532 |
+
# up
|
533 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
534 |
+
is_final_block = i == len(self.up_blocks) - 1
|
535 |
+
|
536 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
537 |
+
down_block_res_samples = down_block_res_samples[
|
538 |
+
: -len(upsample_block.resnets)
|
539 |
+
]
|
540 |
+
|
541 |
+
# if we have not reached the final block and need to forward the
|
542 |
+
# upsample size, we do it here
|
543 |
+
if not is_final_block and forward_upsample_size:
|
544 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
545 |
+
|
546 |
+
if (
|
547 |
+
hasattr(upsample_block, "has_cross_attention")
|
548 |
+
and upsample_block.has_cross_attention
|
549 |
+
):
|
550 |
+
sample = upsample_block(
|
551 |
+
hidden_states=sample,
|
552 |
+
temb=emb,
|
553 |
+
res_hidden_states_tuple=res_samples,
|
554 |
+
encoder_hidden_states=encoder_hidden_states,
|
555 |
+
upsample_size=upsample_size,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
)
|
558 |
+
else:
|
559 |
+
sample = upsample_block(
|
560 |
+
hidden_states=sample,
|
561 |
+
temb=emb,
|
562 |
+
res_hidden_states_tuple=res_samples,
|
563 |
+
upsample_size=upsample_size,
|
564 |
+
encoder_hidden_states=encoder_hidden_states,
|
565 |
+
)
|
566 |
+
|
567 |
+
# post-process
|
568 |
+
sample = self.conv_norm_out(sample)
|
569 |
+
sample = self.conv_act(sample)
|
570 |
+
sample = self.conv_out(sample)
|
571 |
+
|
572 |
+
if not return_dict:
|
573 |
+
return (sample,)
|
574 |
+
|
575 |
+
return UNet3DConditionOutput(sample=sample)
|
576 |
+
|
577 |
+
@classmethod
|
578 |
+
def from_pretrained_2d(
|
579 |
+
cls,
|
580 |
+
pretrained_model_path: PathLike,
|
581 |
+
motion_module_path: PathLike,
|
582 |
+
subfolder=None,
|
583 |
+
unet_additional_kwargs=None,
|
584 |
+
mm_zero_proj_out=False,
|
585 |
+
):
|
586 |
+
pretrained_model_path = Path(pretrained_model_path)
|
587 |
+
motion_module_path = Path(motion_module_path)
|
588 |
+
if subfolder is not None:
|
589 |
+
pretrained_model_path = pretrained_model_path.joinpath(subfolder)
|
590 |
+
logger.info(
|
591 |
+
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..."
|
592 |
+
)
|
593 |
+
|
594 |
+
config_file = pretrained_model_path / "config.json"
|
595 |
+
if not (config_file.exists() and config_file.is_file()):
|
596 |
+
raise RuntimeError(f"{config_file} does not exist or is not a file")
|
597 |
+
|
598 |
+
unet_config = cls.load_config(config_file)
|
599 |
+
unet_config["_class_name"] = cls.__name__
|
600 |
+
unet_config["down_block_types"] = [
|
601 |
+
"CrossAttnDownBlock3D",
|
602 |
+
"CrossAttnDownBlock3D",
|
603 |
+
"CrossAttnDownBlock3D",
|
604 |
+
"DownBlock3D",
|
605 |
+
]
|
606 |
+
unet_config["up_block_types"] = [
|
607 |
+
"UpBlock3D",
|
608 |
+
"CrossAttnUpBlock3D",
|
609 |
+
"CrossAttnUpBlock3D",
|
610 |
+
"CrossAttnUpBlock3D",
|
611 |
+
]
|
612 |
+
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
613 |
+
|
614 |
+
model = cls.from_config(unet_config, **unet_additional_kwargs)
|
615 |
+
# load the vanilla weights
|
616 |
+
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists():
|
617 |
+
logger.debug(
|
618 |
+
f"loading safeTensors weights from {pretrained_model_path} ..."
|
619 |
+
)
|
620 |
+
state_dict = load_file(
|
621 |
+
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu"
|
622 |
+
)
|
623 |
+
|
624 |
+
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists():
|
625 |
+
logger.debug(f"loading weights from {pretrained_model_path} ...")
|
626 |
+
state_dict = torch.load(
|
627 |
+
pretrained_model_path.joinpath(WEIGHTS_NAME),
|
628 |
+
map_location="cpu",
|
629 |
+
weights_only=True,
|
630 |
+
)
|
631 |
+
else:
|
632 |
+
raise FileNotFoundError(f"no weights file found in {pretrained_model_path}")
|
633 |
+
|
634 |
+
# load the motion module weights
|
635 |
+
if motion_module_path.exists() and motion_module_path.is_file():
|
636 |
+
if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]:
|
637 |
+
logger.info(f"Load motion module params from {motion_module_path}")
|
638 |
+
motion_state_dict = torch.load(
|
639 |
+
motion_module_path, map_location="cpu", weights_only=True
|
640 |
+
)
|
641 |
+
elif motion_module_path.suffix.lower() == ".safetensors":
|
642 |
+
motion_state_dict = load_file(motion_module_path, device="cpu")
|
643 |
+
else:
|
644 |
+
raise RuntimeError(
|
645 |
+
f"unknown file format for motion module weights: {motion_module_path.suffix}"
|
646 |
+
)
|
647 |
+
if mm_zero_proj_out:
|
648 |
+
logger.info(f"Zero initialize proj_out layers in motion module...")
|
649 |
+
new_motion_state_dict = OrderedDict()
|
650 |
+
for k in motion_state_dict:
|
651 |
+
if "proj_out" in k:
|
652 |
+
continue
|
653 |
+
new_motion_state_dict[k] = motion_state_dict[k]
|
654 |
+
motion_state_dict = new_motion_state_dict
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
for weight_name in list(motion_state_dict.keys()):
|
659 |
+
if weight_name[-2:]== 'pe':
|
660 |
+
del motion_state_dict[weight_name]
|
661 |
+
# print(weight_name)
|
662 |
+
|
663 |
+
# merge the state dicts
|
664 |
+
state_dict.update(motion_state_dict)
|
665 |
+
|
666 |
+
# load the weights into the model
|
667 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
668 |
+
logger.debug(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
669 |
+
|
670 |
+
params = [
|
671 |
+
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
|
672 |
+
]
|
673 |
+
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")
|
674 |
+
|
675 |
+
return model
|
models/unet_3d_blocks.py
ADDED
@@ -0,0 +1,871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import pdb
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from .motion_module import get_motion_module
|
9 |
+
|
10 |
+
# from .motion_module import get_motion_module
|
11 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
12 |
+
from .transformer_3d import Transformer3DModel
|
13 |
+
|
14 |
+
|
15 |
+
def get_down_block(
|
16 |
+
down_block_type,
|
17 |
+
num_layers,
|
18 |
+
in_channels,
|
19 |
+
out_channels,
|
20 |
+
temb_channels,
|
21 |
+
add_downsample,
|
22 |
+
resnet_eps,
|
23 |
+
resnet_act_fn,
|
24 |
+
attn_num_head_channels,
|
25 |
+
resnet_groups=None,
|
26 |
+
cross_attention_dim=None,
|
27 |
+
downsample_padding=None,
|
28 |
+
dual_cross_attention=False,
|
29 |
+
use_linear_projection=False,
|
30 |
+
only_cross_attention=False,
|
31 |
+
upcast_attention=False,
|
32 |
+
resnet_time_scale_shift="default",
|
33 |
+
unet_use_cross_frame_attention=None,
|
34 |
+
unet_use_temporal_attention=None,
|
35 |
+
use_inflated_groupnorm=None,
|
36 |
+
use_motion_module=None,
|
37 |
+
motion_module_type=None,
|
38 |
+
motion_module_kwargs=None,
|
39 |
+
):
|
40 |
+
down_block_type = (
|
41 |
+
down_block_type[7:]
|
42 |
+
if down_block_type.startswith("UNetRes")
|
43 |
+
else down_block_type
|
44 |
+
)
|
45 |
+
if down_block_type == "DownBlock3D":
|
46 |
+
return DownBlock3D(
|
47 |
+
num_layers=num_layers,
|
48 |
+
in_channels=in_channels,
|
49 |
+
out_channels=out_channels,
|
50 |
+
temb_channels=temb_channels,
|
51 |
+
add_downsample=add_downsample,
|
52 |
+
resnet_eps=resnet_eps,
|
53 |
+
resnet_act_fn=resnet_act_fn,
|
54 |
+
resnet_groups=resnet_groups,
|
55 |
+
downsample_padding=downsample_padding,
|
56 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
57 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
58 |
+
use_motion_module=use_motion_module,
|
59 |
+
motion_module_type=motion_module_type,
|
60 |
+
motion_module_kwargs=motion_module_kwargs,
|
61 |
+
)
|
62 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
63 |
+
if cross_attention_dim is None:
|
64 |
+
raise ValueError(
|
65 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock3D"
|
66 |
+
)
|
67 |
+
return CrossAttnDownBlock3D(
|
68 |
+
num_layers=num_layers,
|
69 |
+
in_channels=in_channels,
|
70 |
+
out_channels=out_channels,
|
71 |
+
temb_channels=temb_channels,
|
72 |
+
add_downsample=add_downsample,
|
73 |
+
resnet_eps=resnet_eps,
|
74 |
+
resnet_act_fn=resnet_act_fn,
|
75 |
+
resnet_groups=resnet_groups,
|
76 |
+
downsample_padding=downsample_padding,
|
77 |
+
cross_attention_dim=cross_attention_dim,
|
78 |
+
attn_num_head_channels=attn_num_head_channels,
|
79 |
+
dual_cross_attention=dual_cross_attention,
|
80 |
+
use_linear_projection=use_linear_projection,
|
81 |
+
only_cross_attention=only_cross_attention,
|
82 |
+
upcast_attention=upcast_attention,
|
83 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
84 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
85 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
86 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
87 |
+
use_motion_module=use_motion_module,
|
88 |
+
motion_module_type=motion_module_type,
|
89 |
+
motion_module_kwargs=motion_module_kwargs,
|
90 |
+
)
|
91 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
92 |
+
|
93 |
+
|
94 |
+
def get_up_block(
|
95 |
+
up_block_type,
|
96 |
+
num_layers,
|
97 |
+
in_channels,
|
98 |
+
out_channels,
|
99 |
+
prev_output_channel,
|
100 |
+
temb_channels,
|
101 |
+
add_upsample,
|
102 |
+
resnet_eps,
|
103 |
+
resnet_act_fn,
|
104 |
+
attn_num_head_channels,
|
105 |
+
resnet_groups=None,
|
106 |
+
cross_attention_dim=None,
|
107 |
+
dual_cross_attention=False,
|
108 |
+
use_linear_projection=False,
|
109 |
+
only_cross_attention=False,
|
110 |
+
upcast_attention=False,
|
111 |
+
resnet_time_scale_shift="default",
|
112 |
+
unet_use_cross_frame_attention=None,
|
113 |
+
unet_use_temporal_attention=None,
|
114 |
+
use_inflated_groupnorm=None,
|
115 |
+
use_motion_module=None,
|
116 |
+
motion_module_type=None,
|
117 |
+
motion_module_kwargs=None,
|
118 |
+
):
|
119 |
+
up_block_type = (
|
120 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
121 |
+
)
|
122 |
+
if up_block_type == "UpBlock3D":
|
123 |
+
return UpBlock3D(
|
124 |
+
num_layers=num_layers,
|
125 |
+
in_channels=in_channels,
|
126 |
+
out_channels=out_channels,
|
127 |
+
prev_output_channel=prev_output_channel,
|
128 |
+
temb_channels=temb_channels,
|
129 |
+
add_upsample=add_upsample,
|
130 |
+
resnet_eps=resnet_eps,
|
131 |
+
resnet_act_fn=resnet_act_fn,
|
132 |
+
resnet_groups=resnet_groups,
|
133 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
134 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
135 |
+
use_motion_module=use_motion_module,
|
136 |
+
motion_module_type=motion_module_type,
|
137 |
+
motion_module_kwargs=motion_module_kwargs,
|
138 |
+
)
|
139 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
140 |
+
if cross_attention_dim is None:
|
141 |
+
raise ValueError(
|
142 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock3D"
|
143 |
+
)
|
144 |
+
return CrossAttnUpBlock3D(
|
145 |
+
num_layers=num_layers,
|
146 |
+
in_channels=in_channels,
|
147 |
+
out_channels=out_channels,
|
148 |
+
prev_output_channel=prev_output_channel,
|
149 |
+
temb_channels=temb_channels,
|
150 |
+
add_upsample=add_upsample,
|
151 |
+
resnet_eps=resnet_eps,
|
152 |
+
resnet_act_fn=resnet_act_fn,
|
153 |
+
resnet_groups=resnet_groups,
|
154 |
+
cross_attention_dim=cross_attention_dim,
|
155 |
+
attn_num_head_channels=attn_num_head_channels,
|
156 |
+
dual_cross_attention=dual_cross_attention,
|
157 |
+
use_linear_projection=use_linear_projection,
|
158 |
+
only_cross_attention=only_cross_attention,
|
159 |
+
upcast_attention=upcast_attention,
|
160 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
161 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
162 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
163 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
164 |
+
use_motion_module=use_motion_module,
|
165 |
+
motion_module_type=motion_module_type,
|
166 |
+
motion_module_kwargs=motion_module_kwargs,
|
167 |
+
)
|
168 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
169 |
+
|
170 |
+
|
171 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
in_channels: int,
|
175 |
+
temb_channels: int,
|
176 |
+
dropout: float = 0.0,
|
177 |
+
num_layers: int = 1,
|
178 |
+
resnet_eps: float = 1e-6,
|
179 |
+
resnet_time_scale_shift: str = "default",
|
180 |
+
resnet_act_fn: str = "swish",
|
181 |
+
resnet_groups: int = 32,
|
182 |
+
resnet_pre_norm: bool = True,
|
183 |
+
attn_num_head_channels=1,
|
184 |
+
output_scale_factor=1.0,
|
185 |
+
cross_attention_dim=1280,
|
186 |
+
dual_cross_attention=False,
|
187 |
+
use_linear_projection=False,
|
188 |
+
upcast_attention=False,
|
189 |
+
unet_use_cross_frame_attention=None,
|
190 |
+
unet_use_temporal_attention=None,
|
191 |
+
use_inflated_groupnorm=None,
|
192 |
+
use_motion_module=None,
|
193 |
+
motion_module_type=None,
|
194 |
+
motion_module_kwargs=None,
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
self.has_cross_attention = True
|
199 |
+
self.attn_num_head_channels = attn_num_head_channels
|
200 |
+
resnet_groups = (
|
201 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
202 |
+
)
|
203 |
+
|
204 |
+
# there is always at least one resnet
|
205 |
+
resnets = [
|
206 |
+
ResnetBlock3D(
|
207 |
+
in_channels=in_channels,
|
208 |
+
out_channels=in_channels,
|
209 |
+
temb_channels=temb_channels,
|
210 |
+
eps=resnet_eps,
|
211 |
+
groups=resnet_groups,
|
212 |
+
dropout=dropout,
|
213 |
+
time_embedding_norm=resnet_time_scale_shift,
|
214 |
+
non_linearity=resnet_act_fn,
|
215 |
+
output_scale_factor=output_scale_factor,
|
216 |
+
pre_norm=resnet_pre_norm,
|
217 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
218 |
+
)
|
219 |
+
]
|
220 |
+
attentions = []
|
221 |
+
motion_modules = []
|
222 |
+
|
223 |
+
for _ in range(num_layers):
|
224 |
+
if dual_cross_attention:
|
225 |
+
raise NotImplementedError
|
226 |
+
attentions.append(
|
227 |
+
Transformer3DModel(
|
228 |
+
attn_num_head_channels,
|
229 |
+
in_channels // attn_num_head_channels,
|
230 |
+
in_channels=in_channels,
|
231 |
+
num_layers=1,
|
232 |
+
cross_attention_dim=cross_attention_dim,
|
233 |
+
norm_num_groups=resnet_groups,
|
234 |
+
use_linear_projection=use_linear_projection,
|
235 |
+
upcast_attention=upcast_attention,
|
236 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
237 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
238 |
+
)
|
239 |
+
)
|
240 |
+
motion_modules.append(
|
241 |
+
get_motion_module(
|
242 |
+
in_channels=in_channels,
|
243 |
+
motion_module_type=motion_module_type,
|
244 |
+
motion_module_kwargs=motion_module_kwargs,
|
245 |
+
)
|
246 |
+
if use_motion_module
|
247 |
+
else None
|
248 |
+
)
|
249 |
+
resnets.append(
|
250 |
+
ResnetBlock3D(
|
251 |
+
in_channels=in_channels,
|
252 |
+
out_channels=in_channels,
|
253 |
+
temb_channels=temb_channels,
|
254 |
+
eps=resnet_eps,
|
255 |
+
groups=resnet_groups,
|
256 |
+
dropout=dropout,
|
257 |
+
time_embedding_norm=resnet_time_scale_shift,
|
258 |
+
non_linearity=resnet_act_fn,
|
259 |
+
output_scale_factor=output_scale_factor,
|
260 |
+
pre_norm=resnet_pre_norm,
|
261 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
262 |
+
)
|
263 |
+
)
|
264 |
+
|
265 |
+
self.attentions = nn.ModuleList(attentions)
|
266 |
+
self.resnets = nn.ModuleList(resnets)
|
267 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
268 |
+
|
269 |
+
def forward(
|
270 |
+
self,
|
271 |
+
hidden_states,
|
272 |
+
temb=None,
|
273 |
+
encoder_hidden_states=None,
|
274 |
+
attention_mask=None,
|
275 |
+
):
|
276 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
277 |
+
for attn, resnet, motion_module in zip(
|
278 |
+
self.attentions, self.resnets[1:], self.motion_modules
|
279 |
+
):
|
280 |
+
hidden_states = attn(
|
281 |
+
hidden_states,
|
282 |
+
encoder_hidden_states=encoder_hidden_states,
|
283 |
+
).sample
|
284 |
+
hidden_states = (
|
285 |
+
motion_module(
|
286 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
287 |
+
)
|
288 |
+
if motion_module is not None
|
289 |
+
else hidden_states
|
290 |
+
)
|
291 |
+
hidden_states = resnet(hidden_states, temb)
|
292 |
+
|
293 |
+
return hidden_states
|
294 |
+
|
295 |
+
|
296 |
+
class CrossAttnDownBlock3D(nn.Module):
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
in_channels: int,
|
300 |
+
out_channels: int,
|
301 |
+
temb_channels: int,
|
302 |
+
dropout: float = 0.0,
|
303 |
+
num_layers: int = 1,
|
304 |
+
resnet_eps: float = 1e-6,
|
305 |
+
resnet_time_scale_shift: str = "default",
|
306 |
+
resnet_act_fn: str = "swish",
|
307 |
+
resnet_groups: int = 32,
|
308 |
+
resnet_pre_norm: bool = True,
|
309 |
+
attn_num_head_channels=1,
|
310 |
+
cross_attention_dim=1280,
|
311 |
+
output_scale_factor=1.0,
|
312 |
+
downsample_padding=1,
|
313 |
+
add_downsample=True,
|
314 |
+
dual_cross_attention=False,
|
315 |
+
use_linear_projection=False,
|
316 |
+
only_cross_attention=False,
|
317 |
+
upcast_attention=False,
|
318 |
+
unet_use_cross_frame_attention=None,
|
319 |
+
unet_use_temporal_attention=None,
|
320 |
+
use_inflated_groupnorm=None,
|
321 |
+
use_motion_module=None,
|
322 |
+
motion_module_type=None,
|
323 |
+
motion_module_kwargs=None,
|
324 |
+
):
|
325 |
+
super().__init__()
|
326 |
+
resnets = []
|
327 |
+
attentions = []
|
328 |
+
motion_modules = []
|
329 |
+
|
330 |
+
self.has_cross_attention = True
|
331 |
+
self.attn_num_head_channels = attn_num_head_channels
|
332 |
+
|
333 |
+
for i in range(num_layers):
|
334 |
+
in_channels = in_channels if i == 0 else out_channels
|
335 |
+
resnets.append(
|
336 |
+
ResnetBlock3D(
|
337 |
+
in_channels=in_channels,
|
338 |
+
out_channels=out_channels,
|
339 |
+
temb_channels=temb_channels,
|
340 |
+
eps=resnet_eps,
|
341 |
+
groups=resnet_groups,
|
342 |
+
dropout=dropout,
|
343 |
+
time_embedding_norm=resnet_time_scale_shift,
|
344 |
+
non_linearity=resnet_act_fn,
|
345 |
+
output_scale_factor=output_scale_factor,
|
346 |
+
pre_norm=resnet_pre_norm,
|
347 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
348 |
+
)
|
349 |
+
)
|
350 |
+
if dual_cross_attention:
|
351 |
+
raise NotImplementedError
|
352 |
+
attentions.append(
|
353 |
+
Transformer3DModel(
|
354 |
+
attn_num_head_channels,
|
355 |
+
out_channels // attn_num_head_channels,
|
356 |
+
in_channels=out_channels,
|
357 |
+
num_layers=1,
|
358 |
+
cross_attention_dim=cross_attention_dim,
|
359 |
+
norm_num_groups=resnet_groups,
|
360 |
+
use_linear_projection=use_linear_projection,
|
361 |
+
only_cross_attention=only_cross_attention,
|
362 |
+
upcast_attention=upcast_attention,
|
363 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
364 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
365 |
+
)
|
366 |
+
)
|
367 |
+
motion_modules.append(
|
368 |
+
get_motion_module(
|
369 |
+
in_channels=out_channels,
|
370 |
+
motion_module_type=motion_module_type,
|
371 |
+
motion_module_kwargs=motion_module_kwargs,
|
372 |
+
)
|
373 |
+
if use_motion_module
|
374 |
+
else None
|
375 |
+
)
|
376 |
+
|
377 |
+
self.attentions = nn.ModuleList(attentions)
|
378 |
+
self.resnets = nn.ModuleList(resnets)
|
379 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
380 |
+
|
381 |
+
if add_downsample:
|
382 |
+
self.downsamplers = nn.ModuleList(
|
383 |
+
[
|
384 |
+
Downsample3D(
|
385 |
+
out_channels,
|
386 |
+
use_conv=True,
|
387 |
+
out_channels=out_channels,
|
388 |
+
padding=downsample_padding,
|
389 |
+
name="op",
|
390 |
+
)
|
391 |
+
]
|
392 |
+
)
|
393 |
+
else:
|
394 |
+
self.downsamplers = None
|
395 |
+
|
396 |
+
self.gradient_checkpointing = False
|
397 |
+
|
398 |
+
def forward(
|
399 |
+
self,
|
400 |
+
hidden_states,
|
401 |
+
temb=None,
|
402 |
+
encoder_hidden_states=None,
|
403 |
+
attention_mask=None,
|
404 |
+
):
|
405 |
+
output_states = ()
|
406 |
+
|
407 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
408 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
409 |
+
):
|
410 |
+
# self.gradient_checkpointing = False
|
411 |
+
if self.training and self.gradient_checkpointing:
|
412 |
+
|
413 |
+
def create_custom_forward(module, return_dict=None):
|
414 |
+
def custom_forward(*inputs):
|
415 |
+
if return_dict is not None:
|
416 |
+
return module(*inputs, return_dict=return_dict)
|
417 |
+
else:
|
418 |
+
return module(*inputs)
|
419 |
+
|
420 |
+
return custom_forward
|
421 |
+
|
422 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
423 |
+
create_custom_forward(resnet), hidden_states, temb
|
424 |
+
)
|
425 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
426 |
+
create_custom_forward(attn, return_dict=False),
|
427 |
+
hidden_states,
|
428 |
+
encoder_hidden_states,
|
429 |
+
)[0]
|
430 |
+
|
431 |
+
# add motion module
|
432 |
+
if motion_module is not None:
|
433 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
434 |
+
create_custom_forward(motion_module),
|
435 |
+
hidden_states.requires_grad_(),
|
436 |
+
temb,
|
437 |
+
encoder_hidden_states,
|
438 |
+
)
|
439 |
+
|
440 |
+
# # add motion module
|
441 |
+
# hidden_states = (
|
442 |
+
# motion_module(
|
443 |
+
# hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
444 |
+
# )
|
445 |
+
# if motion_module is not None
|
446 |
+
# else hidden_states
|
447 |
+
# )
|
448 |
+
|
449 |
+
else:
|
450 |
+
hidden_states = resnet(hidden_states, temb)
|
451 |
+
hidden_states = attn(
|
452 |
+
hidden_states,
|
453 |
+
encoder_hidden_states=encoder_hidden_states,
|
454 |
+
).sample
|
455 |
+
|
456 |
+
# add motion module
|
457 |
+
hidden_states = (
|
458 |
+
motion_module(
|
459 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
460 |
+
)
|
461 |
+
if motion_module is not None
|
462 |
+
else hidden_states
|
463 |
+
)
|
464 |
+
|
465 |
+
output_states += (hidden_states,)
|
466 |
+
|
467 |
+
if self.downsamplers is not None:
|
468 |
+
for downsampler in self.downsamplers:
|
469 |
+
hidden_states = downsampler(hidden_states)
|
470 |
+
|
471 |
+
output_states += (hidden_states,)
|
472 |
+
|
473 |
+
return hidden_states, output_states
|
474 |
+
|
475 |
+
|
476 |
+
class DownBlock3D(nn.Module):
|
477 |
+
def __init__(
|
478 |
+
self,
|
479 |
+
in_channels: int,
|
480 |
+
out_channels: int,
|
481 |
+
temb_channels: int,
|
482 |
+
dropout: float = 0.0,
|
483 |
+
num_layers: int = 1,
|
484 |
+
resnet_eps: float = 1e-6,
|
485 |
+
resnet_time_scale_shift: str = "default",
|
486 |
+
resnet_act_fn: str = "swish",
|
487 |
+
resnet_groups: int = 32,
|
488 |
+
resnet_pre_norm: bool = True,
|
489 |
+
output_scale_factor=1.0,
|
490 |
+
add_downsample=True,
|
491 |
+
downsample_padding=1,
|
492 |
+
use_inflated_groupnorm=None,
|
493 |
+
use_motion_module=None,
|
494 |
+
motion_module_type=None,
|
495 |
+
motion_module_kwargs=None,
|
496 |
+
):
|
497 |
+
super().__init__()
|
498 |
+
resnets = []
|
499 |
+
motion_modules = []
|
500 |
+
|
501 |
+
# use_motion_module = False
|
502 |
+
for i in range(num_layers):
|
503 |
+
in_channels = in_channels if i == 0 else out_channels
|
504 |
+
resnets.append(
|
505 |
+
ResnetBlock3D(
|
506 |
+
in_channels=in_channels,
|
507 |
+
out_channels=out_channels,
|
508 |
+
temb_channels=temb_channels,
|
509 |
+
eps=resnet_eps,
|
510 |
+
groups=resnet_groups,
|
511 |
+
dropout=dropout,
|
512 |
+
time_embedding_norm=resnet_time_scale_shift,
|
513 |
+
non_linearity=resnet_act_fn,
|
514 |
+
output_scale_factor=output_scale_factor,
|
515 |
+
pre_norm=resnet_pre_norm,
|
516 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
517 |
+
)
|
518 |
+
)
|
519 |
+
motion_modules.append(
|
520 |
+
get_motion_module(
|
521 |
+
in_channels=out_channels,
|
522 |
+
motion_module_type=motion_module_type,
|
523 |
+
motion_module_kwargs=motion_module_kwargs,
|
524 |
+
)
|
525 |
+
if use_motion_module
|
526 |
+
else None
|
527 |
+
)
|
528 |
+
|
529 |
+
self.resnets = nn.ModuleList(resnets)
|
530 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
531 |
+
|
532 |
+
if add_downsample:
|
533 |
+
self.downsamplers = nn.ModuleList(
|
534 |
+
[
|
535 |
+
Downsample3D(
|
536 |
+
out_channels,
|
537 |
+
use_conv=True,
|
538 |
+
out_channels=out_channels,
|
539 |
+
padding=downsample_padding,
|
540 |
+
name="op",
|
541 |
+
)
|
542 |
+
]
|
543 |
+
)
|
544 |
+
else:
|
545 |
+
self.downsamplers = None
|
546 |
+
|
547 |
+
self.gradient_checkpointing = False
|
548 |
+
|
549 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
550 |
+
output_states = ()
|
551 |
+
|
552 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
553 |
+
# print(f"DownBlock3D {self.gradient_checkpointing = }")
|
554 |
+
if self.training and self.gradient_checkpointing:
|
555 |
+
|
556 |
+
def create_custom_forward(module):
|
557 |
+
def custom_forward(*inputs):
|
558 |
+
return module(*inputs)
|
559 |
+
|
560 |
+
return custom_forward
|
561 |
+
|
562 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
563 |
+
create_custom_forward(resnet), hidden_states, temb
|
564 |
+
)
|
565 |
+
if motion_module is not None:
|
566 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
567 |
+
create_custom_forward(motion_module),
|
568 |
+
hidden_states.requires_grad_(),
|
569 |
+
temb,
|
570 |
+
encoder_hidden_states,
|
571 |
+
)
|
572 |
+
else:
|
573 |
+
hidden_states = resnet(hidden_states, temb)
|
574 |
+
|
575 |
+
# add motion module
|
576 |
+
hidden_states = (
|
577 |
+
motion_module(
|
578 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
579 |
+
)
|
580 |
+
if motion_module is not None
|
581 |
+
else hidden_states
|
582 |
+
)
|
583 |
+
|
584 |
+
output_states += (hidden_states,)
|
585 |
+
|
586 |
+
if self.downsamplers is not None:
|
587 |
+
for downsampler in self.downsamplers:
|
588 |
+
hidden_states = downsampler(hidden_states)
|
589 |
+
|
590 |
+
output_states += (hidden_states,)
|
591 |
+
|
592 |
+
return hidden_states, output_states
|
593 |
+
|
594 |
+
|
595 |
+
class CrossAttnUpBlock3D(nn.Module):
|
596 |
+
def __init__(
|
597 |
+
self,
|
598 |
+
in_channels: int,
|
599 |
+
out_channels: int,
|
600 |
+
prev_output_channel: int,
|
601 |
+
temb_channels: int,
|
602 |
+
dropout: float = 0.0,
|
603 |
+
num_layers: int = 1,
|
604 |
+
resnet_eps: float = 1e-6,
|
605 |
+
resnet_time_scale_shift: str = "default",
|
606 |
+
resnet_act_fn: str = "swish",
|
607 |
+
resnet_groups: int = 32,
|
608 |
+
resnet_pre_norm: bool = True,
|
609 |
+
attn_num_head_channels=1,
|
610 |
+
cross_attention_dim=1280,
|
611 |
+
output_scale_factor=1.0,
|
612 |
+
add_upsample=True,
|
613 |
+
dual_cross_attention=False,
|
614 |
+
use_linear_projection=False,
|
615 |
+
only_cross_attention=False,
|
616 |
+
upcast_attention=False,
|
617 |
+
unet_use_cross_frame_attention=None,
|
618 |
+
unet_use_temporal_attention=None,
|
619 |
+
use_motion_module=None,
|
620 |
+
use_inflated_groupnorm=None,
|
621 |
+
motion_module_type=None,
|
622 |
+
motion_module_kwargs=None,
|
623 |
+
):
|
624 |
+
super().__init__()
|
625 |
+
resnets = []
|
626 |
+
attentions = []
|
627 |
+
motion_modules = []
|
628 |
+
|
629 |
+
self.has_cross_attention = True
|
630 |
+
self.attn_num_head_channels = attn_num_head_channels
|
631 |
+
|
632 |
+
for i in range(num_layers):
|
633 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
634 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
635 |
+
|
636 |
+
resnets.append(
|
637 |
+
ResnetBlock3D(
|
638 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
639 |
+
out_channels=out_channels,
|
640 |
+
temb_channels=temb_channels,
|
641 |
+
eps=resnet_eps,
|
642 |
+
groups=resnet_groups,
|
643 |
+
dropout=dropout,
|
644 |
+
time_embedding_norm=resnet_time_scale_shift,
|
645 |
+
non_linearity=resnet_act_fn,
|
646 |
+
output_scale_factor=output_scale_factor,
|
647 |
+
pre_norm=resnet_pre_norm,
|
648 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
649 |
+
)
|
650 |
+
)
|
651 |
+
if dual_cross_attention:
|
652 |
+
raise NotImplementedError
|
653 |
+
attentions.append(
|
654 |
+
Transformer3DModel(
|
655 |
+
attn_num_head_channels,
|
656 |
+
out_channels // attn_num_head_channels,
|
657 |
+
in_channels=out_channels,
|
658 |
+
num_layers=1,
|
659 |
+
cross_attention_dim=cross_attention_dim,
|
660 |
+
norm_num_groups=resnet_groups,
|
661 |
+
use_linear_projection=use_linear_projection,
|
662 |
+
only_cross_attention=only_cross_attention,
|
663 |
+
upcast_attention=upcast_attention,
|
664 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
665 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
666 |
+
)
|
667 |
+
)
|
668 |
+
motion_modules.append(
|
669 |
+
get_motion_module(
|
670 |
+
in_channels=out_channels,
|
671 |
+
motion_module_type=motion_module_type,
|
672 |
+
motion_module_kwargs=motion_module_kwargs,
|
673 |
+
)
|
674 |
+
if use_motion_module
|
675 |
+
else None
|
676 |
+
)
|
677 |
+
|
678 |
+
self.attentions = nn.ModuleList(attentions)
|
679 |
+
self.resnets = nn.ModuleList(resnets)
|
680 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
681 |
+
|
682 |
+
if add_upsample:
|
683 |
+
self.upsamplers = nn.ModuleList(
|
684 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
685 |
+
)
|
686 |
+
else:
|
687 |
+
self.upsamplers = None
|
688 |
+
|
689 |
+
self.gradient_checkpointing = False
|
690 |
+
|
691 |
+
def forward(
|
692 |
+
self,
|
693 |
+
hidden_states,
|
694 |
+
res_hidden_states_tuple,
|
695 |
+
temb=None,
|
696 |
+
encoder_hidden_states=None,
|
697 |
+
upsample_size=None,
|
698 |
+
attention_mask=None,
|
699 |
+
):
|
700 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
701 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
702 |
+
):
|
703 |
+
# pop res hidden states
|
704 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
705 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
706 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
707 |
+
|
708 |
+
if self.training and self.gradient_checkpointing:
|
709 |
+
|
710 |
+
def create_custom_forward(module, return_dict=None):
|
711 |
+
def custom_forward(*inputs):
|
712 |
+
if return_dict is not None:
|
713 |
+
return module(*inputs, return_dict=return_dict)
|
714 |
+
else:
|
715 |
+
return module(*inputs)
|
716 |
+
|
717 |
+
return custom_forward
|
718 |
+
|
719 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
720 |
+
create_custom_forward(resnet), hidden_states, temb
|
721 |
+
)
|
722 |
+
hidden_states = attn(
|
723 |
+
hidden_states,
|
724 |
+
encoder_hidden_states=encoder_hidden_states,
|
725 |
+
).sample
|
726 |
+
if motion_module is not None:
|
727 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
728 |
+
create_custom_forward(motion_module),
|
729 |
+
hidden_states.requires_grad_(),
|
730 |
+
temb,
|
731 |
+
encoder_hidden_states,
|
732 |
+
)
|
733 |
+
|
734 |
+
else:
|
735 |
+
hidden_states = resnet(hidden_states, temb)
|
736 |
+
hidden_states = attn(
|
737 |
+
hidden_states,
|
738 |
+
encoder_hidden_states=encoder_hidden_states,
|
739 |
+
).sample
|
740 |
+
|
741 |
+
# add motion module
|
742 |
+
hidden_states = (
|
743 |
+
motion_module(
|
744 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
745 |
+
)
|
746 |
+
if motion_module is not None
|
747 |
+
else hidden_states
|
748 |
+
)
|
749 |
+
|
750 |
+
if self.upsamplers is not None:
|
751 |
+
for upsampler in self.upsamplers:
|
752 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
753 |
+
|
754 |
+
return hidden_states
|
755 |
+
|
756 |
+
|
757 |
+
class UpBlock3D(nn.Module):
|
758 |
+
def __init__(
|
759 |
+
self,
|
760 |
+
in_channels: int,
|
761 |
+
prev_output_channel: int,
|
762 |
+
out_channels: int,
|
763 |
+
temb_channels: int,
|
764 |
+
dropout: float = 0.0,
|
765 |
+
num_layers: int = 1,
|
766 |
+
resnet_eps: float = 1e-6,
|
767 |
+
resnet_time_scale_shift: str = "default",
|
768 |
+
resnet_act_fn: str = "swish",
|
769 |
+
resnet_groups: int = 32,
|
770 |
+
resnet_pre_norm: bool = True,
|
771 |
+
output_scale_factor=1.0,
|
772 |
+
add_upsample=True,
|
773 |
+
use_inflated_groupnorm=None,
|
774 |
+
use_motion_module=None,
|
775 |
+
motion_module_type=None,
|
776 |
+
motion_module_kwargs=None,
|
777 |
+
):
|
778 |
+
super().__init__()
|
779 |
+
resnets = []
|
780 |
+
motion_modules = []
|
781 |
+
|
782 |
+
# use_motion_module = False
|
783 |
+
for i in range(num_layers):
|
784 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
785 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
786 |
+
|
787 |
+
resnets.append(
|
788 |
+
ResnetBlock3D(
|
789 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
790 |
+
out_channels=out_channels,
|
791 |
+
temb_channels=temb_channels,
|
792 |
+
eps=resnet_eps,
|
793 |
+
groups=resnet_groups,
|
794 |
+
dropout=dropout,
|
795 |
+
time_embedding_norm=resnet_time_scale_shift,
|
796 |
+
non_linearity=resnet_act_fn,
|
797 |
+
output_scale_factor=output_scale_factor,
|
798 |
+
pre_norm=resnet_pre_norm,
|
799 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
800 |
+
)
|
801 |
+
)
|
802 |
+
motion_modules.append(
|
803 |
+
get_motion_module(
|
804 |
+
in_channels=out_channels,
|
805 |
+
motion_module_type=motion_module_type,
|
806 |
+
motion_module_kwargs=motion_module_kwargs,
|
807 |
+
)
|
808 |
+
if use_motion_module
|
809 |
+
else None
|
810 |
+
)
|
811 |
+
|
812 |
+
self.resnets = nn.ModuleList(resnets)
|
813 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
814 |
+
|
815 |
+
if add_upsample:
|
816 |
+
self.upsamplers = nn.ModuleList(
|
817 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
818 |
+
)
|
819 |
+
else:
|
820 |
+
self.upsamplers = None
|
821 |
+
|
822 |
+
self.gradient_checkpointing = False
|
823 |
+
|
824 |
+
def forward(
|
825 |
+
self,
|
826 |
+
hidden_states,
|
827 |
+
res_hidden_states_tuple,
|
828 |
+
temb=None,
|
829 |
+
upsample_size=None,
|
830 |
+
encoder_hidden_states=None,
|
831 |
+
):
|
832 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
833 |
+
# pop res hidden states
|
834 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
835 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
836 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
837 |
+
|
838 |
+
# print(f"UpBlock3D {self.gradient_checkpointing = }")
|
839 |
+
if self.training and self.gradient_checkpointing:
|
840 |
+
|
841 |
+
def create_custom_forward(module):
|
842 |
+
def custom_forward(*inputs):
|
843 |
+
return module(*inputs)
|
844 |
+
|
845 |
+
return custom_forward
|
846 |
+
|
847 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
848 |
+
create_custom_forward(resnet), hidden_states, temb
|
849 |
+
)
|
850 |
+
if motion_module is not None:
|
851 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
852 |
+
create_custom_forward(motion_module),
|
853 |
+
hidden_states.requires_grad_(),
|
854 |
+
temb,
|
855 |
+
encoder_hidden_states,
|
856 |
+
)
|
857 |
+
else:
|
858 |
+
hidden_states = resnet(hidden_states, temb)
|
859 |
+
hidden_states = (
|
860 |
+
motion_module(
|
861 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
862 |
+
)
|
863 |
+
if motion_module is not None
|
864 |
+
else hidden_states
|
865 |
+
)
|
866 |
+
|
867 |
+
if self.upsamplers is not None:
|
868 |
+
for upsampler in self.upsamplers:
|
869 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
870 |
+
|
871 |
+
return hidden_states
|
musepose/__init__.py
ADDED
File without changes
|
musepose/dataset/dance_image.py
ADDED
@@ -0,0 +1,130 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torchvision.transforms as transforms
|
6 |
+
from decord import VideoReader
|
7 |
+
from PIL import Image
|
8 |
+
from torch.utils.data import Dataset
|
9 |
+
from transformers import CLIPImageProcessor
|
10 |
+
|
11 |
+
|
12 |
+
class HumanDanceDataset(Dataset):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
img_size,
|
16 |
+
img_scale=(1.0, 1.0),
|
17 |
+
img_ratio=(0.9, 1.0),
|
18 |
+
drop_ratio=0.1,
|
19 |
+
data_meta_paths=["./data/fahsion_meta.json"],
|
20 |
+
sample_margin=30,
|
21 |
+
):
|
22 |
+
super().__init__()
|
23 |
+
|
24 |
+
self.img_size = img_size
|
25 |
+
self.img_scale = img_scale
|
26 |
+
self.img_ratio = img_ratio
|
27 |
+
self.sample_margin = sample_margin
|
28 |
+
|
29 |
+
# -----
|
30 |
+
# vid_meta format:
|
31 |
+
# [{'video_path': , 'kps_path': , 'other':},
|
32 |
+
# {'video_path': , 'kps_path': , 'other':}]
|
33 |
+
# -----
|
34 |
+
vid_meta = []
|
35 |
+
for data_meta_path in data_meta_paths:
|
36 |
+
vid_meta.extend(json.load(open(data_meta_path, "r")))
|
37 |
+
self.vid_meta = vid_meta
|
38 |
+
|
39 |
+
self.clip_image_processor = CLIPImageProcessor()
|
40 |
+
|
41 |
+
self.transform = transforms.Compose(
|
42 |
+
[
|
43 |
+
# transforms.RandomResizedCrop(
|
44 |
+
# self.img_size,
|
45 |
+
# scale=self.img_scale,
|
46 |
+
# ratio=self.img_ratio,
|
47 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
48 |
+
# ),
|
49 |
+
transforms.Resize(
|
50 |
+
self.img_size,
|
51 |
+
),
|
52 |
+
transforms.ToTensor(),
|
53 |
+
transforms.Normalize([0.5], [0.5]),
|
54 |
+
]
|
55 |
+
)
|
56 |
+
|
57 |
+
self.cond_transform = transforms.Compose(
|
58 |
+
[
|
59 |
+
# transforms.RandomResizedCrop(
|
60 |
+
# self.img_size,
|
61 |
+
# scale=self.img_scale,
|
62 |
+
# ratio=self.img_ratio,
|
63 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
64 |
+
# ),
|
65 |
+
transforms.Resize(
|
66 |
+
self.img_size,
|
67 |
+
),
|
68 |
+
transforms.ToTensor(),
|
69 |
+
]
|
70 |
+
)
|
71 |
+
|
72 |
+
self.drop_ratio = drop_ratio
|
73 |
+
|
74 |
+
def augmentation(self, image, transform, state=None):
|
75 |
+
if state is not None:
|
76 |
+
torch.set_rng_state(state)
|
77 |
+
return transform(image)
|
78 |
+
|
79 |
+
def __getitem__(self, index):
|
80 |
+
video_meta = self.vid_meta[index]
|
81 |
+
video_path = video_meta["video_path"]
|
82 |
+
kps_path = video_meta["kps_path"]
|
83 |
+
|
84 |
+
video_reader = VideoReader(video_path)
|
85 |
+
kps_reader = VideoReader(kps_path)
|
86 |
+
|
87 |
+
assert len(video_reader) == len(
|
88 |
+
kps_reader
|
89 |
+
), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"
|
90 |
+
|
91 |
+
video_length = len(video_reader)
|
92 |
+
|
93 |
+
margin = min(self.sample_margin, video_length)
|
94 |
+
|
95 |
+
ref_img_idx = random.randint(0, video_length - 1)
|
96 |
+
if ref_img_idx + margin < video_length:
|
97 |
+
tgt_img_idx = random.randint(ref_img_idx + margin, video_length - 1)
|
98 |
+
elif ref_img_idx - margin > 0:
|
99 |
+
tgt_img_idx = random.randint(0, ref_img_idx - margin)
|
100 |
+
else:
|
101 |
+
tgt_img_idx = random.randint(0, video_length - 1)
|
102 |
+
|
103 |
+
ref_img = video_reader[ref_img_idx]
|
104 |
+
ref_img_pil = Image.fromarray(ref_img.asnumpy())
|
105 |
+
tgt_img = video_reader[tgt_img_idx]
|
106 |
+
tgt_img_pil = Image.fromarray(tgt_img.asnumpy())
|
107 |
+
|
108 |
+
tgt_pose = kps_reader[tgt_img_idx]
|
109 |
+
tgt_pose_pil = Image.fromarray(tgt_pose.asnumpy())
|
110 |
+
|
111 |
+
state = torch.get_rng_state()
|
112 |
+
tgt_img = self.augmentation(tgt_img_pil, self.transform, state)
|
113 |
+
tgt_pose_img = self.augmentation(tgt_pose_pil, self.cond_transform, state)
|
114 |
+
ref_img_vae = self.augmentation(ref_img_pil, self.transform, state)
|
115 |
+
clip_image = self.clip_image_processor(
|
116 |
+
images=ref_img_pil, return_tensors="pt"
|
117 |
+
).pixel_values[0]
|
118 |
+
|
119 |
+
sample = dict(
|
120 |
+
video_dir=video_path,
|
121 |
+
img=tgt_img,
|
122 |
+
tgt_pose=tgt_pose_img,
|
123 |
+
ref_img=ref_img_vae,
|
124 |
+
clip_images=clip_image,
|
125 |
+
)
|
126 |
+
|
127 |
+
return sample
|
128 |
+
|
129 |
+
def __len__(self):
|
130 |
+
return len(self.vid_meta)
|
musepose/dataset/dance_video.py
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import random
|
3 |
+
from typing import List
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import pandas as pd
|
7 |
+
import torch
|
8 |
+
import torchvision.transforms as transforms
|
9 |
+
from decord import VideoReader
|
10 |
+
from PIL import Image
|
11 |
+
from torch.utils.data import Dataset
|
12 |
+
from transformers import CLIPImageProcessor
|
13 |
+
|
14 |
+
|
15 |
+
class HumanDanceVideoDataset(Dataset):
|
16 |
+
def __init__(
|
17 |
+
self,
|
18 |
+
sample_rate,
|
19 |
+
n_sample_frames,
|
20 |
+
width,
|
21 |
+
height,
|
22 |
+
img_scale=(1.0, 1.0),
|
23 |
+
img_ratio=(0.9, 1.0),
|
24 |
+
drop_ratio=0.1,
|
25 |
+
data_meta_paths=["./data/fashion_meta.json"],
|
26 |
+
):
|
27 |
+
super().__init__()
|
28 |
+
self.sample_rate = sample_rate
|
29 |
+
self.n_sample_frames = n_sample_frames
|
30 |
+
self.width = width
|
31 |
+
self.height = height
|
32 |
+
self.img_scale = img_scale
|
33 |
+
self.img_ratio = img_ratio
|
34 |
+
|
35 |
+
vid_meta = []
|
36 |
+
for data_meta_path in data_meta_paths:
|
37 |
+
vid_meta.extend(json.load(open(data_meta_path, "r")))
|
38 |
+
self.vid_meta = vid_meta
|
39 |
+
|
40 |
+
self.clip_image_processor = CLIPImageProcessor()
|
41 |
+
|
42 |
+
self.pixel_transform = transforms.Compose(
|
43 |
+
[
|
44 |
+
# transforms.RandomResizedCrop(
|
45 |
+
# (height, width),
|
46 |
+
# scale=self.img_scale,
|
47 |
+
# ratio=self.img_ratio,
|
48 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
49 |
+
# ),
|
50 |
+
transforms.Resize(
|
51 |
+
(height, width),
|
52 |
+
),
|
53 |
+
transforms.ToTensor(),
|
54 |
+
transforms.Normalize([0.5], [0.5]),
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
self.cond_transform = transforms.Compose(
|
59 |
+
[
|
60 |
+
# transforms.RandomResizedCrop(
|
61 |
+
# (height, width),
|
62 |
+
# scale=self.img_scale,
|
63 |
+
# ratio=self.img_ratio,
|
64 |
+
# interpolation=transforms.InterpolationMode.BILINEAR,
|
65 |
+
# ),
|
66 |
+
transforms.Resize(
|
67 |
+
(height, width),
|
68 |
+
),
|
69 |
+
transforms.ToTensor(),
|
70 |
+
]
|
71 |
+
)
|
72 |
+
|
73 |
+
self.drop_ratio = drop_ratio
|
74 |
+
|
75 |
+
def augmentation(self, images, transform, state=None):
|
76 |
+
if state is not None:
|
77 |
+
torch.set_rng_state(state)
|
78 |
+
if isinstance(images, List):
|
79 |
+
transformed_images = [transform(img) for img in images]
|
80 |
+
ret_tensor = torch.stack(transformed_images, dim=0) # (f, c, h, w)
|
81 |
+
else:
|
82 |
+
ret_tensor = transform(images) # (c, h, w)
|
83 |
+
return ret_tensor
|
84 |
+
|
85 |
+
def __getitem__(self, index):
|
86 |
+
video_meta = self.vid_meta[index]
|
87 |
+
video_path = video_meta["video_path"]
|
88 |
+
kps_path = video_meta["kps_path"]
|
89 |
+
|
90 |
+
video_reader = VideoReader(video_path)
|
91 |
+
kps_reader = VideoReader(kps_path)
|
92 |
+
|
93 |
+
assert len(video_reader) == len(
|
94 |
+
kps_reader
|
95 |
+
), f"{len(video_reader) = } != {len(kps_reader) = } in {video_path}"
|
96 |
+
|
97 |
+
video_length = len(video_reader)
|
98 |
+
video_fps = video_reader.get_avg_fps()
|
99 |
+
# print("fps", video_fps)
|
100 |
+
if video_fps > 30: # 30-60
|
101 |
+
sample_rate = self.sample_rate*2
|
102 |
+
else:
|
103 |
+
sample_rate = self.sample_rate
|
104 |
+
|
105 |
+
|
106 |
+
clip_length = min(
|
107 |
+
video_length, (self.n_sample_frames - 1) * sample_rate + 1
|
108 |
+
)
|
109 |
+
start_idx = random.randint(0, video_length - clip_length)
|
110 |
+
batch_index = np.linspace(
|
111 |
+
start_idx, start_idx + clip_length - 1, self.n_sample_frames, dtype=int
|
112 |
+
).tolist()
|
113 |
+
|
114 |
+
# read frames and kps
|
115 |
+
vid_pil_image_list = []
|
116 |
+
pose_pil_image_list = []
|
117 |
+
for index in batch_index:
|
118 |
+
img = video_reader[index]
|
119 |
+
vid_pil_image_list.append(Image.fromarray(img.asnumpy()))
|
120 |
+
img = kps_reader[index]
|
121 |
+
pose_pil_image_list.append(Image.fromarray(img.asnumpy()))
|
122 |
+
|
123 |
+
ref_img_idx = random.randint(0, video_length - 1)
|
124 |
+
ref_img = Image.fromarray(video_reader[ref_img_idx].asnumpy())
|
125 |
+
|
126 |
+
# transform
|
127 |
+
state = torch.get_rng_state()
|
128 |
+
pixel_values_vid = self.augmentation(
|
129 |
+
vid_pil_image_list, self.pixel_transform, state
|
130 |
+
)
|
131 |
+
pixel_values_pose = self.augmentation(
|
132 |
+
pose_pil_image_list, self.cond_transform, state
|
133 |
+
)
|
134 |
+
pixel_values_ref_img = self.augmentation(ref_img, self.pixel_transform, state)
|
135 |
+
clip_ref_img = self.clip_image_processor(
|
136 |
+
images=ref_img, return_tensors="pt"
|
137 |
+
).pixel_values[0]
|
138 |
+
|
139 |
+
sample = dict(
|
140 |
+
video_dir=video_path,
|
141 |
+
pixel_values_vid=pixel_values_vid,
|
142 |
+
pixel_values_pose=pixel_values_pose,
|
143 |
+
pixel_values_ref_img=pixel_values_ref_img,
|
144 |
+
clip_ref_img=clip_ref_img,
|
145 |
+
)
|
146 |
+
|
147 |
+
return sample
|
148 |
+
|
149 |
+
def __len__(self):
|
150 |
+
return len(self.vid_meta)
|
musepose/models/attention.py
ADDED
@@ -0,0 +1,443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py
|
2 |
+
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
|
7 |
+
from diffusers.models.embeddings import SinusoidalPositionalEmbedding
|
8 |
+
from einops import rearrange
|
9 |
+
from torch import nn
|
10 |
+
|
11 |
+
|
12 |
+
class BasicTransformerBlock(nn.Module):
|
13 |
+
r"""
|
14 |
+
A basic Transformer block.
|
15 |
+
|
16 |
+
Parameters:
|
17 |
+
dim (`int`): The number of channels in the input and output.
|
18 |
+
num_attention_heads (`int`): The number of heads to use for multi-head attention.
|
19 |
+
attention_head_dim (`int`): The number of channels in each head.
|
20 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
21 |
+
cross_attention_dim (`int`, *optional*): The size of the encoder_hidden_states vector for cross attention.
|
22 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
|
23 |
+
num_embeds_ada_norm (:
|
24 |
+
obj: `int`, *optional*): The number of diffusion steps used during training. See `Transformer2DModel`.
|
25 |
+
attention_bias (:
|
26 |
+
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
|
27 |
+
only_cross_attention (`bool`, *optional*):
|
28 |
+
Whether to use only cross-attention layers. In this case two cross attention layers are used.
|
29 |
+
double_self_attention (`bool`, *optional*):
|
30 |
+
Whether to use two self-attention layers. In this case no cross attention layers are used.
|
31 |
+
upcast_attention (`bool`, *optional*):
|
32 |
+
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
|
33 |
+
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
|
34 |
+
Whether to use learnable elementwise affine parameters for normalization.
|
35 |
+
norm_type (`str`, *optional*, defaults to `"layer_norm"`):
|
36 |
+
The normalization layer to use. Can be `"layer_norm"`, `"ada_norm"` or `"ada_norm_zero"`.
|
37 |
+
final_dropout (`bool` *optional*, defaults to False):
|
38 |
+
Whether to apply a final dropout after the last feed-forward layer.
|
39 |
+
attention_type (`str`, *optional*, defaults to `"default"`):
|
40 |
+
The type of attention to use. Can be `"default"` or `"gated"` or `"gated-text-image"`.
|
41 |
+
positional_embeddings (`str`, *optional*, defaults to `None`):
|
42 |
+
The type of positional embeddings to apply to.
|
43 |
+
num_positional_embeddings (`int`, *optional*, defaults to `None`):
|
44 |
+
The maximum number of positional embeddings to apply.
|
45 |
+
"""
|
46 |
+
|
47 |
+
def __init__(
|
48 |
+
self,
|
49 |
+
dim: int,
|
50 |
+
num_attention_heads: int,
|
51 |
+
attention_head_dim: int,
|
52 |
+
dropout=0.0,
|
53 |
+
cross_attention_dim: Optional[int] = None,
|
54 |
+
activation_fn: str = "geglu",
|
55 |
+
num_embeds_ada_norm: Optional[int] = None,
|
56 |
+
attention_bias: bool = False,
|
57 |
+
only_cross_attention: bool = False,
|
58 |
+
double_self_attention: bool = False,
|
59 |
+
upcast_attention: bool = False,
|
60 |
+
norm_elementwise_affine: bool = True,
|
61 |
+
norm_type: str = "layer_norm", # 'layer_norm', 'ada_norm', 'ada_norm_zero', 'ada_norm_single'
|
62 |
+
norm_eps: float = 1e-5,
|
63 |
+
final_dropout: bool = False,
|
64 |
+
attention_type: str = "default",
|
65 |
+
positional_embeddings: Optional[str] = None,
|
66 |
+
num_positional_embeddings: Optional[int] = None,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
self.only_cross_attention = only_cross_attention
|
70 |
+
|
71 |
+
self.use_ada_layer_norm_zero = (
|
72 |
+
num_embeds_ada_norm is not None
|
73 |
+
) and norm_type == "ada_norm_zero"
|
74 |
+
self.use_ada_layer_norm = (
|
75 |
+
num_embeds_ada_norm is not None
|
76 |
+
) and norm_type == "ada_norm"
|
77 |
+
self.use_ada_layer_norm_single = norm_type == "ada_norm_single"
|
78 |
+
self.use_layer_norm = norm_type == "layer_norm"
|
79 |
+
|
80 |
+
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
|
81 |
+
raise ValueError(
|
82 |
+
f"`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to"
|
83 |
+
f" define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}."
|
84 |
+
)
|
85 |
+
|
86 |
+
if positional_embeddings and (num_positional_embeddings is None):
|
87 |
+
raise ValueError(
|
88 |
+
"If `positional_embedding` type is defined, `num_positition_embeddings` must also be defined."
|
89 |
+
)
|
90 |
+
|
91 |
+
if positional_embeddings == "sinusoidal":
|
92 |
+
self.pos_embed = SinusoidalPositionalEmbedding(
|
93 |
+
dim, max_seq_length=num_positional_embeddings
|
94 |
+
)
|
95 |
+
else:
|
96 |
+
self.pos_embed = None
|
97 |
+
|
98 |
+
# Define 3 blocks. Each block has its own normalization layer.
|
99 |
+
# 1. Self-Attn
|
100 |
+
if self.use_ada_layer_norm:
|
101 |
+
self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
|
102 |
+
elif self.use_ada_layer_norm_zero:
|
103 |
+
self.norm1 = AdaLayerNormZero(dim, num_embeds_ada_norm)
|
104 |
+
else:
|
105 |
+
self.norm1 = nn.LayerNorm(
|
106 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
107 |
+
)
|
108 |
+
|
109 |
+
self.attn1 = Attention(
|
110 |
+
query_dim=dim,
|
111 |
+
heads=num_attention_heads,
|
112 |
+
dim_head=attention_head_dim,
|
113 |
+
dropout=dropout,
|
114 |
+
bias=attention_bias,
|
115 |
+
cross_attention_dim=cross_attention_dim if only_cross_attention else None,
|
116 |
+
upcast_attention=upcast_attention,
|
117 |
+
)
|
118 |
+
|
119 |
+
# 2. Cross-Attn
|
120 |
+
if cross_attention_dim is not None or double_self_attention:
|
121 |
+
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
|
122 |
+
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
|
123 |
+
# the second cross attention block.
|
124 |
+
self.norm2 = (
|
125 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
126 |
+
if self.use_ada_layer_norm
|
127 |
+
else nn.LayerNorm(
|
128 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
129 |
+
)
|
130 |
+
)
|
131 |
+
self.attn2 = Attention(
|
132 |
+
query_dim=dim,
|
133 |
+
cross_attention_dim=cross_attention_dim
|
134 |
+
if not double_self_attention
|
135 |
+
else None,
|
136 |
+
heads=num_attention_heads,
|
137 |
+
dim_head=attention_head_dim,
|
138 |
+
dropout=dropout,
|
139 |
+
bias=attention_bias,
|
140 |
+
upcast_attention=upcast_attention,
|
141 |
+
) # is self-attn if encoder_hidden_states is none
|
142 |
+
else:
|
143 |
+
self.norm2 = None
|
144 |
+
self.attn2 = None
|
145 |
+
|
146 |
+
# 3. Feed-forward
|
147 |
+
if not self.use_ada_layer_norm_single:
|
148 |
+
self.norm3 = nn.LayerNorm(
|
149 |
+
dim, elementwise_affine=norm_elementwise_affine, eps=norm_eps
|
150 |
+
)
|
151 |
+
|
152 |
+
self.ff = FeedForward(
|
153 |
+
dim,
|
154 |
+
dropout=dropout,
|
155 |
+
activation_fn=activation_fn,
|
156 |
+
final_dropout=final_dropout,
|
157 |
+
)
|
158 |
+
|
159 |
+
# 4. Fuser
|
160 |
+
if attention_type == "gated" or attention_type == "gated-text-image":
|
161 |
+
self.fuser = GatedSelfAttentionDense(
|
162 |
+
dim, cross_attention_dim, num_attention_heads, attention_head_dim
|
163 |
+
)
|
164 |
+
|
165 |
+
# 5. Scale-shift for PixArt-Alpha.
|
166 |
+
if self.use_ada_layer_norm_single:
|
167 |
+
self.scale_shift_table = nn.Parameter(torch.randn(6, dim) / dim**0.5)
|
168 |
+
|
169 |
+
# let chunk size default to None
|
170 |
+
self._chunk_size = None
|
171 |
+
self._chunk_dim = 0
|
172 |
+
|
173 |
+
def set_chunk_feed_forward(self, chunk_size: Optional[int], dim: int = 0):
|
174 |
+
# Sets chunk feed-forward
|
175 |
+
self._chunk_size = chunk_size
|
176 |
+
self._chunk_dim = dim
|
177 |
+
|
178 |
+
def forward(
|
179 |
+
self,
|
180 |
+
hidden_states: torch.FloatTensor,
|
181 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
182 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
183 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
184 |
+
timestep: Optional[torch.LongTensor] = None,
|
185 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
186 |
+
class_labels: Optional[torch.LongTensor] = None,
|
187 |
+
) -> torch.FloatTensor:
|
188 |
+
# Notice that normalization is always applied before the real computation in the following blocks.
|
189 |
+
# 0. Self-Attention
|
190 |
+
batch_size = hidden_states.shape[0]
|
191 |
+
|
192 |
+
if self.use_ada_layer_norm:
|
193 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
194 |
+
elif self.use_ada_layer_norm_zero:
|
195 |
+
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
|
196 |
+
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
|
197 |
+
)
|
198 |
+
elif self.use_layer_norm:
|
199 |
+
norm_hidden_states = self.norm1(hidden_states)
|
200 |
+
elif self.use_ada_layer_norm_single:
|
201 |
+
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
202 |
+
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
|
203 |
+
).chunk(6, dim=1)
|
204 |
+
norm_hidden_states = self.norm1(hidden_states)
|
205 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
|
206 |
+
norm_hidden_states = norm_hidden_states.squeeze(1)
|
207 |
+
else:
|
208 |
+
raise ValueError("Incorrect norm used")
|
209 |
+
|
210 |
+
if self.pos_embed is not None:
|
211 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
212 |
+
|
213 |
+
# 1. Retrieve lora scale.
|
214 |
+
lora_scale = (
|
215 |
+
cross_attention_kwargs.get("scale", 1.0)
|
216 |
+
if cross_attention_kwargs is not None
|
217 |
+
else 1.0
|
218 |
+
)
|
219 |
+
|
220 |
+
# 2. Prepare GLIGEN inputs
|
221 |
+
cross_attention_kwargs = (
|
222 |
+
cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
|
223 |
+
)
|
224 |
+
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
|
225 |
+
|
226 |
+
attn_output = self.attn1(
|
227 |
+
norm_hidden_states,
|
228 |
+
encoder_hidden_states=encoder_hidden_states
|
229 |
+
if self.only_cross_attention
|
230 |
+
else None,
|
231 |
+
attention_mask=attention_mask,
|
232 |
+
**cross_attention_kwargs,
|
233 |
+
)
|
234 |
+
if self.use_ada_layer_norm_zero:
|
235 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
236 |
+
elif self.use_ada_layer_norm_single:
|
237 |
+
attn_output = gate_msa * attn_output
|
238 |
+
|
239 |
+
hidden_states = attn_output + hidden_states
|
240 |
+
if hidden_states.ndim == 4:
|
241 |
+
hidden_states = hidden_states.squeeze(1)
|
242 |
+
|
243 |
+
# 2.5 GLIGEN Control
|
244 |
+
if gligen_kwargs is not None:
|
245 |
+
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
|
246 |
+
|
247 |
+
# 3. Cross-Attention
|
248 |
+
if self.attn2 is not None:
|
249 |
+
if self.use_ada_layer_norm:
|
250 |
+
norm_hidden_states = self.norm2(hidden_states, timestep)
|
251 |
+
elif self.use_ada_layer_norm_zero or self.use_layer_norm:
|
252 |
+
norm_hidden_states = self.norm2(hidden_states)
|
253 |
+
elif self.use_ada_layer_norm_single:
|
254 |
+
# For PixArt norm2 isn't applied here:
|
255 |
+
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
|
256 |
+
norm_hidden_states = hidden_states
|
257 |
+
else:
|
258 |
+
raise ValueError("Incorrect norm")
|
259 |
+
|
260 |
+
if self.pos_embed is not None and self.use_ada_layer_norm_single is False:
|
261 |
+
norm_hidden_states = self.pos_embed(norm_hidden_states)
|
262 |
+
|
263 |
+
attn_output = self.attn2(
|
264 |
+
norm_hidden_states,
|
265 |
+
encoder_hidden_states=encoder_hidden_states,
|
266 |
+
attention_mask=encoder_attention_mask,
|
267 |
+
**cross_attention_kwargs,
|
268 |
+
)
|
269 |
+
hidden_states = attn_output + hidden_states
|
270 |
+
|
271 |
+
# 4. Feed-forward
|
272 |
+
if not self.use_ada_layer_norm_single:
|
273 |
+
norm_hidden_states = self.norm3(hidden_states)
|
274 |
+
|
275 |
+
if self.use_ada_layer_norm_zero:
|
276 |
+
norm_hidden_states = (
|
277 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
278 |
+
)
|
279 |
+
|
280 |
+
if self.use_ada_layer_norm_single:
|
281 |
+
norm_hidden_states = self.norm2(hidden_states)
|
282 |
+
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
|
283 |
+
|
284 |
+
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
|
285 |
+
|
286 |
+
if self.use_ada_layer_norm_zero:
|
287 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
288 |
+
elif self.use_ada_layer_norm_single:
|
289 |
+
ff_output = gate_mlp * ff_output
|
290 |
+
|
291 |
+
hidden_states = ff_output + hidden_states
|
292 |
+
if hidden_states.ndim == 4:
|
293 |
+
hidden_states = hidden_states.squeeze(1)
|
294 |
+
|
295 |
+
return hidden_states
|
296 |
+
|
297 |
+
|
298 |
+
class TemporalBasicTransformerBlock(nn.Module):
|
299 |
+
def __init__(
|
300 |
+
self,
|
301 |
+
dim: int,
|
302 |
+
num_attention_heads: int,
|
303 |
+
attention_head_dim: int,
|
304 |
+
dropout=0.0,
|
305 |
+
cross_attention_dim: Optional[int] = None,
|
306 |
+
activation_fn: str = "geglu",
|
307 |
+
num_embeds_ada_norm: Optional[int] = None,
|
308 |
+
attention_bias: bool = False,
|
309 |
+
only_cross_attention: bool = False,
|
310 |
+
upcast_attention: bool = False,
|
311 |
+
unet_use_cross_frame_attention=None,
|
312 |
+
unet_use_temporal_attention=None,
|
313 |
+
):
|
314 |
+
super().__init__()
|
315 |
+
self.only_cross_attention = only_cross_attention
|
316 |
+
self.use_ada_layer_norm = num_embeds_ada_norm is not None
|
317 |
+
self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
|
318 |
+
self.unet_use_temporal_attention = unet_use_temporal_attention
|
319 |
+
|
320 |
+
# SC-Attn
|
321 |
+
self.attn1 = Attention(
|
322 |
+
query_dim=dim,
|
323 |
+
heads=num_attention_heads,
|
324 |
+
dim_head=attention_head_dim,
|
325 |
+
dropout=dropout,
|
326 |
+
bias=attention_bias,
|
327 |
+
upcast_attention=upcast_attention,
|
328 |
+
)
|
329 |
+
self.norm1 = (
|
330 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
331 |
+
if self.use_ada_layer_norm
|
332 |
+
else nn.LayerNorm(dim)
|
333 |
+
)
|
334 |
+
|
335 |
+
# Cross-Attn
|
336 |
+
if cross_attention_dim is not None:
|
337 |
+
self.attn2 = Attention(
|
338 |
+
query_dim=dim,
|
339 |
+
cross_attention_dim=cross_attention_dim,
|
340 |
+
heads=num_attention_heads,
|
341 |
+
dim_head=attention_head_dim,
|
342 |
+
dropout=dropout,
|
343 |
+
bias=attention_bias,
|
344 |
+
upcast_attention=upcast_attention,
|
345 |
+
)
|
346 |
+
else:
|
347 |
+
self.attn2 = None
|
348 |
+
|
349 |
+
if cross_attention_dim is not None:
|
350 |
+
self.norm2 = (
|
351 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
352 |
+
if self.use_ada_layer_norm
|
353 |
+
else nn.LayerNorm(dim)
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
self.norm2 = None
|
357 |
+
|
358 |
+
# Feed-forward
|
359 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
360 |
+
self.norm3 = nn.LayerNorm(dim)
|
361 |
+
self.use_ada_layer_norm_zero = False
|
362 |
+
|
363 |
+
# Temp-Attn
|
364 |
+
assert unet_use_temporal_attention is not None
|
365 |
+
if unet_use_temporal_attention:
|
366 |
+
self.attn_temp = Attention(
|
367 |
+
query_dim=dim,
|
368 |
+
heads=num_attention_heads,
|
369 |
+
dim_head=attention_head_dim,
|
370 |
+
dropout=dropout,
|
371 |
+
bias=attention_bias,
|
372 |
+
upcast_attention=upcast_attention,
|
373 |
+
)
|
374 |
+
nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
|
375 |
+
self.norm_temp = (
|
376 |
+
AdaLayerNorm(dim, num_embeds_ada_norm)
|
377 |
+
if self.use_ada_layer_norm
|
378 |
+
else nn.LayerNorm(dim)
|
379 |
+
)
|
380 |
+
|
381 |
+
def forward(
|
382 |
+
self,
|
383 |
+
hidden_states,
|
384 |
+
encoder_hidden_states=None,
|
385 |
+
timestep=None,
|
386 |
+
attention_mask=None,
|
387 |
+
video_length=None,
|
388 |
+
):
|
389 |
+
norm_hidden_states = (
|
390 |
+
self.norm1(hidden_states, timestep)
|
391 |
+
if self.use_ada_layer_norm
|
392 |
+
else self.norm1(hidden_states)
|
393 |
+
)
|
394 |
+
|
395 |
+
if self.unet_use_cross_frame_attention:
|
396 |
+
hidden_states = (
|
397 |
+
self.attn1(
|
398 |
+
norm_hidden_states,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
video_length=video_length,
|
401 |
+
)
|
402 |
+
+ hidden_states
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
hidden_states = (
|
406 |
+
self.attn1(norm_hidden_states, attention_mask=attention_mask)
|
407 |
+
+ hidden_states
|
408 |
+
)
|
409 |
+
|
410 |
+
if self.attn2 is not None:
|
411 |
+
# Cross-Attention
|
412 |
+
norm_hidden_states = (
|
413 |
+
self.norm2(hidden_states, timestep)
|
414 |
+
if self.use_ada_layer_norm
|
415 |
+
else self.norm2(hidden_states)
|
416 |
+
)
|
417 |
+
hidden_states = (
|
418 |
+
self.attn2(
|
419 |
+
norm_hidden_states,
|
420 |
+
encoder_hidden_states=encoder_hidden_states,
|
421 |
+
attention_mask=attention_mask,
|
422 |
+
)
|
423 |
+
+ hidden_states
|
424 |
+
)
|
425 |
+
|
426 |
+
# Feed-forward
|
427 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
428 |
+
|
429 |
+
# Temporal-Attention
|
430 |
+
if self.unet_use_temporal_attention:
|
431 |
+
d = hidden_states.shape[1]
|
432 |
+
hidden_states = rearrange(
|
433 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
434 |
+
)
|
435 |
+
norm_hidden_states = (
|
436 |
+
self.norm_temp(hidden_states, timestep)
|
437 |
+
if self.use_ada_layer_norm
|
438 |
+
else self.norm_temp(hidden_states)
|
439 |
+
)
|
440 |
+
hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
|
441 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
442 |
+
|
443 |
+
return hidden_states
|
musepose/models/motion_module.py
ADDED
@@ -0,0 +1,388 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapt from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/motion_module.py
|
2 |
+
import math
|
3 |
+
from dataclasses import dataclass
|
4 |
+
from typing import Callable, Optional
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from diffusers.models.attention import FeedForward
|
8 |
+
from diffusers.models.attention_processor import Attention, AttnProcessor
|
9 |
+
from diffusers.utils import BaseOutput
|
10 |
+
from diffusers.utils.import_utils import is_xformers_available
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
from torch import nn
|
13 |
+
|
14 |
+
|
15 |
+
def zero_module(module):
|
16 |
+
# Zero out the parameters of a module and return it.
|
17 |
+
for p in module.parameters():
|
18 |
+
p.detach().zero_()
|
19 |
+
return module
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class TemporalTransformer3DModelOutput(BaseOutput):
|
24 |
+
sample: torch.FloatTensor
|
25 |
+
|
26 |
+
|
27 |
+
if is_xformers_available():
|
28 |
+
import xformers
|
29 |
+
import xformers.ops
|
30 |
+
else:
|
31 |
+
xformers = None
|
32 |
+
|
33 |
+
|
34 |
+
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict):
|
35 |
+
if motion_module_type == "Vanilla":
|
36 |
+
return VanillaTemporalModule(
|
37 |
+
in_channels=in_channels,
|
38 |
+
**motion_module_kwargs,
|
39 |
+
)
|
40 |
+
else:
|
41 |
+
raise ValueError
|
42 |
+
|
43 |
+
|
44 |
+
class VanillaTemporalModule(nn.Module):
|
45 |
+
def __init__(
|
46 |
+
self,
|
47 |
+
in_channels,
|
48 |
+
num_attention_heads=8,
|
49 |
+
num_transformer_block=2,
|
50 |
+
attention_block_types=("Temporal_Self", "Temporal_Self"),
|
51 |
+
cross_frame_attention_mode=None,
|
52 |
+
temporal_position_encoding=False,
|
53 |
+
temporal_position_encoding_max_len=24,
|
54 |
+
temporal_attention_dim_div=1,
|
55 |
+
zero_initialize=True,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.temporal_transformer = TemporalTransformer3DModel(
|
60 |
+
in_channels=in_channels,
|
61 |
+
num_attention_heads=num_attention_heads,
|
62 |
+
attention_head_dim=in_channels
|
63 |
+
// num_attention_heads
|
64 |
+
// temporal_attention_dim_div,
|
65 |
+
num_layers=num_transformer_block,
|
66 |
+
attention_block_types=attention_block_types,
|
67 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
68 |
+
temporal_position_encoding=temporal_position_encoding,
|
69 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
70 |
+
)
|
71 |
+
|
72 |
+
if zero_initialize:
|
73 |
+
self.temporal_transformer.proj_out = zero_module(
|
74 |
+
self.temporal_transformer.proj_out
|
75 |
+
)
|
76 |
+
|
77 |
+
def forward(
|
78 |
+
self,
|
79 |
+
input_tensor,
|
80 |
+
temb,
|
81 |
+
encoder_hidden_states,
|
82 |
+
attention_mask=None,
|
83 |
+
anchor_frame_idx=None,
|
84 |
+
):
|
85 |
+
hidden_states = input_tensor
|
86 |
+
hidden_states = self.temporal_transformer(
|
87 |
+
hidden_states, encoder_hidden_states, attention_mask
|
88 |
+
)
|
89 |
+
|
90 |
+
output = hidden_states
|
91 |
+
return output
|
92 |
+
|
93 |
+
|
94 |
+
class TemporalTransformer3DModel(nn.Module):
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
in_channels,
|
98 |
+
num_attention_heads,
|
99 |
+
attention_head_dim,
|
100 |
+
num_layers,
|
101 |
+
attention_block_types=(
|
102 |
+
"Temporal_Self",
|
103 |
+
"Temporal_Self",
|
104 |
+
),
|
105 |
+
dropout=0.0,
|
106 |
+
norm_num_groups=32,
|
107 |
+
cross_attention_dim=768,
|
108 |
+
activation_fn="geglu",
|
109 |
+
attention_bias=False,
|
110 |
+
upcast_attention=False,
|
111 |
+
cross_frame_attention_mode=None,
|
112 |
+
temporal_position_encoding=False,
|
113 |
+
temporal_position_encoding_max_len=24,
|
114 |
+
):
|
115 |
+
super().__init__()
|
116 |
+
|
117 |
+
inner_dim = num_attention_heads * attention_head_dim
|
118 |
+
|
119 |
+
self.norm = torch.nn.GroupNorm(
|
120 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
121 |
+
)
|
122 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
123 |
+
|
124 |
+
self.transformer_blocks = nn.ModuleList(
|
125 |
+
[
|
126 |
+
TemporalTransformerBlock(
|
127 |
+
dim=inner_dim,
|
128 |
+
num_attention_heads=num_attention_heads,
|
129 |
+
attention_head_dim=attention_head_dim,
|
130 |
+
attention_block_types=attention_block_types,
|
131 |
+
dropout=dropout,
|
132 |
+
norm_num_groups=norm_num_groups,
|
133 |
+
cross_attention_dim=cross_attention_dim,
|
134 |
+
activation_fn=activation_fn,
|
135 |
+
attention_bias=attention_bias,
|
136 |
+
upcast_attention=upcast_attention,
|
137 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
138 |
+
temporal_position_encoding=temporal_position_encoding,
|
139 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
140 |
+
)
|
141 |
+
for d in range(num_layers)
|
142 |
+
]
|
143 |
+
)
|
144 |
+
self.proj_out = nn.Linear(inner_dim, in_channels)
|
145 |
+
|
146 |
+
def forward(self, hidden_states, encoder_hidden_states=None, attention_mask=None):
|
147 |
+
assert (
|
148 |
+
hidden_states.dim() == 5
|
149 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
150 |
+
video_length = hidden_states.shape[2]
|
151 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
152 |
+
|
153 |
+
batch, channel, height, weight = hidden_states.shape
|
154 |
+
residual = hidden_states
|
155 |
+
|
156 |
+
hidden_states = self.norm(hidden_states)
|
157 |
+
inner_dim = hidden_states.shape[1]
|
158 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
159 |
+
batch, height * weight, inner_dim
|
160 |
+
)
|
161 |
+
hidden_states = self.proj_in(hidden_states)
|
162 |
+
|
163 |
+
# Transformer Blocks
|
164 |
+
for block in self.transformer_blocks:
|
165 |
+
hidden_states = block(
|
166 |
+
hidden_states,
|
167 |
+
encoder_hidden_states=encoder_hidden_states,
|
168 |
+
video_length=video_length,
|
169 |
+
)
|
170 |
+
|
171 |
+
# output
|
172 |
+
hidden_states = self.proj_out(hidden_states)
|
173 |
+
hidden_states = (
|
174 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
175 |
+
.permute(0, 3, 1, 2)
|
176 |
+
.contiguous()
|
177 |
+
)
|
178 |
+
|
179 |
+
output = hidden_states + residual
|
180 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
181 |
+
|
182 |
+
return output
|
183 |
+
|
184 |
+
|
185 |
+
class TemporalTransformerBlock(nn.Module):
|
186 |
+
def __init__(
|
187 |
+
self,
|
188 |
+
dim,
|
189 |
+
num_attention_heads,
|
190 |
+
attention_head_dim,
|
191 |
+
attention_block_types=(
|
192 |
+
"Temporal_Self",
|
193 |
+
"Temporal_Self",
|
194 |
+
),
|
195 |
+
dropout=0.0,
|
196 |
+
norm_num_groups=32,
|
197 |
+
cross_attention_dim=768,
|
198 |
+
activation_fn="geglu",
|
199 |
+
attention_bias=False,
|
200 |
+
upcast_attention=False,
|
201 |
+
cross_frame_attention_mode=None,
|
202 |
+
temporal_position_encoding=False,
|
203 |
+
temporal_position_encoding_max_len=24,
|
204 |
+
):
|
205 |
+
super().__init__()
|
206 |
+
|
207 |
+
attention_blocks = []
|
208 |
+
norms = []
|
209 |
+
|
210 |
+
for block_name in attention_block_types:
|
211 |
+
attention_blocks.append(
|
212 |
+
VersatileAttention(
|
213 |
+
attention_mode=block_name.split("_")[0],
|
214 |
+
cross_attention_dim=cross_attention_dim
|
215 |
+
if block_name.endswith("_Cross")
|
216 |
+
else None,
|
217 |
+
query_dim=dim,
|
218 |
+
heads=num_attention_heads,
|
219 |
+
dim_head=attention_head_dim,
|
220 |
+
dropout=dropout,
|
221 |
+
bias=attention_bias,
|
222 |
+
upcast_attention=upcast_attention,
|
223 |
+
cross_frame_attention_mode=cross_frame_attention_mode,
|
224 |
+
temporal_position_encoding=temporal_position_encoding,
|
225 |
+
temporal_position_encoding_max_len=temporal_position_encoding_max_len,
|
226 |
+
)
|
227 |
+
)
|
228 |
+
norms.append(nn.LayerNorm(dim))
|
229 |
+
|
230 |
+
self.attention_blocks = nn.ModuleList(attention_blocks)
|
231 |
+
self.norms = nn.ModuleList(norms)
|
232 |
+
|
233 |
+
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn)
|
234 |
+
self.ff_norm = nn.LayerNorm(dim)
|
235 |
+
|
236 |
+
def forward(
|
237 |
+
self,
|
238 |
+
hidden_states,
|
239 |
+
encoder_hidden_states=None,
|
240 |
+
attention_mask=None,
|
241 |
+
video_length=None,
|
242 |
+
):
|
243 |
+
for attention_block, norm in zip(self.attention_blocks, self.norms):
|
244 |
+
norm_hidden_states = norm(hidden_states)
|
245 |
+
hidden_states = (
|
246 |
+
attention_block(
|
247 |
+
norm_hidden_states,
|
248 |
+
encoder_hidden_states=encoder_hidden_states
|
249 |
+
if attention_block.is_cross_attention
|
250 |
+
else None,
|
251 |
+
video_length=video_length,
|
252 |
+
)
|
253 |
+
+ hidden_states
|
254 |
+
)
|
255 |
+
|
256 |
+
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states
|
257 |
+
|
258 |
+
output = hidden_states
|
259 |
+
return output
|
260 |
+
|
261 |
+
|
262 |
+
class PositionalEncoding(nn.Module):
|
263 |
+
def __init__(self, d_model, dropout=0.0, max_len=24):
|
264 |
+
super().__init__()
|
265 |
+
self.dropout = nn.Dropout(p=dropout)
|
266 |
+
position = torch.arange(max_len).unsqueeze(1)
|
267 |
+
div_term = torch.exp(
|
268 |
+
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model)
|
269 |
+
)
|
270 |
+
pe = torch.zeros(1, max_len, d_model)
|
271 |
+
pe[0, :, 0::2] = torch.sin(position * div_term)
|
272 |
+
pe[0, :, 1::2] = torch.cos(position * div_term)
|
273 |
+
self.register_buffer("pe", pe)
|
274 |
+
|
275 |
+
def forward(self, x):
|
276 |
+
x = x + self.pe[:, : x.size(1)]
|
277 |
+
return self.dropout(x)
|
278 |
+
|
279 |
+
|
280 |
+
class VersatileAttention(Attention):
|
281 |
+
def __init__(
|
282 |
+
self,
|
283 |
+
attention_mode=None,
|
284 |
+
cross_frame_attention_mode=None,
|
285 |
+
temporal_position_encoding=False,
|
286 |
+
temporal_position_encoding_max_len=24,
|
287 |
+
*args,
|
288 |
+
**kwargs,
|
289 |
+
):
|
290 |
+
super().__init__(*args, **kwargs)
|
291 |
+
assert attention_mode == "Temporal"
|
292 |
+
|
293 |
+
self.attention_mode = attention_mode
|
294 |
+
self.is_cross_attention = kwargs["cross_attention_dim"] is not None
|
295 |
+
|
296 |
+
self.pos_encoder = (
|
297 |
+
PositionalEncoding(
|
298 |
+
kwargs["query_dim"],
|
299 |
+
dropout=0.0,
|
300 |
+
max_len=temporal_position_encoding_max_len,
|
301 |
+
)
|
302 |
+
if (temporal_position_encoding and attention_mode == "Temporal")
|
303 |
+
else None
|
304 |
+
)
|
305 |
+
|
306 |
+
def extra_repr(self):
|
307 |
+
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}"
|
308 |
+
|
309 |
+
def set_use_memory_efficient_attention_xformers(
|
310 |
+
self,
|
311 |
+
use_memory_efficient_attention_xformers: bool,
|
312 |
+
attention_op: Optional[Callable] = None,
|
313 |
+
):
|
314 |
+
if use_memory_efficient_attention_xformers:
|
315 |
+
if not is_xformers_available():
|
316 |
+
raise ModuleNotFoundError(
|
317 |
+
(
|
318 |
+
"Refer to https://github.com/facebookresearch/xformers for more information on how to install"
|
319 |
+
" xformers"
|
320 |
+
),
|
321 |
+
name="xformers",
|
322 |
+
)
|
323 |
+
elif not torch.cuda.is_available():
|
324 |
+
raise ValueError(
|
325 |
+
"torch.cuda.is_available() should be True but is False. xformers' memory efficient attention is"
|
326 |
+
" only available for GPU "
|
327 |
+
)
|
328 |
+
else:
|
329 |
+
try:
|
330 |
+
# Make sure we can run the memory efficient attention
|
331 |
+
_ = xformers.ops.memory_efficient_attention(
|
332 |
+
torch.randn((1, 2, 40), device="cuda"),
|
333 |
+
torch.randn((1, 2, 40), device="cuda"),
|
334 |
+
torch.randn((1, 2, 40), device="cuda"),
|
335 |
+
)
|
336 |
+
except Exception as e:
|
337 |
+
raise e
|
338 |
+
|
339 |
+
# XFormersAttnProcessor corrupts video generation and work with Pytorch 1.13.
|
340 |
+
# Pytorch 2.0.1 AttnProcessor works the same as XFormersAttnProcessor in Pytorch 1.13.
|
341 |
+
# You don't need XFormersAttnProcessor here.
|
342 |
+
# processor = XFormersAttnProcessor(
|
343 |
+
# attention_op=attention_op,
|
344 |
+
# )
|
345 |
+
processor = AttnProcessor()
|
346 |
+
else:
|
347 |
+
processor = AttnProcessor()
|
348 |
+
|
349 |
+
self.set_processor(processor)
|
350 |
+
|
351 |
+
def forward(
|
352 |
+
self,
|
353 |
+
hidden_states,
|
354 |
+
encoder_hidden_states=None,
|
355 |
+
attention_mask=None,
|
356 |
+
video_length=None,
|
357 |
+
**cross_attention_kwargs,
|
358 |
+
):
|
359 |
+
if self.attention_mode == "Temporal":
|
360 |
+
d = hidden_states.shape[1] # d means HxW
|
361 |
+
hidden_states = rearrange(
|
362 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
363 |
+
)
|
364 |
+
|
365 |
+
if self.pos_encoder is not None:
|
366 |
+
hidden_states = self.pos_encoder(hidden_states)
|
367 |
+
|
368 |
+
encoder_hidden_states = (
|
369 |
+
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d)
|
370 |
+
if encoder_hidden_states is not None
|
371 |
+
else encoder_hidden_states
|
372 |
+
)
|
373 |
+
|
374 |
+
else:
|
375 |
+
raise NotImplementedError
|
376 |
+
|
377 |
+
hidden_states = self.processor(
|
378 |
+
self,
|
379 |
+
hidden_states,
|
380 |
+
encoder_hidden_states=encoder_hidden_states,
|
381 |
+
attention_mask=attention_mask,
|
382 |
+
**cross_attention_kwargs,
|
383 |
+
)
|
384 |
+
|
385 |
+
if self.attention_mode == "Temporal":
|
386 |
+
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)
|
387 |
+
|
388 |
+
return hidden_states
|
musepose/models/mutual_self_attention.py
ADDED
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/models/mutual_self_attention.py
|
2 |
+
from typing import Any, Dict, Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from einops import rearrange
|
6 |
+
|
7 |
+
from musepose.models.attention import TemporalBasicTransformerBlock
|
8 |
+
|
9 |
+
from .attention import BasicTransformerBlock
|
10 |
+
|
11 |
+
|
12 |
+
def torch_dfs(model: torch.nn.Module):
|
13 |
+
result = [model]
|
14 |
+
for child in model.children():
|
15 |
+
result += torch_dfs(child)
|
16 |
+
return result
|
17 |
+
|
18 |
+
|
19 |
+
class ReferenceAttentionControl:
|
20 |
+
def __init__(
|
21 |
+
self,
|
22 |
+
unet,
|
23 |
+
mode="write",
|
24 |
+
do_classifier_free_guidance=False,
|
25 |
+
attention_auto_machine_weight=float("inf"),
|
26 |
+
gn_auto_machine_weight=1.0,
|
27 |
+
style_fidelity=1.0,
|
28 |
+
reference_attn=True,
|
29 |
+
reference_adain=False,
|
30 |
+
fusion_blocks="midup",
|
31 |
+
batch_size=1,
|
32 |
+
) -> None:
|
33 |
+
# 10. Modify self attention and group norm
|
34 |
+
self.unet = unet
|
35 |
+
assert mode in ["read", "write"]
|
36 |
+
assert fusion_blocks in ["midup", "full"]
|
37 |
+
self.reference_attn = reference_attn
|
38 |
+
self.reference_adain = reference_adain
|
39 |
+
self.fusion_blocks = fusion_blocks
|
40 |
+
self.register_reference_hooks(
|
41 |
+
mode,
|
42 |
+
do_classifier_free_guidance,
|
43 |
+
attention_auto_machine_weight,
|
44 |
+
gn_auto_machine_weight,
|
45 |
+
style_fidelity,
|
46 |
+
reference_attn,
|
47 |
+
reference_adain,
|
48 |
+
fusion_blocks,
|
49 |
+
batch_size=batch_size,
|
50 |
+
)
|
51 |
+
|
52 |
+
def register_reference_hooks(
|
53 |
+
self,
|
54 |
+
mode,
|
55 |
+
do_classifier_free_guidance,
|
56 |
+
attention_auto_machine_weight,
|
57 |
+
gn_auto_machine_weight,
|
58 |
+
style_fidelity,
|
59 |
+
reference_attn,
|
60 |
+
reference_adain,
|
61 |
+
dtype=torch.float16,
|
62 |
+
batch_size=1,
|
63 |
+
num_images_per_prompt=1,
|
64 |
+
device=torch.device("cpu"),
|
65 |
+
fusion_blocks="midup",
|
66 |
+
):
|
67 |
+
MODE = mode
|
68 |
+
do_classifier_free_guidance = do_classifier_free_guidance
|
69 |
+
attention_auto_machine_weight = attention_auto_machine_weight
|
70 |
+
gn_auto_machine_weight = gn_auto_machine_weight
|
71 |
+
style_fidelity = style_fidelity
|
72 |
+
reference_attn = reference_attn
|
73 |
+
reference_adain = reference_adain
|
74 |
+
fusion_blocks = fusion_blocks
|
75 |
+
num_images_per_prompt = num_images_per_prompt
|
76 |
+
dtype = dtype
|
77 |
+
if do_classifier_free_guidance:
|
78 |
+
uc_mask = (
|
79 |
+
torch.Tensor(
|
80 |
+
[1] * batch_size * num_images_per_prompt * 16
|
81 |
+
+ [0] * batch_size * num_images_per_prompt * 16
|
82 |
+
)
|
83 |
+
.to(device)
|
84 |
+
.bool()
|
85 |
+
)
|
86 |
+
else:
|
87 |
+
uc_mask = (
|
88 |
+
torch.Tensor([0] * batch_size * num_images_per_prompt * 2)
|
89 |
+
.to(device)
|
90 |
+
.bool()
|
91 |
+
)
|
92 |
+
|
93 |
+
def hacked_basic_transformer_inner_forward(
|
94 |
+
self,
|
95 |
+
hidden_states: torch.FloatTensor,
|
96 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
97 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
98 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
99 |
+
timestep: Optional[torch.LongTensor] = None,
|
100 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
101 |
+
class_labels: Optional[torch.LongTensor] = None,
|
102 |
+
video_length=None,
|
103 |
+
):
|
104 |
+
if self.use_ada_layer_norm: # False
|
105 |
+
norm_hidden_states = self.norm1(hidden_states, timestep)
|
106 |
+
elif self.use_ada_layer_norm_zero:
|
107 |
+
(
|
108 |
+
norm_hidden_states,
|
109 |
+
gate_msa,
|
110 |
+
shift_mlp,
|
111 |
+
scale_mlp,
|
112 |
+
gate_mlp,
|
113 |
+
) = self.norm1(
|
114 |
+
hidden_states,
|
115 |
+
timestep,
|
116 |
+
class_labels,
|
117 |
+
hidden_dtype=hidden_states.dtype,
|
118 |
+
)
|
119 |
+
else:
|
120 |
+
norm_hidden_states = self.norm1(hidden_states)
|
121 |
+
|
122 |
+
# 1. Self-Attention
|
123 |
+
# self.only_cross_attention = False
|
124 |
+
cross_attention_kwargs = (
|
125 |
+
cross_attention_kwargs if cross_attention_kwargs is not None else {}
|
126 |
+
)
|
127 |
+
if self.only_cross_attention:
|
128 |
+
attn_output = self.attn1(
|
129 |
+
norm_hidden_states,
|
130 |
+
encoder_hidden_states=encoder_hidden_states
|
131 |
+
if self.only_cross_attention
|
132 |
+
else None,
|
133 |
+
attention_mask=attention_mask,
|
134 |
+
**cross_attention_kwargs,
|
135 |
+
)
|
136 |
+
else:
|
137 |
+
if MODE == "write":
|
138 |
+
self.bank.append(norm_hidden_states.clone())
|
139 |
+
attn_output = self.attn1(
|
140 |
+
norm_hidden_states,
|
141 |
+
encoder_hidden_states=encoder_hidden_states
|
142 |
+
if self.only_cross_attention
|
143 |
+
else None,
|
144 |
+
attention_mask=attention_mask,
|
145 |
+
**cross_attention_kwargs,
|
146 |
+
)
|
147 |
+
if MODE == "read":
|
148 |
+
bank_fea = [
|
149 |
+
rearrange(
|
150 |
+
d.unsqueeze(1).repeat(1, video_length, 1, 1),
|
151 |
+
"b t l c -> (b t) l c",
|
152 |
+
)
|
153 |
+
for d in self.bank
|
154 |
+
]
|
155 |
+
modify_norm_hidden_states = torch.cat(
|
156 |
+
[norm_hidden_states] + bank_fea, dim=1
|
157 |
+
)
|
158 |
+
hidden_states_uc = (
|
159 |
+
self.attn1(
|
160 |
+
norm_hidden_states,
|
161 |
+
encoder_hidden_states=modify_norm_hidden_states,
|
162 |
+
attention_mask=attention_mask,
|
163 |
+
)
|
164 |
+
+ hidden_states
|
165 |
+
)
|
166 |
+
if do_classifier_free_guidance:
|
167 |
+
hidden_states_c = hidden_states_uc.clone()
|
168 |
+
_uc_mask = uc_mask.clone()
|
169 |
+
if hidden_states.shape[0] != _uc_mask.shape[0]:
|
170 |
+
_uc_mask = (
|
171 |
+
torch.Tensor(
|
172 |
+
[1] * (hidden_states.shape[0] // 2)
|
173 |
+
+ [0] * (hidden_states.shape[0] // 2)
|
174 |
+
)
|
175 |
+
.to(device)
|
176 |
+
.bool()
|
177 |
+
)
|
178 |
+
hidden_states_c[_uc_mask] = (
|
179 |
+
self.attn1(
|
180 |
+
norm_hidden_states[_uc_mask],
|
181 |
+
encoder_hidden_states=norm_hidden_states[_uc_mask],
|
182 |
+
attention_mask=attention_mask,
|
183 |
+
)
|
184 |
+
+ hidden_states[_uc_mask]
|
185 |
+
)
|
186 |
+
hidden_states = hidden_states_c.clone()
|
187 |
+
else:
|
188 |
+
hidden_states = hidden_states_uc
|
189 |
+
|
190 |
+
# self.bank.clear()
|
191 |
+
if self.attn2 is not None:
|
192 |
+
# Cross-Attention
|
193 |
+
norm_hidden_states = (
|
194 |
+
self.norm2(hidden_states, timestep)
|
195 |
+
if self.use_ada_layer_norm
|
196 |
+
else self.norm2(hidden_states)
|
197 |
+
)
|
198 |
+
hidden_states = (
|
199 |
+
self.attn2(
|
200 |
+
norm_hidden_states,
|
201 |
+
encoder_hidden_states=encoder_hidden_states,
|
202 |
+
attention_mask=attention_mask,
|
203 |
+
)
|
204 |
+
+ hidden_states
|
205 |
+
)
|
206 |
+
|
207 |
+
# Feed-forward
|
208 |
+
hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states
|
209 |
+
|
210 |
+
# Temporal-Attention
|
211 |
+
if self.unet_use_temporal_attention:
|
212 |
+
d = hidden_states.shape[1]
|
213 |
+
hidden_states = rearrange(
|
214 |
+
hidden_states, "(b f) d c -> (b d) f c", f=video_length
|
215 |
+
)
|
216 |
+
norm_hidden_states = (
|
217 |
+
self.norm_temp(hidden_states, timestep)
|
218 |
+
if self.use_ada_layer_norm
|
219 |
+
else self.norm_temp(hidden_states)
|
220 |
+
)
|
221 |
+
hidden_states = (
|
222 |
+
self.attn_temp(norm_hidden_states) + hidden_states
|
223 |
+
)
|
224 |
+
hidden_states = rearrange(
|
225 |
+
hidden_states, "(b d) f c -> (b f) d c", d=d
|
226 |
+
)
|
227 |
+
|
228 |
+
return hidden_states
|
229 |
+
|
230 |
+
if self.use_ada_layer_norm_zero:
|
231 |
+
attn_output = gate_msa.unsqueeze(1) * attn_output
|
232 |
+
hidden_states = attn_output + hidden_states
|
233 |
+
|
234 |
+
if self.attn2 is not None:
|
235 |
+
norm_hidden_states = (
|
236 |
+
self.norm2(hidden_states, timestep)
|
237 |
+
if self.use_ada_layer_norm
|
238 |
+
else self.norm2(hidden_states)
|
239 |
+
)
|
240 |
+
|
241 |
+
# 2. Cross-Attention
|
242 |
+
attn_output = self.attn2(
|
243 |
+
norm_hidden_states,
|
244 |
+
encoder_hidden_states=encoder_hidden_states,
|
245 |
+
attention_mask=encoder_attention_mask,
|
246 |
+
**cross_attention_kwargs,
|
247 |
+
)
|
248 |
+
hidden_states = attn_output + hidden_states
|
249 |
+
|
250 |
+
# 3. Feed-forward
|
251 |
+
norm_hidden_states = self.norm3(hidden_states)
|
252 |
+
|
253 |
+
if self.use_ada_layer_norm_zero:
|
254 |
+
norm_hidden_states = (
|
255 |
+
norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
|
256 |
+
)
|
257 |
+
|
258 |
+
ff_output = self.ff(norm_hidden_states)
|
259 |
+
|
260 |
+
if self.use_ada_layer_norm_zero:
|
261 |
+
ff_output = gate_mlp.unsqueeze(1) * ff_output
|
262 |
+
|
263 |
+
hidden_states = ff_output + hidden_states
|
264 |
+
|
265 |
+
return hidden_states
|
266 |
+
|
267 |
+
if self.reference_attn:
|
268 |
+
if self.fusion_blocks == "midup":
|
269 |
+
attn_modules = [
|
270 |
+
module
|
271 |
+
for module in (
|
272 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
273 |
+
)
|
274 |
+
if isinstance(module, BasicTransformerBlock)
|
275 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
276 |
+
]
|
277 |
+
elif self.fusion_blocks == "full":
|
278 |
+
attn_modules = [
|
279 |
+
module
|
280 |
+
for module in torch_dfs(self.unet)
|
281 |
+
if isinstance(module, BasicTransformerBlock)
|
282 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
283 |
+
]
|
284 |
+
attn_modules = sorted(
|
285 |
+
attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
286 |
+
)
|
287 |
+
|
288 |
+
for i, module in enumerate(attn_modules):
|
289 |
+
module._original_inner_forward = module.forward
|
290 |
+
if isinstance(module, BasicTransformerBlock):
|
291 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
292 |
+
module, BasicTransformerBlock
|
293 |
+
)
|
294 |
+
if isinstance(module, TemporalBasicTransformerBlock):
|
295 |
+
module.forward = hacked_basic_transformer_inner_forward.__get__(
|
296 |
+
module, TemporalBasicTransformerBlock
|
297 |
+
)
|
298 |
+
|
299 |
+
module.bank = []
|
300 |
+
module.attn_weight = float(i) / float(len(attn_modules))
|
301 |
+
|
302 |
+
def update(self, writer, dtype=torch.float16):
|
303 |
+
if self.reference_attn:
|
304 |
+
if self.fusion_blocks == "midup":
|
305 |
+
reader_attn_modules = [
|
306 |
+
module
|
307 |
+
for module in (
|
308 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
309 |
+
)
|
310 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
311 |
+
]
|
312 |
+
writer_attn_modules = [
|
313 |
+
module
|
314 |
+
for module in (
|
315 |
+
torch_dfs(writer.unet.mid_block)
|
316 |
+
+ torch_dfs(writer.unet.up_blocks)
|
317 |
+
)
|
318 |
+
if isinstance(module, BasicTransformerBlock)
|
319 |
+
]
|
320 |
+
elif self.fusion_blocks == "full":
|
321 |
+
reader_attn_modules = [
|
322 |
+
module
|
323 |
+
for module in torch_dfs(self.unet)
|
324 |
+
if isinstance(module, TemporalBasicTransformerBlock)
|
325 |
+
]
|
326 |
+
writer_attn_modules = [
|
327 |
+
module
|
328 |
+
for module in torch_dfs(writer.unet)
|
329 |
+
if isinstance(module, BasicTransformerBlock)
|
330 |
+
]
|
331 |
+
reader_attn_modules = sorted(
|
332 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
333 |
+
)
|
334 |
+
writer_attn_modules = sorted(
|
335 |
+
writer_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
336 |
+
)
|
337 |
+
for r, w in zip(reader_attn_modules, writer_attn_modules):
|
338 |
+
r.bank = [v.clone().to(dtype) for v in w.bank]
|
339 |
+
# w.bank.clear()
|
340 |
+
|
341 |
+
def clear(self):
|
342 |
+
if self.reference_attn:
|
343 |
+
if self.fusion_blocks == "midup":
|
344 |
+
reader_attn_modules = [
|
345 |
+
module
|
346 |
+
for module in (
|
347 |
+
torch_dfs(self.unet.mid_block) + torch_dfs(self.unet.up_blocks)
|
348 |
+
)
|
349 |
+
if isinstance(module, BasicTransformerBlock)
|
350 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
351 |
+
]
|
352 |
+
elif self.fusion_blocks == "full":
|
353 |
+
reader_attn_modules = [
|
354 |
+
module
|
355 |
+
for module in torch_dfs(self.unet)
|
356 |
+
if isinstance(module, BasicTransformerBlock)
|
357 |
+
or isinstance(module, TemporalBasicTransformerBlock)
|
358 |
+
]
|
359 |
+
reader_attn_modules = sorted(
|
360 |
+
reader_attn_modules, key=lambda x: -x.norm1.normalized_shape[0]
|
361 |
+
)
|
362 |
+
for r in reader_attn_modules:
|
363 |
+
r.bank.clear()
|
musepose/models/pose_guider.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Tuple
|
2 |
+
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.nn.init as init
|
6 |
+
from diffusers.models.modeling_utils import ModelMixin
|
7 |
+
|
8 |
+
from musepose.models.motion_module import zero_module
|
9 |
+
from musepose.models.resnet import InflatedConv3d
|
10 |
+
|
11 |
+
|
12 |
+
class PoseGuider(ModelMixin):
|
13 |
+
def __init__(
|
14 |
+
self,
|
15 |
+
conditioning_embedding_channels: int,
|
16 |
+
conditioning_channels: int = 3,
|
17 |
+
block_out_channels: Tuple[int] = (16, 32, 64, 128),
|
18 |
+
):
|
19 |
+
super().__init__()
|
20 |
+
self.conv_in = InflatedConv3d(
|
21 |
+
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
|
22 |
+
)
|
23 |
+
|
24 |
+
self.blocks = nn.ModuleList([])
|
25 |
+
|
26 |
+
for i in range(len(block_out_channels) - 1):
|
27 |
+
channel_in = block_out_channels[i]
|
28 |
+
channel_out = block_out_channels[i + 1]
|
29 |
+
self.blocks.append(
|
30 |
+
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
|
31 |
+
)
|
32 |
+
self.blocks.append(
|
33 |
+
InflatedConv3d(
|
34 |
+
channel_in, channel_out, kernel_size=3, padding=1, stride=2
|
35 |
+
)
|
36 |
+
)
|
37 |
+
|
38 |
+
self.conv_out = zero_module(
|
39 |
+
InflatedConv3d(
|
40 |
+
block_out_channels[-1],
|
41 |
+
conditioning_embedding_channels,
|
42 |
+
kernel_size=3,
|
43 |
+
padding=1,
|
44 |
+
)
|
45 |
+
)
|
46 |
+
|
47 |
+
def forward(self, conditioning):
|
48 |
+
embedding = self.conv_in(conditioning)
|
49 |
+
embedding = F.silu(embedding)
|
50 |
+
|
51 |
+
for block in self.blocks:
|
52 |
+
embedding = block(embedding)
|
53 |
+
embedding = F.silu(embedding)
|
54 |
+
|
55 |
+
embedding = self.conv_out(embedding)
|
56 |
+
|
57 |
+
return embedding
|
musepose/models/resnet.py
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/resnet.py
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from einops import rearrange
|
7 |
+
|
8 |
+
|
9 |
+
class InflatedConv3d(nn.Conv2d):
|
10 |
+
def forward(self, x):
|
11 |
+
video_length = x.shape[2]
|
12 |
+
|
13 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
14 |
+
x = super().forward(x)
|
15 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
16 |
+
|
17 |
+
return x
|
18 |
+
|
19 |
+
|
20 |
+
class InflatedGroupNorm(nn.GroupNorm):
|
21 |
+
def forward(self, x):
|
22 |
+
video_length = x.shape[2]
|
23 |
+
|
24 |
+
x = rearrange(x, "b c f h w -> (b f) c h w")
|
25 |
+
x = super().forward(x)
|
26 |
+
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
|
27 |
+
|
28 |
+
return x
|
29 |
+
|
30 |
+
|
31 |
+
class Upsample3D(nn.Module):
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
channels,
|
35 |
+
use_conv=False,
|
36 |
+
use_conv_transpose=False,
|
37 |
+
out_channels=None,
|
38 |
+
name="conv",
|
39 |
+
):
|
40 |
+
super().__init__()
|
41 |
+
self.channels = channels
|
42 |
+
self.out_channels = out_channels or channels
|
43 |
+
self.use_conv = use_conv
|
44 |
+
self.use_conv_transpose = use_conv_transpose
|
45 |
+
self.name = name
|
46 |
+
|
47 |
+
conv = None
|
48 |
+
if use_conv_transpose:
|
49 |
+
raise NotImplementedError
|
50 |
+
elif use_conv:
|
51 |
+
self.conv = InflatedConv3d(self.channels, self.out_channels, 3, padding=1)
|
52 |
+
|
53 |
+
def forward(self, hidden_states, output_size=None):
|
54 |
+
assert hidden_states.shape[1] == self.channels
|
55 |
+
|
56 |
+
if self.use_conv_transpose:
|
57 |
+
raise NotImplementedError
|
58 |
+
|
59 |
+
# Cast to float32 to as 'upsample_nearest2d_out_frame' op does not support bfloat16
|
60 |
+
dtype = hidden_states.dtype
|
61 |
+
if dtype == torch.bfloat16:
|
62 |
+
hidden_states = hidden_states.to(torch.float32)
|
63 |
+
|
64 |
+
# upsample_nearest_nhwc fails with large batch sizes. see https://github.com/huggingface/diffusers/issues/984
|
65 |
+
if hidden_states.shape[0] >= 64:
|
66 |
+
hidden_states = hidden_states.contiguous()
|
67 |
+
|
68 |
+
# if `output_size` is passed we force the interpolation output
|
69 |
+
# size and do not make use of `scale_factor=2`
|
70 |
+
if output_size is None:
|
71 |
+
hidden_states = F.interpolate(
|
72 |
+
hidden_states, scale_factor=[1.0, 2.0, 2.0], mode="nearest"
|
73 |
+
)
|
74 |
+
else:
|
75 |
+
hidden_states = F.interpolate(
|
76 |
+
hidden_states, size=output_size, mode="nearest"
|
77 |
+
)
|
78 |
+
|
79 |
+
# If the input is bfloat16, we cast back to bfloat16
|
80 |
+
if dtype == torch.bfloat16:
|
81 |
+
hidden_states = hidden_states.to(dtype)
|
82 |
+
|
83 |
+
# if self.use_conv:
|
84 |
+
# if self.name == "conv":
|
85 |
+
# hidden_states = self.conv(hidden_states)
|
86 |
+
# else:
|
87 |
+
# hidden_states = self.Conv2d_0(hidden_states)
|
88 |
+
hidden_states = self.conv(hidden_states)
|
89 |
+
|
90 |
+
return hidden_states
|
91 |
+
|
92 |
+
|
93 |
+
class Downsample3D(nn.Module):
|
94 |
+
def __init__(
|
95 |
+
self, channels, use_conv=False, out_channels=None, padding=1, name="conv"
|
96 |
+
):
|
97 |
+
super().__init__()
|
98 |
+
self.channels = channels
|
99 |
+
self.out_channels = out_channels or channels
|
100 |
+
self.use_conv = use_conv
|
101 |
+
self.padding = padding
|
102 |
+
stride = 2
|
103 |
+
self.name = name
|
104 |
+
|
105 |
+
if use_conv:
|
106 |
+
self.conv = InflatedConv3d(
|
107 |
+
self.channels, self.out_channels, 3, stride=stride, padding=padding
|
108 |
+
)
|
109 |
+
else:
|
110 |
+
raise NotImplementedError
|
111 |
+
|
112 |
+
def forward(self, hidden_states):
|
113 |
+
assert hidden_states.shape[1] == self.channels
|
114 |
+
if self.use_conv and self.padding == 0:
|
115 |
+
raise NotImplementedError
|
116 |
+
|
117 |
+
assert hidden_states.shape[1] == self.channels
|
118 |
+
hidden_states = self.conv(hidden_states)
|
119 |
+
|
120 |
+
return hidden_states
|
121 |
+
|
122 |
+
|
123 |
+
class ResnetBlock3D(nn.Module):
|
124 |
+
def __init__(
|
125 |
+
self,
|
126 |
+
*,
|
127 |
+
in_channels,
|
128 |
+
out_channels=None,
|
129 |
+
conv_shortcut=False,
|
130 |
+
dropout=0.0,
|
131 |
+
temb_channels=512,
|
132 |
+
groups=32,
|
133 |
+
groups_out=None,
|
134 |
+
pre_norm=True,
|
135 |
+
eps=1e-6,
|
136 |
+
non_linearity="swish",
|
137 |
+
time_embedding_norm="default",
|
138 |
+
output_scale_factor=1.0,
|
139 |
+
use_in_shortcut=None,
|
140 |
+
use_inflated_groupnorm=None,
|
141 |
+
):
|
142 |
+
super().__init__()
|
143 |
+
self.pre_norm = pre_norm
|
144 |
+
self.pre_norm = True
|
145 |
+
self.in_channels = in_channels
|
146 |
+
out_channels = in_channels if out_channels is None else out_channels
|
147 |
+
self.out_channels = out_channels
|
148 |
+
self.use_conv_shortcut = conv_shortcut
|
149 |
+
self.time_embedding_norm = time_embedding_norm
|
150 |
+
self.output_scale_factor = output_scale_factor
|
151 |
+
|
152 |
+
if groups_out is None:
|
153 |
+
groups_out = groups
|
154 |
+
|
155 |
+
assert use_inflated_groupnorm != None
|
156 |
+
if use_inflated_groupnorm:
|
157 |
+
self.norm1 = InflatedGroupNorm(
|
158 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
159 |
+
)
|
160 |
+
else:
|
161 |
+
self.norm1 = torch.nn.GroupNorm(
|
162 |
+
num_groups=groups, num_channels=in_channels, eps=eps, affine=True
|
163 |
+
)
|
164 |
+
|
165 |
+
self.conv1 = InflatedConv3d(
|
166 |
+
in_channels, out_channels, kernel_size=3, stride=1, padding=1
|
167 |
+
)
|
168 |
+
|
169 |
+
if temb_channels is not None:
|
170 |
+
if self.time_embedding_norm == "default":
|
171 |
+
time_emb_proj_out_channels = out_channels
|
172 |
+
elif self.time_embedding_norm == "scale_shift":
|
173 |
+
time_emb_proj_out_channels = out_channels * 2
|
174 |
+
else:
|
175 |
+
raise ValueError(
|
176 |
+
f"unknown time_embedding_norm : {self.time_embedding_norm} "
|
177 |
+
)
|
178 |
+
|
179 |
+
self.time_emb_proj = torch.nn.Linear(
|
180 |
+
temb_channels, time_emb_proj_out_channels
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
self.time_emb_proj = None
|
184 |
+
|
185 |
+
if use_inflated_groupnorm:
|
186 |
+
self.norm2 = InflatedGroupNorm(
|
187 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
188 |
+
)
|
189 |
+
else:
|
190 |
+
self.norm2 = torch.nn.GroupNorm(
|
191 |
+
num_groups=groups_out, num_channels=out_channels, eps=eps, affine=True
|
192 |
+
)
|
193 |
+
self.dropout = torch.nn.Dropout(dropout)
|
194 |
+
self.conv2 = InflatedConv3d(
|
195 |
+
out_channels, out_channels, kernel_size=3, stride=1, padding=1
|
196 |
+
)
|
197 |
+
|
198 |
+
if non_linearity == "swish":
|
199 |
+
self.nonlinearity = lambda x: F.silu(x)
|
200 |
+
elif non_linearity == "mish":
|
201 |
+
self.nonlinearity = Mish()
|
202 |
+
elif non_linearity == "silu":
|
203 |
+
self.nonlinearity = nn.SiLU()
|
204 |
+
|
205 |
+
self.use_in_shortcut = (
|
206 |
+
self.in_channels != self.out_channels
|
207 |
+
if use_in_shortcut is None
|
208 |
+
else use_in_shortcut
|
209 |
+
)
|
210 |
+
|
211 |
+
self.conv_shortcut = None
|
212 |
+
if self.use_in_shortcut:
|
213 |
+
self.conv_shortcut = InflatedConv3d(
|
214 |
+
in_channels, out_channels, kernel_size=1, stride=1, padding=0
|
215 |
+
)
|
216 |
+
|
217 |
+
def forward(self, input_tensor, temb):
|
218 |
+
hidden_states = input_tensor
|
219 |
+
|
220 |
+
hidden_states = self.norm1(hidden_states)
|
221 |
+
hidden_states = self.nonlinearity(hidden_states)
|
222 |
+
|
223 |
+
hidden_states = self.conv1(hidden_states)
|
224 |
+
|
225 |
+
if temb is not None:
|
226 |
+
temb = self.time_emb_proj(self.nonlinearity(temb))[:, :, None, None, None]
|
227 |
+
|
228 |
+
if temb is not None and self.time_embedding_norm == "default":
|
229 |
+
hidden_states = hidden_states + temb
|
230 |
+
|
231 |
+
hidden_states = self.norm2(hidden_states)
|
232 |
+
|
233 |
+
if temb is not None and self.time_embedding_norm == "scale_shift":
|
234 |
+
scale, shift = torch.chunk(temb, 2, dim=1)
|
235 |
+
hidden_states = hidden_states * (1 + scale) + shift
|
236 |
+
|
237 |
+
hidden_states = self.nonlinearity(hidden_states)
|
238 |
+
|
239 |
+
hidden_states = self.dropout(hidden_states)
|
240 |
+
hidden_states = self.conv2(hidden_states)
|
241 |
+
|
242 |
+
if self.conv_shortcut is not None:
|
243 |
+
input_tensor = self.conv_shortcut(input_tensor)
|
244 |
+
|
245 |
+
output_tensor = (input_tensor + hidden_states) / self.output_scale_factor
|
246 |
+
|
247 |
+
return output_tensor
|
248 |
+
|
249 |
+
|
250 |
+
class Mish(torch.nn.Module):
|
251 |
+
def forward(self, hidden_states):
|
252 |
+
return hidden_states * torch.tanh(torch.nn.functional.softplus(hidden_states))
|
musepose/models/transformer_2d.py
ADDED
@@ -0,0 +1,395 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/transformer_2d.py
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
7 |
+
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
|
8 |
+
from diffusers.models.modeling_utils import ModelMixin
|
9 |
+
from diffusers.models.normalization import AdaLayerNormSingle
|
10 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, is_torch_version
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from .attention import BasicTransformerBlock
|
14 |
+
|
15 |
+
|
16 |
+
@dataclass
|
17 |
+
class Transformer2DModelOutput(BaseOutput):
|
18 |
+
"""
|
19 |
+
The output of [`Transformer2DModel`].
|
20 |
+
|
21 |
+
Args:
|
22 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete):
|
23 |
+
The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability
|
24 |
+
distributions for the unnoised latent pixels.
|
25 |
+
"""
|
26 |
+
|
27 |
+
sample: torch.FloatTensor
|
28 |
+
ref_feature: torch.FloatTensor
|
29 |
+
|
30 |
+
|
31 |
+
class Transformer2DModel(ModelMixin, ConfigMixin):
|
32 |
+
"""
|
33 |
+
A 2D Transformer model for image-like data.
|
34 |
+
|
35 |
+
Parameters:
|
36 |
+
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
|
37 |
+
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
|
38 |
+
in_channels (`int`, *optional*):
|
39 |
+
The number of channels in the input and output (specify if the input is **continuous**).
|
40 |
+
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
|
41 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
42 |
+
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
|
43 |
+
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
|
44 |
+
This is fixed during training since it is used to learn a number of position embeddings.
|
45 |
+
num_vector_embeds (`int`, *optional*):
|
46 |
+
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
|
47 |
+
Includes the class for the masked latent pixel.
|
48 |
+
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
|
49 |
+
num_embeds_ada_norm ( `int`, *optional*):
|
50 |
+
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
|
51 |
+
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
|
52 |
+
added to the hidden states.
|
53 |
+
|
54 |
+
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
|
55 |
+
attention_bias (`bool`, *optional*):
|
56 |
+
Configure if the `TransformerBlocks` attention should contain a bias parameter.
|
57 |
+
"""
|
58 |
+
|
59 |
+
_supports_gradient_checkpointing = True
|
60 |
+
|
61 |
+
@register_to_config
|
62 |
+
def __init__(
|
63 |
+
self,
|
64 |
+
num_attention_heads: int = 16,
|
65 |
+
attention_head_dim: int = 88,
|
66 |
+
in_channels: Optional[int] = None,
|
67 |
+
out_channels: Optional[int] = None,
|
68 |
+
num_layers: int = 1,
|
69 |
+
dropout: float = 0.0,
|
70 |
+
norm_num_groups: int = 32,
|
71 |
+
cross_attention_dim: Optional[int] = None,
|
72 |
+
attention_bias: bool = False,
|
73 |
+
sample_size: Optional[int] = None,
|
74 |
+
num_vector_embeds: Optional[int] = None,
|
75 |
+
patch_size: Optional[int] = None,
|
76 |
+
activation_fn: str = "geglu",
|
77 |
+
num_embeds_ada_norm: Optional[int] = None,
|
78 |
+
use_linear_projection: bool = False,
|
79 |
+
only_cross_attention: bool = False,
|
80 |
+
double_self_attention: bool = False,
|
81 |
+
upcast_attention: bool = False,
|
82 |
+
norm_type: str = "layer_norm",
|
83 |
+
norm_elementwise_affine: bool = True,
|
84 |
+
norm_eps: float = 1e-5,
|
85 |
+
attention_type: str = "default",
|
86 |
+
caption_channels: int = None,
|
87 |
+
):
|
88 |
+
super().__init__()
|
89 |
+
self.use_linear_projection = use_linear_projection
|
90 |
+
self.num_attention_heads = num_attention_heads
|
91 |
+
self.attention_head_dim = attention_head_dim
|
92 |
+
inner_dim = num_attention_heads * attention_head_dim
|
93 |
+
|
94 |
+
conv_cls = nn.Conv2d if USE_PEFT_BACKEND else LoRACompatibleConv
|
95 |
+
linear_cls = nn.Linear if USE_PEFT_BACKEND else LoRACompatibleLinear
|
96 |
+
|
97 |
+
# 1. Transformer2DModel can process both standard continuous images of shape `(batch_size, num_channels, width, height)` as well as quantized image embeddings of shape `(batch_size, num_image_vectors)`
|
98 |
+
# Define whether input is continuous or discrete depending on configuration
|
99 |
+
self.is_input_continuous = (in_channels is not None) and (patch_size is None)
|
100 |
+
self.is_input_vectorized = num_vector_embeds is not None
|
101 |
+
self.is_input_patches = in_channels is not None and patch_size is not None
|
102 |
+
|
103 |
+
if norm_type == "layer_norm" and num_embeds_ada_norm is not None:
|
104 |
+
deprecation_message = (
|
105 |
+
f"The configuration file of this model: {self.__class__} is outdated. `norm_type` is either not set or"
|
106 |
+
" incorrectly set to `'layer_norm'`.Make sure to set `norm_type` to `'ada_norm'` in the config."
|
107 |
+
" Please make sure to update the config accordingly as leaving `norm_type` might led to incorrect"
|
108 |
+
" results in future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it"
|
109 |
+
" would be very nice if you could open a Pull request for the `transformer/config.json` file"
|
110 |
+
)
|
111 |
+
deprecate(
|
112 |
+
"norm_type!=num_embeds_ada_norm",
|
113 |
+
"1.0.0",
|
114 |
+
deprecation_message,
|
115 |
+
standard_warn=False,
|
116 |
+
)
|
117 |
+
norm_type = "ada_norm"
|
118 |
+
|
119 |
+
if self.is_input_continuous and self.is_input_vectorized:
|
120 |
+
raise ValueError(
|
121 |
+
f"Cannot define both `in_channels`: {in_channels} and `num_vector_embeds`: {num_vector_embeds}. Make"
|
122 |
+
" sure that either `in_channels` or `num_vector_embeds` is None."
|
123 |
+
)
|
124 |
+
elif self.is_input_vectorized and self.is_input_patches:
|
125 |
+
raise ValueError(
|
126 |
+
f"Cannot define both `num_vector_embeds`: {num_vector_embeds} and `patch_size`: {patch_size}. Make"
|
127 |
+
" sure that either `num_vector_embeds` or `num_patches` is None."
|
128 |
+
)
|
129 |
+
elif (
|
130 |
+
not self.is_input_continuous
|
131 |
+
and not self.is_input_vectorized
|
132 |
+
and not self.is_input_patches
|
133 |
+
):
|
134 |
+
raise ValueError(
|
135 |
+
f"Has to define `in_channels`: {in_channels}, `num_vector_embeds`: {num_vector_embeds}, or patch_size:"
|
136 |
+
f" {patch_size}. Make sure that `in_channels`, `num_vector_embeds` or `num_patches` is not None."
|
137 |
+
)
|
138 |
+
|
139 |
+
# 2. Define input layers
|
140 |
+
self.in_channels = in_channels
|
141 |
+
|
142 |
+
self.norm = torch.nn.GroupNorm(
|
143 |
+
num_groups=norm_num_groups,
|
144 |
+
num_channels=in_channels,
|
145 |
+
eps=1e-6,
|
146 |
+
affine=True,
|
147 |
+
)
|
148 |
+
if use_linear_projection:
|
149 |
+
self.proj_in = linear_cls(in_channels, inner_dim)
|
150 |
+
else:
|
151 |
+
self.proj_in = conv_cls(
|
152 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
153 |
+
)
|
154 |
+
|
155 |
+
# 3. Define transformers blocks
|
156 |
+
self.transformer_blocks = nn.ModuleList(
|
157 |
+
[
|
158 |
+
BasicTransformerBlock(
|
159 |
+
inner_dim,
|
160 |
+
num_attention_heads,
|
161 |
+
attention_head_dim,
|
162 |
+
dropout=dropout,
|
163 |
+
cross_attention_dim=cross_attention_dim,
|
164 |
+
activation_fn=activation_fn,
|
165 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
166 |
+
attention_bias=attention_bias,
|
167 |
+
only_cross_attention=only_cross_attention,
|
168 |
+
double_self_attention=double_self_attention,
|
169 |
+
upcast_attention=upcast_attention,
|
170 |
+
norm_type=norm_type,
|
171 |
+
norm_elementwise_affine=norm_elementwise_affine,
|
172 |
+
norm_eps=norm_eps,
|
173 |
+
attention_type=attention_type,
|
174 |
+
)
|
175 |
+
for d in range(num_layers)
|
176 |
+
]
|
177 |
+
)
|
178 |
+
|
179 |
+
# 4. Define output layers
|
180 |
+
self.out_channels = in_channels if out_channels is None else out_channels
|
181 |
+
# TODO: should use out_channels for continuous projections
|
182 |
+
if use_linear_projection:
|
183 |
+
self.proj_out = linear_cls(inner_dim, in_channels)
|
184 |
+
else:
|
185 |
+
self.proj_out = conv_cls(
|
186 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
187 |
+
)
|
188 |
+
|
189 |
+
# 5. PixArt-Alpha blocks.
|
190 |
+
self.adaln_single = None
|
191 |
+
self.use_additional_conditions = False
|
192 |
+
if norm_type == "ada_norm_single":
|
193 |
+
self.use_additional_conditions = self.config.sample_size == 128
|
194 |
+
# TODO(Sayak, PVP) clean this, for now we use sample size to determine whether to use
|
195 |
+
# additional conditions until we find better name
|
196 |
+
self.adaln_single = AdaLayerNormSingle(
|
197 |
+
inner_dim, use_additional_conditions=self.use_additional_conditions
|
198 |
+
)
|
199 |
+
|
200 |
+
self.caption_projection = None
|
201 |
+
if caption_channels is not None:
|
202 |
+
self.caption_projection = CaptionProjection(
|
203 |
+
in_features=caption_channels, hidden_size=inner_dim
|
204 |
+
)
|
205 |
+
|
206 |
+
self.gradient_checkpointing = False
|
207 |
+
|
208 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
209 |
+
if hasattr(module, "gradient_checkpointing"):
|
210 |
+
module.gradient_checkpointing = value
|
211 |
+
|
212 |
+
def forward(
|
213 |
+
self,
|
214 |
+
hidden_states: torch.Tensor,
|
215 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
216 |
+
timestep: Optional[torch.LongTensor] = None,
|
217 |
+
added_cond_kwargs: Dict[str, torch.Tensor] = None,
|
218 |
+
class_labels: Optional[torch.LongTensor] = None,
|
219 |
+
cross_attention_kwargs: Dict[str, Any] = None,
|
220 |
+
attention_mask: Optional[torch.Tensor] = None,
|
221 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
222 |
+
return_dict: bool = True,
|
223 |
+
):
|
224 |
+
"""
|
225 |
+
The [`Transformer2DModel`] forward method.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
|
229 |
+
Input `hidden_states`.
|
230 |
+
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
|
231 |
+
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
|
232 |
+
self-attention.
|
233 |
+
timestep ( `torch.LongTensor`, *optional*):
|
234 |
+
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
|
235 |
+
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
|
236 |
+
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
|
237 |
+
`AdaLayerZeroNorm`.
|
238 |
+
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
|
239 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
240 |
+
`self.processor` in
|
241 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
242 |
+
attention_mask ( `torch.Tensor`, *optional*):
|
243 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
244 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
245 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
246 |
+
encoder_attention_mask ( `torch.Tensor`, *optional*):
|
247 |
+
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
|
248 |
+
|
249 |
+
* Mask `(batch, sequence_length)` True = keep, False = discard.
|
250 |
+
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
|
251 |
+
|
252 |
+
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
|
253 |
+
above. This bias will be added to the cross-attention scores.
|
254 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
255 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
256 |
+
tuple.
|
257 |
+
|
258 |
+
Returns:
|
259 |
+
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
260 |
+
`tuple` where the first element is the sample tensor.
|
261 |
+
"""
|
262 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
|
263 |
+
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
|
264 |
+
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
|
265 |
+
# expects mask of shape:
|
266 |
+
# [batch, key_tokens]
|
267 |
+
# adds singleton query_tokens dimension:
|
268 |
+
# [batch, 1, key_tokens]
|
269 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
270 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
271 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
272 |
+
if attention_mask is not None and attention_mask.ndim == 2:
|
273 |
+
# assume that mask is expressed as:
|
274 |
+
# (1 = keep, 0 = discard)
|
275 |
+
# convert mask into a bias that can be added to attention scores:
|
276 |
+
# (keep = +0, discard = -10000.0)
|
277 |
+
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
|
278 |
+
attention_mask = attention_mask.unsqueeze(1)
|
279 |
+
|
280 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
281 |
+
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
|
282 |
+
encoder_attention_mask = (
|
283 |
+
1 - encoder_attention_mask.to(hidden_states.dtype)
|
284 |
+
) * -10000.0
|
285 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
286 |
+
|
287 |
+
# Retrieve lora scale.
|
288 |
+
lora_scale = (
|
289 |
+
cross_attention_kwargs.get("scale", 1.0)
|
290 |
+
if cross_attention_kwargs is not None
|
291 |
+
else 1.0
|
292 |
+
)
|
293 |
+
|
294 |
+
# 1. Input
|
295 |
+
batch, _, height, width = hidden_states.shape
|
296 |
+
residual = hidden_states
|
297 |
+
|
298 |
+
hidden_states = self.norm(hidden_states)
|
299 |
+
if not self.use_linear_projection:
|
300 |
+
hidden_states = (
|
301 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
302 |
+
if not USE_PEFT_BACKEND
|
303 |
+
else self.proj_in(hidden_states)
|
304 |
+
)
|
305 |
+
inner_dim = hidden_states.shape[1]
|
306 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
307 |
+
batch, height * width, inner_dim
|
308 |
+
)
|
309 |
+
else:
|
310 |
+
inner_dim = hidden_states.shape[1]
|
311 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
312 |
+
batch, height * width, inner_dim
|
313 |
+
)
|
314 |
+
hidden_states = (
|
315 |
+
self.proj_in(hidden_states, scale=lora_scale)
|
316 |
+
if not USE_PEFT_BACKEND
|
317 |
+
else self.proj_in(hidden_states)
|
318 |
+
)
|
319 |
+
|
320 |
+
# 2. Blocks
|
321 |
+
if self.caption_projection is not None:
|
322 |
+
batch_size = hidden_states.shape[0]
|
323 |
+
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
|
324 |
+
encoder_hidden_states = encoder_hidden_states.view(
|
325 |
+
batch_size, -1, hidden_states.shape[-1]
|
326 |
+
)
|
327 |
+
|
328 |
+
ref_feature = hidden_states.reshape(batch, height, width, inner_dim)
|
329 |
+
for block in self.transformer_blocks:
|
330 |
+
if self.training and self.gradient_checkpointing:
|
331 |
+
|
332 |
+
def create_custom_forward(module, return_dict=None):
|
333 |
+
def custom_forward(*inputs):
|
334 |
+
if return_dict is not None:
|
335 |
+
return module(*inputs, return_dict=return_dict)
|
336 |
+
else:
|
337 |
+
return module(*inputs)
|
338 |
+
|
339 |
+
return custom_forward
|
340 |
+
|
341 |
+
ckpt_kwargs: Dict[str, Any] = (
|
342 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
343 |
+
)
|
344 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
345 |
+
create_custom_forward(block),
|
346 |
+
hidden_states,
|
347 |
+
attention_mask,
|
348 |
+
encoder_hidden_states,
|
349 |
+
encoder_attention_mask,
|
350 |
+
timestep,
|
351 |
+
cross_attention_kwargs,
|
352 |
+
class_labels,
|
353 |
+
**ckpt_kwargs,
|
354 |
+
)
|
355 |
+
else:
|
356 |
+
hidden_states = block(
|
357 |
+
hidden_states,
|
358 |
+
attention_mask=attention_mask,
|
359 |
+
encoder_hidden_states=encoder_hidden_states,
|
360 |
+
encoder_attention_mask=encoder_attention_mask,
|
361 |
+
timestep=timestep,
|
362 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
363 |
+
class_labels=class_labels,
|
364 |
+
)
|
365 |
+
|
366 |
+
# 3. Output
|
367 |
+
if self.is_input_continuous:
|
368 |
+
if not self.use_linear_projection:
|
369 |
+
hidden_states = (
|
370 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
371 |
+
.permute(0, 3, 1, 2)
|
372 |
+
.contiguous()
|
373 |
+
)
|
374 |
+
hidden_states = (
|
375 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
376 |
+
if not USE_PEFT_BACKEND
|
377 |
+
else self.proj_out(hidden_states)
|
378 |
+
)
|
379 |
+
else:
|
380 |
+
hidden_states = (
|
381 |
+
self.proj_out(hidden_states, scale=lora_scale)
|
382 |
+
if not USE_PEFT_BACKEND
|
383 |
+
else self.proj_out(hidden_states)
|
384 |
+
)
|
385 |
+
hidden_states = (
|
386 |
+
hidden_states.reshape(batch, height, width, inner_dim)
|
387 |
+
.permute(0, 3, 1, 2)
|
388 |
+
.contiguous()
|
389 |
+
)
|
390 |
+
|
391 |
+
output = hidden_states + residual
|
392 |
+
if not return_dict:
|
393 |
+
return (output, ref_feature)
|
394 |
+
|
395 |
+
return Transformer2DModelOutput(sample=output, ref_feature=ref_feature)
|
musepose/models/transformer_3d.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
from typing import Optional
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
6 |
+
from diffusers.models import ModelMixin
|
7 |
+
from diffusers.utils import BaseOutput
|
8 |
+
from diffusers.utils.import_utils import is_xformers_available
|
9 |
+
from einops import rearrange, repeat
|
10 |
+
from torch import nn
|
11 |
+
|
12 |
+
from .attention import TemporalBasicTransformerBlock
|
13 |
+
|
14 |
+
|
15 |
+
@dataclass
|
16 |
+
class Transformer3DModelOutput(BaseOutput):
|
17 |
+
sample: torch.FloatTensor
|
18 |
+
|
19 |
+
|
20 |
+
if is_xformers_available():
|
21 |
+
import xformers
|
22 |
+
import xformers.ops
|
23 |
+
else:
|
24 |
+
xformers = None
|
25 |
+
|
26 |
+
|
27 |
+
class Transformer3DModel(ModelMixin, ConfigMixin):
|
28 |
+
_supports_gradient_checkpointing = True
|
29 |
+
|
30 |
+
@register_to_config
|
31 |
+
def __init__(
|
32 |
+
self,
|
33 |
+
num_attention_heads: int = 16,
|
34 |
+
attention_head_dim: int = 88,
|
35 |
+
in_channels: Optional[int] = None,
|
36 |
+
num_layers: int = 1,
|
37 |
+
dropout: float = 0.0,
|
38 |
+
norm_num_groups: int = 32,
|
39 |
+
cross_attention_dim: Optional[int] = None,
|
40 |
+
attention_bias: bool = False,
|
41 |
+
activation_fn: str = "geglu",
|
42 |
+
num_embeds_ada_norm: Optional[int] = None,
|
43 |
+
use_linear_projection: bool = False,
|
44 |
+
only_cross_attention: bool = False,
|
45 |
+
upcast_attention: bool = False,
|
46 |
+
unet_use_cross_frame_attention=None,
|
47 |
+
unet_use_temporal_attention=None,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
self.use_linear_projection = use_linear_projection
|
51 |
+
self.num_attention_heads = num_attention_heads
|
52 |
+
self.attention_head_dim = attention_head_dim
|
53 |
+
inner_dim = num_attention_heads * attention_head_dim
|
54 |
+
|
55 |
+
# Define input layers
|
56 |
+
self.in_channels = in_channels
|
57 |
+
|
58 |
+
self.norm = torch.nn.GroupNorm(
|
59 |
+
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
|
60 |
+
)
|
61 |
+
if use_linear_projection:
|
62 |
+
self.proj_in = nn.Linear(in_channels, inner_dim)
|
63 |
+
else:
|
64 |
+
self.proj_in = nn.Conv2d(
|
65 |
+
in_channels, inner_dim, kernel_size=1, stride=1, padding=0
|
66 |
+
)
|
67 |
+
|
68 |
+
# Define transformers blocks
|
69 |
+
self.transformer_blocks = nn.ModuleList(
|
70 |
+
[
|
71 |
+
TemporalBasicTransformerBlock(
|
72 |
+
inner_dim,
|
73 |
+
num_attention_heads,
|
74 |
+
attention_head_dim,
|
75 |
+
dropout=dropout,
|
76 |
+
cross_attention_dim=cross_attention_dim,
|
77 |
+
activation_fn=activation_fn,
|
78 |
+
num_embeds_ada_norm=num_embeds_ada_norm,
|
79 |
+
attention_bias=attention_bias,
|
80 |
+
only_cross_attention=only_cross_attention,
|
81 |
+
upcast_attention=upcast_attention,
|
82 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
83 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
84 |
+
)
|
85 |
+
for d in range(num_layers)
|
86 |
+
]
|
87 |
+
)
|
88 |
+
|
89 |
+
# 4. Define output layers
|
90 |
+
if use_linear_projection:
|
91 |
+
self.proj_out = nn.Linear(in_channels, inner_dim)
|
92 |
+
else:
|
93 |
+
self.proj_out = nn.Conv2d(
|
94 |
+
inner_dim, in_channels, kernel_size=1, stride=1, padding=0
|
95 |
+
)
|
96 |
+
|
97 |
+
self.gradient_checkpointing = False
|
98 |
+
|
99 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
100 |
+
if hasattr(module, "gradient_checkpointing"):
|
101 |
+
module.gradient_checkpointing = value
|
102 |
+
|
103 |
+
def forward(
|
104 |
+
self,
|
105 |
+
hidden_states,
|
106 |
+
encoder_hidden_states=None,
|
107 |
+
timestep=None,
|
108 |
+
return_dict: bool = True,
|
109 |
+
):
|
110 |
+
# Input
|
111 |
+
assert (
|
112 |
+
hidden_states.dim() == 5
|
113 |
+
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
|
114 |
+
video_length = hidden_states.shape[2]
|
115 |
+
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
|
116 |
+
if encoder_hidden_states.shape[0] != hidden_states.shape[0]:
|
117 |
+
encoder_hidden_states = repeat(
|
118 |
+
encoder_hidden_states, "b n c -> (b f) n c", f=video_length
|
119 |
+
)
|
120 |
+
|
121 |
+
batch, channel, height, weight = hidden_states.shape
|
122 |
+
residual = hidden_states
|
123 |
+
|
124 |
+
hidden_states = self.norm(hidden_states)
|
125 |
+
if not self.use_linear_projection:
|
126 |
+
hidden_states = self.proj_in(hidden_states)
|
127 |
+
inner_dim = hidden_states.shape[1]
|
128 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
129 |
+
batch, height * weight, inner_dim
|
130 |
+
)
|
131 |
+
else:
|
132 |
+
inner_dim = hidden_states.shape[1]
|
133 |
+
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
|
134 |
+
batch, height * weight, inner_dim
|
135 |
+
)
|
136 |
+
hidden_states = self.proj_in(hidden_states)
|
137 |
+
|
138 |
+
# Blocks
|
139 |
+
for i, block in enumerate(self.transformer_blocks):
|
140 |
+
hidden_states = block(
|
141 |
+
hidden_states,
|
142 |
+
encoder_hidden_states=encoder_hidden_states,
|
143 |
+
timestep=timestep,
|
144 |
+
video_length=video_length,
|
145 |
+
)
|
146 |
+
|
147 |
+
# Output
|
148 |
+
if not self.use_linear_projection:
|
149 |
+
hidden_states = (
|
150 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
151 |
+
.permute(0, 3, 1, 2)
|
152 |
+
.contiguous()
|
153 |
+
)
|
154 |
+
hidden_states = self.proj_out(hidden_states)
|
155 |
+
else:
|
156 |
+
hidden_states = self.proj_out(hidden_states)
|
157 |
+
hidden_states = (
|
158 |
+
hidden_states.reshape(batch, height, weight, inner_dim)
|
159 |
+
.permute(0, 3, 1, 2)
|
160 |
+
.contiguous()
|
161 |
+
)
|
162 |
+
|
163 |
+
output = hidden_states + residual
|
164 |
+
|
165 |
+
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
|
166 |
+
if not return_dict:
|
167 |
+
return (output,)
|
168 |
+
|
169 |
+
return Transformer3DModelOutput(sample=output)
|
musepose/models/unet_2d_blocks.py
ADDED
@@ -0,0 +1,1074 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
from typing import Any, Dict, Optional, Tuple, Union
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import torch
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from diffusers.models.activations import get_activation
|
8 |
+
from diffusers.models.attention_processor import Attention
|
9 |
+
from diffusers.models.dual_transformer_2d import DualTransformer2DModel
|
10 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D, Upsample2D
|
11 |
+
from diffusers.utils import is_torch_version, logging
|
12 |
+
from diffusers.utils.torch_utils import apply_freeu
|
13 |
+
from torch import nn
|
14 |
+
|
15 |
+
from .transformer_2d import Transformer2DModel
|
16 |
+
|
17 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
18 |
+
|
19 |
+
|
20 |
+
def get_down_block(
|
21 |
+
down_block_type: str,
|
22 |
+
num_layers: int,
|
23 |
+
in_channels: int,
|
24 |
+
out_channels: int,
|
25 |
+
temb_channels: int,
|
26 |
+
add_downsample: bool,
|
27 |
+
resnet_eps: float,
|
28 |
+
resnet_act_fn: str,
|
29 |
+
transformer_layers_per_block: int = 1,
|
30 |
+
num_attention_heads: Optional[int] = None,
|
31 |
+
resnet_groups: Optional[int] = None,
|
32 |
+
cross_attention_dim: Optional[int] = None,
|
33 |
+
downsample_padding: Optional[int] = None,
|
34 |
+
dual_cross_attention: bool = False,
|
35 |
+
use_linear_projection: bool = False,
|
36 |
+
only_cross_attention: bool = False,
|
37 |
+
upcast_attention: bool = False,
|
38 |
+
resnet_time_scale_shift: str = "default",
|
39 |
+
attention_type: str = "default",
|
40 |
+
resnet_skip_time_act: bool = False,
|
41 |
+
resnet_out_scale_factor: float = 1.0,
|
42 |
+
cross_attention_norm: Optional[str] = None,
|
43 |
+
attention_head_dim: Optional[int] = None,
|
44 |
+
downsample_type: Optional[str] = None,
|
45 |
+
dropout: float = 0.0,
|
46 |
+
):
|
47 |
+
# If attn head dim is not defined, we default it to the number of heads
|
48 |
+
if attention_head_dim is None:
|
49 |
+
logger.warn(
|
50 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_down_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
51 |
+
)
|
52 |
+
attention_head_dim = num_attention_heads
|
53 |
+
|
54 |
+
down_block_type = (
|
55 |
+
down_block_type[7:]
|
56 |
+
if down_block_type.startswith("UNetRes")
|
57 |
+
else down_block_type
|
58 |
+
)
|
59 |
+
if down_block_type == "DownBlock2D":
|
60 |
+
return DownBlock2D(
|
61 |
+
num_layers=num_layers,
|
62 |
+
in_channels=in_channels,
|
63 |
+
out_channels=out_channels,
|
64 |
+
temb_channels=temb_channels,
|
65 |
+
dropout=dropout,
|
66 |
+
add_downsample=add_downsample,
|
67 |
+
resnet_eps=resnet_eps,
|
68 |
+
resnet_act_fn=resnet_act_fn,
|
69 |
+
resnet_groups=resnet_groups,
|
70 |
+
downsample_padding=downsample_padding,
|
71 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
72 |
+
)
|
73 |
+
elif down_block_type == "CrossAttnDownBlock2D":
|
74 |
+
if cross_attention_dim is None:
|
75 |
+
raise ValueError(
|
76 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock2D"
|
77 |
+
)
|
78 |
+
return CrossAttnDownBlock2D(
|
79 |
+
num_layers=num_layers,
|
80 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
81 |
+
in_channels=in_channels,
|
82 |
+
out_channels=out_channels,
|
83 |
+
temb_channels=temb_channels,
|
84 |
+
dropout=dropout,
|
85 |
+
add_downsample=add_downsample,
|
86 |
+
resnet_eps=resnet_eps,
|
87 |
+
resnet_act_fn=resnet_act_fn,
|
88 |
+
resnet_groups=resnet_groups,
|
89 |
+
downsample_padding=downsample_padding,
|
90 |
+
cross_attention_dim=cross_attention_dim,
|
91 |
+
num_attention_heads=num_attention_heads,
|
92 |
+
dual_cross_attention=dual_cross_attention,
|
93 |
+
use_linear_projection=use_linear_projection,
|
94 |
+
only_cross_attention=only_cross_attention,
|
95 |
+
upcast_attention=upcast_attention,
|
96 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
97 |
+
attention_type=attention_type,
|
98 |
+
)
|
99 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
100 |
+
|
101 |
+
|
102 |
+
def get_up_block(
|
103 |
+
up_block_type: str,
|
104 |
+
num_layers: int,
|
105 |
+
in_channels: int,
|
106 |
+
out_channels: int,
|
107 |
+
prev_output_channel: int,
|
108 |
+
temb_channels: int,
|
109 |
+
add_upsample: bool,
|
110 |
+
resnet_eps: float,
|
111 |
+
resnet_act_fn: str,
|
112 |
+
resolution_idx: Optional[int] = None,
|
113 |
+
transformer_layers_per_block: int = 1,
|
114 |
+
num_attention_heads: Optional[int] = None,
|
115 |
+
resnet_groups: Optional[int] = None,
|
116 |
+
cross_attention_dim: Optional[int] = None,
|
117 |
+
dual_cross_attention: bool = False,
|
118 |
+
use_linear_projection: bool = False,
|
119 |
+
only_cross_attention: bool = False,
|
120 |
+
upcast_attention: bool = False,
|
121 |
+
resnet_time_scale_shift: str = "default",
|
122 |
+
attention_type: str = "default",
|
123 |
+
resnet_skip_time_act: bool = False,
|
124 |
+
resnet_out_scale_factor: float = 1.0,
|
125 |
+
cross_attention_norm: Optional[str] = None,
|
126 |
+
attention_head_dim: Optional[int] = None,
|
127 |
+
upsample_type: Optional[str] = None,
|
128 |
+
dropout: float = 0.0,
|
129 |
+
) -> nn.Module:
|
130 |
+
# If attn head dim is not defined, we default it to the number of heads
|
131 |
+
if attention_head_dim is None:
|
132 |
+
logger.warn(
|
133 |
+
f"It is recommended to provide `attention_head_dim` when calling `get_up_block`. Defaulting `attention_head_dim` to {num_attention_heads}."
|
134 |
+
)
|
135 |
+
attention_head_dim = num_attention_heads
|
136 |
+
|
137 |
+
up_block_type = (
|
138 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
139 |
+
)
|
140 |
+
if up_block_type == "UpBlock2D":
|
141 |
+
return UpBlock2D(
|
142 |
+
num_layers=num_layers,
|
143 |
+
in_channels=in_channels,
|
144 |
+
out_channels=out_channels,
|
145 |
+
prev_output_channel=prev_output_channel,
|
146 |
+
temb_channels=temb_channels,
|
147 |
+
resolution_idx=resolution_idx,
|
148 |
+
dropout=dropout,
|
149 |
+
add_upsample=add_upsample,
|
150 |
+
resnet_eps=resnet_eps,
|
151 |
+
resnet_act_fn=resnet_act_fn,
|
152 |
+
resnet_groups=resnet_groups,
|
153 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
154 |
+
)
|
155 |
+
elif up_block_type == "CrossAttnUpBlock2D":
|
156 |
+
if cross_attention_dim is None:
|
157 |
+
raise ValueError(
|
158 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock2D"
|
159 |
+
)
|
160 |
+
return CrossAttnUpBlock2D(
|
161 |
+
num_layers=num_layers,
|
162 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
163 |
+
in_channels=in_channels,
|
164 |
+
out_channels=out_channels,
|
165 |
+
prev_output_channel=prev_output_channel,
|
166 |
+
temb_channels=temb_channels,
|
167 |
+
resolution_idx=resolution_idx,
|
168 |
+
dropout=dropout,
|
169 |
+
add_upsample=add_upsample,
|
170 |
+
resnet_eps=resnet_eps,
|
171 |
+
resnet_act_fn=resnet_act_fn,
|
172 |
+
resnet_groups=resnet_groups,
|
173 |
+
cross_attention_dim=cross_attention_dim,
|
174 |
+
num_attention_heads=num_attention_heads,
|
175 |
+
dual_cross_attention=dual_cross_attention,
|
176 |
+
use_linear_projection=use_linear_projection,
|
177 |
+
only_cross_attention=only_cross_attention,
|
178 |
+
upcast_attention=upcast_attention,
|
179 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
180 |
+
attention_type=attention_type,
|
181 |
+
)
|
182 |
+
|
183 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
184 |
+
|
185 |
+
|
186 |
+
class AutoencoderTinyBlock(nn.Module):
|
187 |
+
"""
|
188 |
+
Tiny Autoencoder block used in [`AutoencoderTiny`]. It is a mini residual module consisting of plain conv + ReLU
|
189 |
+
blocks.
|
190 |
+
|
191 |
+
Args:
|
192 |
+
in_channels (`int`): The number of input channels.
|
193 |
+
out_channels (`int`): The number of output channels.
|
194 |
+
act_fn (`str`):
|
195 |
+
` The activation function to use. Supported values are `"swish"`, `"mish"`, `"gelu"`, and `"relu"`.
|
196 |
+
|
197 |
+
Returns:
|
198 |
+
`torch.FloatTensor`: A tensor with the same shape as the input tensor, but with the number of channels equal to
|
199 |
+
`out_channels`.
|
200 |
+
"""
|
201 |
+
|
202 |
+
def __init__(self, in_channels: int, out_channels: int, act_fn: str):
|
203 |
+
super().__init__()
|
204 |
+
act_fn = get_activation(act_fn)
|
205 |
+
self.conv = nn.Sequential(
|
206 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
|
207 |
+
act_fn,
|
208 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
209 |
+
act_fn,
|
210 |
+
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
|
211 |
+
)
|
212 |
+
self.skip = (
|
213 |
+
nn.Conv2d(in_channels, out_channels, kernel_size=1, bias=False)
|
214 |
+
if in_channels != out_channels
|
215 |
+
else nn.Identity()
|
216 |
+
)
|
217 |
+
self.fuse = nn.ReLU()
|
218 |
+
|
219 |
+
def forward(self, x: torch.FloatTensor) -> torch.FloatTensor:
|
220 |
+
return self.fuse(self.conv(x) + self.skip(x))
|
221 |
+
|
222 |
+
|
223 |
+
class UNetMidBlock2D(nn.Module):
|
224 |
+
"""
|
225 |
+
A 2D UNet mid-block [`UNetMidBlock2D`] with multiple residual blocks and optional attention blocks.
|
226 |
+
|
227 |
+
Args:
|
228 |
+
in_channels (`int`): The number of input channels.
|
229 |
+
temb_channels (`int`): The number of temporal embedding channels.
|
230 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout rate.
|
231 |
+
num_layers (`int`, *optional*, defaults to 1): The number of residual blocks.
|
232 |
+
resnet_eps (`float`, *optional*, 1e-6 ): The epsilon value for the resnet blocks.
|
233 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `default`):
|
234 |
+
The type of normalization to apply to the time embeddings. This can help to improve the performance of the
|
235 |
+
model on tasks with long-range temporal dependencies.
|
236 |
+
resnet_act_fn (`str`, *optional*, defaults to `swish`): The activation function for the resnet blocks.
|
237 |
+
resnet_groups (`int`, *optional*, defaults to 32):
|
238 |
+
The number of groups to use in the group normalization layers of the resnet blocks.
|
239 |
+
attn_groups (`Optional[int]`, *optional*, defaults to None): The number of groups for the attention blocks.
|
240 |
+
resnet_pre_norm (`bool`, *optional*, defaults to `True`):
|
241 |
+
Whether to use pre-normalization for the resnet blocks.
|
242 |
+
add_attention (`bool`, *optional*, defaults to `True`): Whether to add attention blocks.
|
243 |
+
attention_head_dim (`int`, *optional*, defaults to 1):
|
244 |
+
Dimension of a single attention head. The number of attention heads is determined based on this value and
|
245 |
+
the number of input channels.
|
246 |
+
output_scale_factor (`float`, *optional*, defaults to 1.0): The output scale factor.
|
247 |
+
|
248 |
+
Returns:
|
249 |
+
`torch.FloatTensor`: The output of the last residual block, which is a tensor of shape `(batch_size,
|
250 |
+
in_channels, height, width)`.
|
251 |
+
|
252 |
+
"""
|
253 |
+
|
254 |
+
def __init__(
|
255 |
+
self,
|
256 |
+
in_channels: int,
|
257 |
+
temb_channels: int,
|
258 |
+
dropout: float = 0.0,
|
259 |
+
num_layers: int = 1,
|
260 |
+
resnet_eps: float = 1e-6,
|
261 |
+
resnet_time_scale_shift: str = "default", # default, spatial
|
262 |
+
resnet_act_fn: str = "swish",
|
263 |
+
resnet_groups: int = 32,
|
264 |
+
attn_groups: Optional[int] = None,
|
265 |
+
resnet_pre_norm: bool = True,
|
266 |
+
add_attention: bool = True,
|
267 |
+
attention_head_dim: int = 1,
|
268 |
+
output_scale_factor: float = 1.0,
|
269 |
+
):
|
270 |
+
super().__init__()
|
271 |
+
resnet_groups = (
|
272 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
273 |
+
)
|
274 |
+
self.add_attention = add_attention
|
275 |
+
|
276 |
+
if attn_groups is None:
|
277 |
+
attn_groups = (
|
278 |
+
resnet_groups if resnet_time_scale_shift == "default" else None
|
279 |
+
)
|
280 |
+
|
281 |
+
# there is always at least one resnet
|
282 |
+
resnets = [
|
283 |
+
ResnetBlock2D(
|
284 |
+
in_channels=in_channels,
|
285 |
+
out_channels=in_channels,
|
286 |
+
temb_channels=temb_channels,
|
287 |
+
eps=resnet_eps,
|
288 |
+
groups=resnet_groups,
|
289 |
+
dropout=dropout,
|
290 |
+
time_embedding_norm=resnet_time_scale_shift,
|
291 |
+
non_linearity=resnet_act_fn,
|
292 |
+
output_scale_factor=output_scale_factor,
|
293 |
+
pre_norm=resnet_pre_norm,
|
294 |
+
)
|
295 |
+
]
|
296 |
+
attentions = []
|
297 |
+
|
298 |
+
if attention_head_dim is None:
|
299 |
+
logger.warn(
|
300 |
+
f"It is not recommend to pass `attention_head_dim=None`. Defaulting `attention_head_dim` to `in_channels`: {in_channels}."
|
301 |
+
)
|
302 |
+
attention_head_dim = in_channels
|
303 |
+
|
304 |
+
for _ in range(num_layers):
|
305 |
+
if self.add_attention:
|
306 |
+
attentions.append(
|
307 |
+
Attention(
|
308 |
+
in_channels,
|
309 |
+
heads=in_channels // attention_head_dim,
|
310 |
+
dim_head=attention_head_dim,
|
311 |
+
rescale_output_factor=output_scale_factor,
|
312 |
+
eps=resnet_eps,
|
313 |
+
norm_num_groups=attn_groups,
|
314 |
+
spatial_norm_dim=temb_channels
|
315 |
+
if resnet_time_scale_shift == "spatial"
|
316 |
+
else None,
|
317 |
+
residual_connection=True,
|
318 |
+
bias=True,
|
319 |
+
upcast_softmax=True,
|
320 |
+
_from_deprecated_attn_block=True,
|
321 |
+
)
|
322 |
+
)
|
323 |
+
else:
|
324 |
+
attentions.append(None)
|
325 |
+
|
326 |
+
resnets.append(
|
327 |
+
ResnetBlock2D(
|
328 |
+
in_channels=in_channels,
|
329 |
+
out_channels=in_channels,
|
330 |
+
temb_channels=temb_channels,
|
331 |
+
eps=resnet_eps,
|
332 |
+
groups=resnet_groups,
|
333 |
+
dropout=dropout,
|
334 |
+
time_embedding_norm=resnet_time_scale_shift,
|
335 |
+
non_linearity=resnet_act_fn,
|
336 |
+
output_scale_factor=output_scale_factor,
|
337 |
+
pre_norm=resnet_pre_norm,
|
338 |
+
)
|
339 |
+
)
|
340 |
+
|
341 |
+
self.attentions = nn.ModuleList(attentions)
|
342 |
+
self.resnets = nn.ModuleList(resnets)
|
343 |
+
|
344 |
+
def forward(
|
345 |
+
self, hidden_states: torch.FloatTensor, temb: Optional[torch.FloatTensor] = None
|
346 |
+
) -> torch.FloatTensor:
|
347 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
348 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
349 |
+
if attn is not None:
|
350 |
+
hidden_states = attn(hidden_states, temb=temb)
|
351 |
+
hidden_states = resnet(hidden_states, temb)
|
352 |
+
|
353 |
+
return hidden_states
|
354 |
+
|
355 |
+
|
356 |
+
class UNetMidBlock2DCrossAttn(nn.Module):
|
357 |
+
def __init__(
|
358 |
+
self,
|
359 |
+
in_channels: int,
|
360 |
+
temb_channels: int,
|
361 |
+
dropout: float = 0.0,
|
362 |
+
num_layers: int = 1,
|
363 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
364 |
+
resnet_eps: float = 1e-6,
|
365 |
+
resnet_time_scale_shift: str = "default",
|
366 |
+
resnet_act_fn: str = "swish",
|
367 |
+
resnet_groups: int = 32,
|
368 |
+
resnet_pre_norm: bool = True,
|
369 |
+
num_attention_heads: int = 1,
|
370 |
+
output_scale_factor: float = 1.0,
|
371 |
+
cross_attention_dim: int = 1280,
|
372 |
+
dual_cross_attention: bool = False,
|
373 |
+
use_linear_projection: bool = False,
|
374 |
+
upcast_attention: bool = False,
|
375 |
+
attention_type: str = "default",
|
376 |
+
):
|
377 |
+
super().__init__()
|
378 |
+
|
379 |
+
self.has_cross_attention = True
|
380 |
+
self.num_attention_heads = num_attention_heads
|
381 |
+
resnet_groups = (
|
382 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
383 |
+
)
|
384 |
+
|
385 |
+
# support for variable transformer layers per block
|
386 |
+
if isinstance(transformer_layers_per_block, int):
|
387 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
388 |
+
|
389 |
+
# there is always at least one resnet
|
390 |
+
resnets = [
|
391 |
+
ResnetBlock2D(
|
392 |
+
in_channels=in_channels,
|
393 |
+
out_channels=in_channels,
|
394 |
+
temb_channels=temb_channels,
|
395 |
+
eps=resnet_eps,
|
396 |
+
groups=resnet_groups,
|
397 |
+
dropout=dropout,
|
398 |
+
time_embedding_norm=resnet_time_scale_shift,
|
399 |
+
non_linearity=resnet_act_fn,
|
400 |
+
output_scale_factor=output_scale_factor,
|
401 |
+
pre_norm=resnet_pre_norm,
|
402 |
+
)
|
403 |
+
]
|
404 |
+
attentions = []
|
405 |
+
|
406 |
+
for i in range(num_layers):
|
407 |
+
if not dual_cross_attention:
|
408 |
+
attentions.append(
|
409 |
+
Transformer2DModel(
|
410 |
+
num_attention_heads,
|
411 |
+
in_channels // num_attention_heads,
|
412 |
+
in_channels=in_channels,
|
413 |
+
num_layers=transformer_layers_per_block[i],
|
414 |
+
cross_attention_dim=cross_attention_dim,
|
415 |
+
norm_num_groups=resnet_groups,
|
416 |
+
use_linear_projection=use_linear_projection,
|
417 |
+
upcast_attention=upcast_attention,
|
418 |
+
attention_type=attention_type,
|
419 |
+
)
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
attentions.append(
|
423 |
+
DualTransformer2DModel(
|
424 |
+
num_attention_heads,
|
425 |
+
in_channels // num_attention_heads,
|
426 |
+
in_channels=in_channels,
|
427 |
+
num_layers=1,
|
428 |
+
cross_attention_dim=cross_attention_dim,
|
429 |
+
norm_num_groups=resnet_groups,
|
430 |
+
)
|
431 |
+
)
|
432 |
+
resnets.append(
|
433 |
+
ResnetBlock2D(
|
434 |
+
in_channels=in_channels,
|
435 |
+
out_channels=in_channels,
|
436 |
+
temb_channels=temb_channels,
|
437 |
+
eps=resnet_eps,
|
438 |
+
groups=resnet_groups,
|
439 |
+
dropout=dropout,
|
440 |
+
time_embedding_norm=resnet_time_scale_shift,
|
441 |
+
non_linearity=resnet_act_fn,
|
442 |
+
output_scale_factor=output_scale_factor,
|
443 |
+
pre_norm=resnet_pre_norm,
|
444 |
+
)
|
445 |
+
)
|
446 |
+
|
447 |
+
self.attentions = nn.ModuleList(attentions)
|
448 |
+
self.resnets = nn.ModuleList(resnets)
|
449 |
+
|
450 |
+
self.gradient_checkpointing = False
|
451 |
+
|
452 |
+
def forward(
|
453 |
+
self,
|
454 |
+
hidden_states: torch.FloatTensor,
|
455 |
+
temb: Optional[torch.FloatTensor] = None,
|
456 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
457 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
458 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
459 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
460 |
+
) -> torch.FloatTensor:
|
461 |
+
lora_scale = (
|
462 |
+
cross_attention_kwargs.get("scale", 1.0)
|
463 |
+
if cross_attention_kwargs is not None
|
464 |
+
else 1.0
|
465 |
+
)
|
466 |
+
hidden_states = self.resnets[0](hidden_states, temb, scale=lora_scale)
|
467 |
+
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
468 |
+
if self.training and self.gradient_checkpointing:
|
469 |
+
|
470 |
+
def create_custom_forward(module, return_dict=None):
|
471 |
+
def custom_forward(*inputs):
|
472 |
+
if return_dict is not None:
|
473 |
+
return module(*inputs, return_dict=return_dict)
|
474 |
+
else:
|
475 |
+
return module(*inputs)
|
476 |
+
|
477 |
+
return custom_forward
|
478 |
+
|
479 |
+
ckpt_kwargs: Dict[str, Any] = (
|
480 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
481 |
+
)
|
482 |
+
hidden_states, ref_feature = attn(
|
483 |
+
hidden_states,
|
484 |
+
encoder_hidden_states=encoder_hidden_states,
|
485 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
486 |
+
attention_mask=attention_mask,
|
487 |
+
encoder_attention_mask=encoder_attention_mask,
|
488 |
+
return_dict=False,
|
489 |
+
)
|
490 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
491 |
+
create_custom_forward(resnet),
|
492 |
+
hidden_states,
|
493 |
+
temb,
|
494 |
+
**ckpt_kwargs,
|
495 |
+
)
|
496 |
+
else:
|
497 |
+
hidden_states, ref_feature = attn(
|
498 |
+
hidden_states,
|
499 |
+
encoder_hidden_states=encoder_hidden_states,
|
500 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
501 |
+
attention_mask=attention_mask,
|
502 |
+
encoder_attention_mask=encoder_attention_mask,
|
503 |
+
return_dict=False,
|
504 |
+
)
|
505 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
506 |
+
|
507 |
+
return hidden_states
|
508 |
+
|
509 |
+
|
510 |
+
class CrossAttnDownBlock2D(nn.Module):
|
511 |
+
def __init__(
|
512 |
+
self,
|
513 |
+
in_channels: int,
|
514 |
+
out_channels: int,
|
515 |
+
temb_channels: int,
|
516 |
+
dropout: float = 0.0,
|
517 |
+
num_layers: int = 1,
|
518 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
519 |
+
resnet_eps: float = 1e-6,
|
520 |
+
resnet_time_scale_shift: str = "default",
|
521 |
+
resnet_act_fn: str = "swish",
|
522 |
+
resnet_groups: int = 32,
|
523 |
+
resnet_pre_norm: bool = True,
|
524 |
+
num_attention_heads: int = 1,
|
525 |
+
cross_attention_dim: int = 1280,
|
526 |
+
output_scale_factor: float = 1.0,
|
527 |
+
downsample_padding: int = 1,
|
528 |
+
add_downsample: bool = True,
|
529 |
+
dual_cross_attention: bool = False,
|
530 |
+
use_linear_projection: bool = False,
|
531 |
+
only_cross_attention: bool = False,
|
532 |
+
upcast_attention: bool = False,
|
533 |
+
attention_type: str = "default",
|
534 |
+
):
|
535 |
+
super().__init__()
|
536 |
+
resnets = []
|
537 |
+
attentions = []
|
538 |
+
|
539 |
+
self.has_cross_attention = True
|
540 |
+
self.num_attention_heads = num_attention_heads
|
541 |
+
if isinstance(transformer_layers_per_block, int):
|
542 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
543 |
+
|
544 |
+
for i in range(num_layers):
|
545 |
+
in_channels = in_channels if i == 0 else out_channels
|
546 |
+
resnets.append(
|
547 |
+
ResnetBlock2D(
|
548 |
+
in_channels=in_channels,
|
549 |
+
out_channels=out_channels,
|
550 |
+
temb_channels=temb_channels,
|
551 |
+
eps=resnet_eps,
|
552 |
+
groups=resnet_groups,
|
553 |
+
dropout=dropout,
|
554 |
+
time_embedding_norm=resnet_time_scale_shift,
|
555 |
+
non_linearity=resnet_act_fn,
|
556 |
+
output_scale_factor=output_scale_factor,
|
557 |
+
pre_norm=resnet_pre_norm,
|
558 |
+
)
|
559 |
+
)
|
560 |
+
if not dual_cross_attention:
|
561 |
+
attentions.append(
|
562 |
+
Transformer2DModel(
|
563 |
+
num_attention_heads,
|
564 |
+
out_channels // num_attention_heads,
|
565 |
+
in_channels=out_channels,
|
566 |
+
num_layers=transformer_layers_per_block[i],
|
567 |
+
cross_attention_dim=cross_attention_dim,
|
568 |
+
norm_num_groups=resnet_groups,
|
569 |
+
use_linear_projection=use_linear_projection,
|
570 |
+
only_cross_attention=only_cross_attention,
|
571 |
+
upcast_attention=upcast_attention,
|
572 |
+
attention_type=attention_type,
|
573 |
+
)
|
574 |
+
)
|
575 |
+
else:
|
576 |
+
attentions.append(
|
577 |
+
DualTransformer2DModel(
|
578 |
+
num_attention_heads,
|
579 |
+
out_channels // num_attention_heads,
|
580 |
+
in_channels=out_channels,
|
581 |
+
num_layers=1,
|
582 |
+
cross_attention_dim=cross_attention_dim,
|
583 |
+
norm_num_groups=resnet_groups,
|
584 |
+
)
|
585 |
+
)
|
586 |
+
self.attentions = nn.ModuleList(attentions)
|
587 |
+
self.resnets = nn.ModuleList(resnets)
|
588 |
+
|
589 |
+
if add_downsample:
|
590 |
+
self.downsamplers = nn.ModuleList(
|
591 |
+
[
|
592 |
+
Downsample2D(
|
593 |
+
out_channels,
|
594 |
+
use_conv=True,
|
595 |
+
out_channels=out_channels,
|
596 |
+
padding=downsample_padding,
|
597 |
+
name="op",
|
598 |
+
)
|
599 |
+
]
|
600 |
+
)
|
601 |
+
else:
|
602 |
+
self.downsamplers = None
|
603 |
+
|
604 |
+
self.gradient_checkpointing = False
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self,
|
608 |
+
hidden_states: torch.FloatTensor,
|
609 |
+
temb: Optional[torch.FloatTensor] = None,
|
610 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
611 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
612 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
613 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
614 |
+
additional_residuals: Optional[torch.FloatTensor] = None,
|
615 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
616 |
+
output_states = ()
|
617 |
+
|
618 |
+
lora_scale = (
|
619 |
+
cross_attention_kwargs.get("scale", 1.0)
|
620 |
+
if cross_attention_kwargs is not None
|
621 |
+
else 1.0
|
622 |
+
)
|
623 |
+
|
624 |
+
blocks = list(zip(self.resnets, self.attentions))
|
625 |
+
|
626 |
+
for i, (resnet, attn) in enumerate(blocks):
|
627 |
+
if self.training and self.gradient_checkpointing:
|
628 |
+
|
629 |
+
def create_custom_forward(module, return_dict=None):
|
630 |
+
def custom_forward(*inputs):
|
631 |
+
if return_dict is not None:
|
632 |
+
return module(*inputs, return_dict=return_dict)
|
633 |
+
else:
|
634 |
+
return module(*inputs)
|
635 |
+
|
636 |
+
return custom_forward
|
637 |
+
|
638 |
+
ckpt_kwargs: Dict[str, Any] = (
|
639 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
640 |
+
)
|
641 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
642 |
+
create_custom_forward(resnet),
|
643 |
+
hidden_states,
|
644 |
+
temb,
|
645 |
+
**ckpt_kwargs,
|
646 |
+
)
|
647 |
+
hidden_states, ref_feature = attn(
|
648 |
+
hidden_states,
|
649 |
+
encoder_hidden_states=encoder_hidden_states,
|
650 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
651 |
+
attention_mask=attention_mask,
|
652 |
+
encoder_attention_mask=encoder_attention_mask,
|
653 |
+
return_dict=False,
|
654 |
+
)
|
655 |
+
else:
|
656 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
657 |
+
hidden_states, ref_feature = attn(
|
658 |
+
hidden_states,
|
659 |
+
encoder_hidden_states=encoder_hidden_states,
|
660 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
661 |
+
attention_mask=attention_mask,
|
662 |
+
encoder_attention_mask=encoder_attention_mask,
|
663 |
+
return_dict=False,
|
664 |
+
)
|
665 |
+
|
666 |
+
# apply additional residuals to the output of the last pair of resnet and attention blocks
|
667 |
+
if i == len(blocks) - 1 and additional_residuals is not None:
|
668 |
+
hidden_states = hidden_states + additional_residuals
|
669 |
+
|
670 |
+
output_states = output_states + (hidden_states,)
|
671 |
+
|
672 |
+
if self.downsamplers is not None:
|
673 |
+
for downsampler in self.downsamplers:
|
674 |
+
hidden_states = downsampler(hidden_states, scale=lora_scale)
|
675 |
+
|
676 |
+
output_states = output_states + (hidden_states,)
|
677 |
+
|
678 |
+
return hidden_states, output_states
|
679 |
+
|
680 |
+
|
681 |
+
class DownBlock2D(nn.Module):
|
682 |
+
def __init__(
|
683 |
+
self,
|
684 |
+
in_channels: int,
|
685 |
+
out_channels: int,
|
686 |
+
temb_channels: int,
|
687 |
+
dropout: float = 0.0,
|
688 |
+
num_layers: int = 1,
|
689 |
+
resnet_eps: float = 1e-6,
|
690 |
+
resnet_time_scale_shift: str = "default",
|
691 |
+
resnet_act_fn: str = "swish",
|
692 |
+
resnet_groups: int = 32,
|
693 |
+
resnet_pre_norm: bool = True,
|
694 |
+
output_scale_factor: float = 1.0,
|
695 |
+
add_downsample: bool = True,
|
696 |
+
downsample_padding: int = 1,
|
697 |
+
):
|
698 |
+
super().__init__()
|
699 |
+
resnets = []
|
700 |
+
|
701 |
+
for i in range(num_layers):
|
702 |
+
in_channels = in_channels if i == 0 else out_channels
|
703 |
+
resnets.append(
|
704 |
+
ResnetBlock2D(
|
705 |
+
in_channels=in_channels,
|
706 |
+
out_channels=out_channels,
|
707 |
+
temb_channels=temb_channels,
|
708 |
+
eps=resnet_eps,
|
709 |
+
groups=resnet_groups,
|
710 |
+
dropout=dropout,
|
711 |
+
time_embedding_norm=resnet_time_scale_shift,
|
712 |
+
non_linearity=resnet_act_fn,
|
713 |
+
output_scale_factor=output_scale_factor,
|
714 |
+
pre_norm=resnet_pre_norm,
|
715 |
+
)
|
716 |
+
)
|
717 |
+
|
718 |
+
self.resnets = nn.ModuleList(resnets)
|
719 |
+
|
720 |
+
if add_downsample:
|
721 |
+
self.downsamplers = nn.ModuleList(
|
722 |
+
[
|
723 |
+
Downsample2D(
|
724 |
+
out_channels,
|
725 |
+
use_conv=True,
|
726 |
+
out_channels=out_channels,
|
727 |
+
padding=downsample_padding,
|
728 |
+
name="op",
|
729 |
+
)
|
730 |
+
]
|
731 |
+
)
|
732 |
+
else:
|
733 |
+
self.downsamplers = None
|
734 |
+
|
735 |
+
self.gradient_checkpointing = False
|
736 |
+
|
737 |
+
def forward(
|
738 |
+
self,
|
739 |
+
hidden_states: torch.FloatTensor,
|
740 |
+
temb: Optional[torch.FloatTensor] = None,
|
741 |
+
scale: float = 1.0,
|
742 |
+
) -> Tuple[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
743 |
+
output_states = ()
|
744 |
+
|
745 |
+
for resnet in self.resnets:
|
746 |
+
if self.training and self.gradient_checkpointing:
|
747 |
+
|
748 |
+
def create_custom_forward(module):
|
749 |
+
def custom_forward(*inputs):
|
750 |
+
return module(*inputs)
|
751 |
+
|
752 |
+
return custom_forward
|
753 |
+
|
754 |
+
if is_torch_version(">=", "1.11.0"):
|
755 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
756 |
+
create_custom_forward(resnet),
|
757 |
+
hidden_states,
|
758 |
+
temb,
|
759 |
+
use_reentrant=False,
|
760 |
+
)
|
761 |
+
else:
|
762 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
763 |
+
create_custom_forward(resnet), hidden_states, temb
|
764 |
+
)
|
765 |
+
else:
|
766 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
767 |
+
|
768 |
+
output_states = output_states + (hidden_states,)
|
769 |
+
|
770 |
+
if self.downsamplers is not None:
|
771 |
+
for downsampler in self.downsamplers:
|
772 |
+
hidden_states = downsampler(hidden_states, scale=scale)
|
773 |
+
|
774 |
+
output_states = output_states + (hidden_states,)
|
775 |
+
|
776 |
+
return hidden_states, output_states
|
777 |
+
|
778 |
+
|
779 |
+
class CrossAttnUpBlock2D(nn.Module):
|
780 |
+
def __init__(
|
781 |
+
self,
|
782 |
+
in_channels: int,
|
783 |
+
out_channels: int,
|
784 |
+
prev_output_channel: int,
|
785 |
+
temb_channels: int,
|
786 |
+
resolution_idx: Optional[int] = None,
|
787 |
+
dropout: float = 0.0,
|
788 |
+
num_layers: int = 1,
|
789 |
+
transformer_layers_per_block: Union[int, Tuple[int]] = 1,
|
790 |
+
resnet_eps: float = 1e-6,
|
791 |
+
resnet_time_scale_shift: str = "default",
|
792 |
+
resnet_act_fn: str = "swish",
|
793 |
+
resnet_groups: int = 32,
|
794 |
+
resnet_pre_norm: bool = True,
|
795 |
+
num_attention_heads: int = 1,
|
796 |
+
cross_attention_dim: int = 1280,
|
797 |
+
output_scale_factor: float = 1.0,
|
798 |
+
add_upsample: bool = True,
|
799 |
+
dual_cross_attention: bool = False,
|
800 |
+
use_linear_projection: bool = False,
|
801 |
+
only_cross_attention: bool = False,
|
802 |
+
upcast_attention: bool = False,
|
803 |
+
attention_type: str = "default",
|
804 |
+
):
|
805 |
+
super().__init__()
|
806 |
+
resnets = []
|
807 |
+
attentions = []
|
808 |
+
|
809 |
+
self.has_cross_attention = True
|
810 |
+
self.num_attention_heads = num_attention_heads
|
811 |
+
|
812 |
+
if isinstance(transformer_layers_per_block, int):
|
813 |
+
transformer_layers_per_block = [transformer_layers_per_block] * num_layers
|
814 |
+
|
815 |
+
for i in range(num_layers):
|
816 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
817 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
818 |
+
|
819 |
+
resnets.append(
|
820 |
+
ResnetBlock2D(
|
821 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
822 |
+
out_channels=out_channels,
|
823 |
+
temb_channels=temb_channels,
|
824 |
+
eps=resnet_eps,
|
825 |
+
groups=resnet_groups,
|
826 |
+
dropout=dropout,
|
827 |
+
time_embedding_norm=resnet_time_scale_shift,
|
828 |
+
non_linearity=resnet_act_fn,
|
829 |
+
output_scale_factor=output_scale_factor,
|
830 |
+
pre_norm=resnet_pre_norm,
|
831 |
+
)
|
832 |
+
)
|
833 |
+
if not dual_cross_attention:
|
834 |
+
attentions.append(
|
835 |
+
Transformer2DModel(
|
836 |
+
num_attention_heads,
|
837 |
+
out_channels // num_attention_heads,
|
838 |
+
in_channels=out_channels,
|
839 |
+
num_layers=transformer_layers_per_block[i],
|
840 |
+
cross_attention_dim=cross_attention_dim,
|
841 |
+
norm_num_groups=resnet_groups,
|
842 |
+
use_linear_projection=use_linear_projection,
|
843 |
+
only_cross_attention=only_cross_attention,
|
844 |
+
upcast_attention=upcast_attention,
|
845 |
+
attention_type=attention_type,
|
846 |
+
)
|
847 |
+
)
|
848 |
+
else:
|
849 |
+
attentions.append(
|
850 |
+
DualTransformer2DModel(
|
851 |
+
num_attention_heads,
|
852 |
+
out_channels // num_attention_heads,
|
853 |
+
in_channels=out_channels,
|
854 |
+
num_layers=1,
|
855 |
+
cross_attention_dim=cross_attention_dim,
|
856 |
+
norm_num_groups=resnet_groups,
|
857 |
+
)
|
858 |
+
)
|
859 |
+
self.attentions = nn.ModuleList(attentions)
|
860 |
+
self.resnets = nn.ModuleList(resnets)
|
861 |
+
|
862 |
+
if add_upsample:
|
863 |
+
self.upsamplers = nn.ModuleList(
|
864 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
865 |
+
)
|
866 |
+
else:
|
867 |
+
self.upsamplers = None
|
868 |
+
|
869 |
+
self.gradient_checkpointing = False
|
870 |
+
self.resolution_idx = resolution_idx
|
871 |
+
|
872 |
+
def forward(
|
873 |
+
self,
|
874 |
+
hidden_states: torch.FloatTensor,
|
875 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
876 |
+
temb: Optional[torch.FloatTensor] = None,
|
877 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
878 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
879 |
+
upsample_size: Optional[int] = None,
|
880 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
881 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
882 |
+
) -> torch.FloatTensor:
|
883 |
+
lora_scale = (
|
884 |
+
cross_attention_kwargs.get("scale", 1.0)
|
885 |
+
if cross_attention_kwargs is not None
|
886 |
+
else 1.0
|
887 |
+
)
|
888 |
+
is_freeu_enabled = (
|
889 |
+
getattr(self, "s1", None)
|
890 |
+
and getattr(self, "s2", None)
|
891 |
+
and getattr(self, "b1", None)
|
892 |
+
and getattr(self, "b2", None)
|
893 |
+
)
|
894 |
+
|
895 |
+
for resnet, attn in zip(self.resnets, self.attentions):
|
896 |
+
# pop res hidden states
|
897 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
898 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
899 |
+
|
900 |
+
# FreeU: Only operate on the first two stages
|
901 |
+
if is_freeu_enabled:
|
902 |
+
hidden_states, res_hidden_states = apply_freeu(
|
903 |
+
self.resolution_idx,
|
904 |
+
hidden_states,
|
905 |
+
res_hidden_states,
|
906 |
+
s1=self.s1,
|
907 |
+
s2=self.s2,
|
908 |
+
b1=self.b1,
|
909 |
+
b2=self.b2,
|
910 |
+
)
|
911 |
+
|
912 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
913 |
+
|
914 |
+
if self.training and self.gradient_checkpointing:
|
915 |
+
|
916 |
+
def create_custom_forward(module, return_dict=None):
|
917 |
+
def custom_forward(*inputs):
|
918 |
+
if return_dict is not None:
|
919 |
+
return module(*inputs, return_dict=return_dict)
|
920 |
+
else:
|
921 |
+
return module(*inputs)
|
922 |
+
|
923 |
+
return custom_forward
|
924 |
+
|
925 |
+
ckpt_kwargs: Dict[str, Any] = (
|
926 |
+
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
927 |
+
)
|
928 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
929 |
+
create_custom_forward(resnet),
|
930 |
+
hidden_states,
|
931 |
+
temb,
|
932 |
+
**ckpt_kwargs,
|
933 |
+
)
|
934 |
+
hidden_states, ref_feature = attn(
|
935 |
+
hidden_states,
|
936 |
+
encoder_hidden_states=encoder_hidden_states,
|
937 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
938 |
+
attention_mask=attention_mask,
|
939 |
+
encoder_attention_mask=encoder_attention_mask,
|
940 |
+
return_dict=False,
|
941 |
+
)
|
942 |
+
else:
|
943 |
+
hidden_states = resnet(hidden_states, temb, scale=lora_scale)
|
944 |
+
hidden_states, ref_feature = attn(
|
945 |
+
hidden_states,
|
946 |
+
encoder_hidden_states=encoder_hidden_states,
|
947 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
948 |
+
attention_mask=attention_mask,
|
949 |
+
encoder_attention_mask=encoder_attention_mask,
|
950 |
+
return_dict=False,
|
951 |
+
)
|
952 |
+
|
953 |
+
if self.upsamplers is not None:
|
954 |
+
for upsampler in self.upsamplers:
|
955 |
+
hidden_states = upsampler(
|
956 |
+
hidden_states, upsample_size, scale=lora_scale
|
957 |
+
)
|
958 |
+
|
959 |
+
return hidden_states
|
960 |
+
|
961 |
+
|
962 |
+
class UpBlock2D(nn.Module):
|
963 |
+
def __init__(
|
964 |
+
self,
|
965 |
+
in_channels: int,
|
966 |
+
prev_output_channel: int,
|
967 |
+
out_channels: int,
|
968 |
+
temb_channels: int,
|
969 |
+
resolution_idx: Optional[int] = None,
|
970 |
+
dropout: float = 0.0,
|
971 |
+
num_layers: int = 1,
|
972 |
+
resnet_eps: float = 1e-6,
|
973 |
+
resnet_time_scale_shift: str = "default",
|
974 |
+
resnet_act_fn: str = "swish",
|
975 |
+
resnet_groups: int = 32,
|
976 |
+
resnet_pre_norm: bool = True,
|
977 |
+
output_scale_factor: float = 1.0,
|
978 |
+
add_upsample: bool = True,
|
979 |
+
):
|
980 |
+
super().__init__()
|
981 |
+
resnets = []
|
982 |
+
|
983 |
+
for i in range(num_layers):
|
984 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
985 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
986 |
+
|
987 |
+
resnets.append(
|
988 |
+
ResnetBlock2D(
|
989 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
990 |
+
out_channels=out_channels,
|
991 |
+
temb_channels=temb_channels,
|
992 |
+
eps=resnet_eps,
|
993 |
+
groups=resnet_groups,
|
994 |
+
dropout=dropout,
|
995 |
+
time_embedding_norm=resnet_time_scale_shift,
|
996 |
+
non_linearity=resnet_act_fn,
|
997 |
+
output_scale_factor=output_scale_factor,
|
998 |
+
pre_norm=resnet_pre_norm,
|
999 |
+
)
|
1000 |
+
)
|
1001 |
+
|
1002 |
+
self.resnets = nn.ModuleList(resnets)
|
1003 |
+
|
1004 |
+
if add_upsample:
|
1005 |
+
self.upsamplers = nn.ModuleList(
|
1006 |
+
[Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]
|
1007 |
+
)
|
1008 |
+
else:
|
1009 |
+
self.upsamplers = None
|
1010 |
+
|
1011 |
+
self.gradient_checkpointing = False
|
1012 |
+
self.resolution_idx = resolution_idx
|
1013 |
+
|
1014 |
+
def forward(
|
1015 |
+
self,
|
1016 |
+
hidden_states: torch.FloatTensor,
|
1017 |
+
res_hidden_states_tuple: Tuple[torch.FloatTensor, ...],
|
1018 |
+
temb: Optional[torch.FloatTensor] = None,
|
1019 |
+
upsample_size: Optional[int] = None,
|
1020 |
+
scale: float = 1.0,
|
1021 |
+
) -> torch.FloatTensor:
|
1022 |
+
is_freeu_enabled = (
|
1023 |
+
getattr(self, "s1", None)
|
1024 |
+
and getattr(self, "s2", None)
|
1025 |
+
and getattr(self, "b1", None)
|
1026 |
+
and getattr(self, "b2", None)
|
1027 |
+
)
|
1028 |
+
|
1029 |
+
for resnet in self.resnets:
|
1030 |
+
# pop res hidden states
|
1031 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
1032 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
1033 |
+
|
1034 |
+
# FreeU: Only operate on the first two stages
|
1035 |
+
if is_freeu_enabled:
|
1036 |
+
hidden_states, res_hidden_states = apply_freeu(
|
1037 |
+
self.resolution_idx,
|
1038 |
+
hidden_states,
|
1039 |
+
res_hidden_states,
|
1040 |
+
s1=self.s1,
|
1041 |
+
s2=self.s2,
|
1042 |
+
b1=self.b1,
|
1043 |
+
b2=self.b2,
|
1044 |
+
)
|
1045 |
+
|
1046 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
1047 |
+
|
1048 |
+
if self.training and self.gradient_checkpointing:
|
1049 |
+
|
1050 |
+
def create_custom_forward(module):
|
1051 |
+
def custom_forward(*inputs):
|
1052 |
+
return module(*inputs)
|
1053 |
+
|
1054 |
+
return custom_forward
|
1055 |
+
|
1056 |
+
if is_torch_version(">=", "1.11.0"):
|
1057 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1058 |
+
create_custom_forward(resnet),
|
1059 |
+
hidden_states,
|
1060 |
+
temb,
|
1061 |
+
use_reentrant=False,
|
1062 |
+
)
|
1063 |
+
else:
|
1064 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
1065 |
+
create_custom_forward(resnet), hidden_states, temb
|
1066 |
+
)
|
1067 |
+
else:
|
1068 |
+
hidden_states = resnet(hidden_states, temb, scale=scale)
|
1069 |
+
|
1070 |
+
if self.upsamplers is not None:
|
1071 |
+
for upsampler in self.upsamplers:
|
1072 |
+
hidden_states = upsampler(hidden_states, upsample_size, scale=scale)
|
1073 |
+
|
1074 |
+
return hidden_states
|
musepose/models/unet_2d_condition.py
ADDED
@@ -0,0 +1,1307 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.utils.checkpoint
|
8 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
9 |
+
from diffusers.loaders import UNet2DConditionLoadersMixin
|
10 |
+
from diffusers.models.activations import get_activation
|
11 |
+
from diffusers.models.attention_processor import (
|
12 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
13 |
+
CROSS_ATTENTION_PROCESSORS,
|
14 |
+
AttentionProcessor,
|
15 |
+
AttnAddedKVProcessor,
|
16 |
+
AttnProcessor,
|
17 |
+
)
|
18 |
+
from diffusers.models.embeddings import (
|
19 |
+
GaussianFourierProjection,
|
20 |
+
ImageHintTimeEmbedding,
|
21 |
+
ImageProjection,
|
22 |
+
ImageTimeEmbedding,
|
23 |
+
TextImageProjection,
|
24 |
+
TextImageTimeEmbedding,
|
25 |
+
TextTimeEmbedding,
|
26 |
+
TimestepEmbedding,
|
27 |
+
Timesteps,
|
28 |
+
)
|
29 |
+
from diffusers.models.modeling_utils import ModelMixin
|
30 |
+
from diffusers.utils import (
|
31 |
+
USE_PEFT_BACKEND,
|
32 |
+
BaseOutput,
|
33 |
+
deprecate,
|
34 |
+
logging,
|
35 |
+
scale_lora_layers,
|
36 |
+
unscale_lora_layers,
|
37 |
+
)
|
38 |
+
|
39 |
+
from .unet_2d_blocks import (
|
40 |
+
UNetMidBlock2D,
|
41 |
+
UNetMidBlock2DCrossAttn,
|
42 |
+
get_down_block,
|
43 |
+
get_up_block,
|
44 |
+
)
|
45 |
+
|
46 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class UNet2DConditionOutput(BaseOutput):
|
51 |
+
"""
|
52 |
+
The output of [`UNet2DConditionModel`].
|
53 |
+
|
54 |
+
Args:
|
55 |
+
sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
56 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
57 |
+
"""
|
58 |
+
|
59 |
+
sample: torch.FloatTensor = None
|
60 |
+
ref_features: Tuple[torch.FloatTensor] = None
|
61 |
+
|
62 |
+
|
63 |
+
class UNet2DConditionModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin):
|
64 |
+
r"""
|
65 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
66 |
+
shaped output.
|
67 |
+
|
68 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
69 |
+
for all models (such as downloading or saving).
|
70 |
+
|
71 |
+
Parameters:
|
72 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
73 |
+
Height and width of input/output sample.
|
74 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
75 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
76 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
77 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `False`):
|
78 |
+
Whether to flip the sin to cos in the time embedding.
|
79 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
80 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
81 |
+
The tuple of downsample blocks to use.
|
82 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
83 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
84 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
85 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
86 |
+
The tuple of upsample blocks to use.
|
87 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
88 |
+
Whether to include self-attention in the basic transformer blocks, see
|
89 |
+
[`~models.attention.BasicTransformerBlock`].
|
90 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
91 |
+
The tuple of output channels for each block.
|
92 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
93 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
94 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
95 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
96 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
97 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
98 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
99 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
100 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
101 |
+
The dimension of the cross attention features.
|
102 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
103 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
104 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
105 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
106 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
107 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
108 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
109 |
+
[`~models.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unet_2d_blocks.CrossAttnUpBlock2D`],
|
110 |
+
[`~models.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
111 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
112 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
113 |
+
dimension to `cross_attention_dim`.
|
114 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
115 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
116 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
117 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
118 |
+
num_attention_heads (`int`, *optional*):
|
119 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
120 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
121 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
122 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
123 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
124 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
125 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
126 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
127 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
128 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
129 |
+
Dimension for the timestep embeddings.
|
130 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
131 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
132 |
+
class conditioning with `class_embed_type` equal to `None`.
|
133 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
134 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
135 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
136 |
+
An optional override for the dimension of the projected time embedding.
|
137 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
138 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
139 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
140 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
141 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
142 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
143 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
144 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer. conv_out_kernel (`int`,
|
145 |
+
*optional*, default to `3`): The kernel size of `conv_out` layer. projection_class_embeddings_input_dim (`int`,
|
146 |
+
*optional*): The dimension of the `class_labels` input when
|
147 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
148 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
149 |
+
embeddings with the class embeddings.
|
150 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
151 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
152 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
153 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
154 |
+
otherwise.
|
155 |
+
"""
|
156 |
+
|
157 |
+
_supports_gradient_checkpointing = True
|
158 |
+
|
159 |
+
@register_to_config
|
160 |
+
def __init__(
|
161 |
+
self,
|
162 |
+
sample_size: Optional[int] = None,
|
163 |
+
in_channels: int = 4,
|
164 |
+
out_channels: int = 4,
|
165 |
+
center_input_sample: bool = False,
|
166 |
+
flip_sin_to_cos: bool = True,
|
167 |
+
freq_shift: int = 0,
|
168 |
+
down_block_types: Tuple[str] = (
|
169 |
+
"CrossAttnDownBlock2D",
|
170 |
+
"CrossAttnDownBlock2D",
|
171 |
+
"CrossAttnDownBlock2D",
|
172 |
+
"DownBlock2D",
|
173 |
+
),
|
174 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
175 |
+
up_block_types: Tuple[str] = (
|
176 |
+
"UpBlock2D",
|
177 |
+
"CrossAttnUpBlock2D",
|
178 |
+
"CrossAttnUpBlock2D",
|
179 |
+
"CrossAttnUpBlock2D",
|
180 |
+
),
|
181 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
182 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
183 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
184 |
+
downsample_padding: int = 1,
|
185 |
+
mid_block_scale_factor: float = 1,
|
186 |
+
dropout: float = 0.0,
|
187 |
+
act_fn: str = "silu",
|
188 |
+
norm_num_groups: Optional[int] = 32,
|
189 |
+
norm_eps: float = 1e-5,
|
190 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
191 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
192 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
193 |
+
encoder_hid_dim: Optional[int] = None,
|
194 |
+
encoder_hid_dim_type: Optional[str] = None,
|
195 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
196 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
197 |
+
dual_cross_attention: bool = False,
|
198 |
+
use_linear_projection: bool = False,
|
199 |
+
class_embed_type: Optional[str] = None,
|
200 |
+
addition_embed_type: Optional[str] = None,
|
201 |
+
addition_time_embed_dim: Optional[int] = None,
|
202 |
+
num_class_embeds: Optional[int] = None,
|
203 |
+
upcast_attention: bool = False,
|
204 |
+
resnet_time_scale_shift: str = "default",
|
205 |
+
resnet_skip_time_act: bool = False,
|
206 |
+
resnet_out_scale_factor: int = 1.0,
|
207 |
+
time_embedding_type: str = "positional",
|
208 |
+
time_embedding_dim: Optional[int] = None,
|
209 |
+
time_embedding_act_fn: Optional[str] = None,
|
210 |
+
timestep_post_act: Optional[str] = None,
|
211 |
+
time_cond_proj_dim: Optional[int] = None,
|
212 |
+
conv_in_kernel: int = 3,
|
213 |
+
conv_out_kernel: int = 3,
|
214 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
215 |
+
attention_type: str = "default",
|
216 |
+
class_embeddings_concat: bool = False,
|
217 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
218 |
+
cross_attention_norm: Optional[str] = None,
|
219 |
+
addition_embed_type_num_heads=64,
|
220 |
+
):
|
221 |
+
super().__init__()
|
222 |
+
|
223 |
+
self.sample_size = sample_size
|
224 |
+
|
225 |
+
if num_attention_heads is not None:
|
226 |
+
raise ValueError(
|
227 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
228 |
+
)
|
229 |
+
|
230 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
231 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
232 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
233 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
234 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
235 |
+
# which is why we correct for the naming here.
|
236 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
237 |
+
|
238 |
+
# Check inputs
|
239 |
+
if len(down_block_types) != len(up_block_types):
|
240 |
+
raise ValueError(
|
241 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
242 |
+
)
|
243 |
+
|
244 |
+
if len(block_out_channels) != len(down_block_types):
|
245 |
+
raise ValueError(
|
246 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
247 |
+
)
|
248 |
+
|
249 |
+
if not isinstance(only_cross_attention, bool) and len(
|
250 |
+
only_cross_attention
|
251 |
+
) != len(down_block_types):
|
252 |
+
raise ValueError(
|
253 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
254 |
+
)
|
255 |
+
|
256 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(
|
257 |
+
down_block_types
|
258 |
+
):
|
259 |
+
raise ValueError(
|
260 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
261 |
+
)
|
262 |
+
|
263 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(
|
264 |
+
down_block_types
|
265 |
+
):
|
266 |
+
raise ValueError(
|
267 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
268 |
+
)
|
269 |
+
|
270 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(
|
271 |
+
down_block_types
|
272 |
+
):
|
273 |
+
raise ValueError(
|
274 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
275 |
+
)
|
276 |
+
|
277 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(
|
278 |
+
down_block_types
|
279 |
+
):
|
280 |
+
raise ValueError(
|
281 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
282 |
+
)
|
283 |
+
if (
|
284 |
+
isinstance(transformer_layers_per_block, list)
|
285 |
+
and reverse_transformer_layers_per_block is None
|
286 |
+
):
|
287 |
+
for layer_number_per_block in transformer_layers_per_block:
|
288 |
+
if isinstance(layer_number_per_block, list):
|
289 |
+
raise ValueError(
|
290 |
+
"Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet."
|
291 |
+
)
|
292 |
+
|
293 |
+
# input
|
294 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
295 |
+
self.conv_in = nn.Conv2d(
|
296 |
+
in_channels,
|
297 |
+
block_out_channels[0],
|
298 |
+
kernel_size=conv_in_kernel,
|
299 |
+
padding=conv_in_padding,
|
300 |
+
)
|
301 |
+
|
302 |
+
# time
|
303 |
+
if time_embedding_type == "fourier":
|
304 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
305 |
+
if time_embed_dim % 2 != 0:
|
306 |
+
raise ValueError(
|
307 |
+
f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}."
|
308 |
+
)
|
309 |
+
self.time_proj = GaussianFourierProjection(
|
310 |
+
time_embed_dim // 2,
|
311 |
+
set_W_to_weight=False,
|
312 |
+
log=False,
|
313 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
314 |
+
)
|
315 |
+
timestep_input_dim = time_embed_dim
|
316 |
+
elif time_embedding_type == "positional":
|
317 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
318 |
+
|
319 |
+
self.time_proj = Timesteps(
|
320 |
+
block_out_channels[0], flip_sin_to_cos, freq_shift
|
321 |
+
)
|
322 |
+
timestep_input_dim = block_out_channels[0]
|
323 |
+
else:
|
324 |
+
raise ValueError(
|
325 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
326 |
+
)
|
327 |
+
|
328 |
+
self.time_embedding = TimestepEmbedding(
|
329 |
+
timestep_input_dim,
|
330 |
+
time_embed_dim,
|
331 |
+
act_fn=act_fn,
|
332 |
+
post_act_fn=timestep_post_act,
|
333 |
+
cond_proj_dim=time_cond_proj_dim,
|
334 |
+
)
|
335 |
+
|
336 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
337 |
+
encoder_hid_dim_type = "text_proj"
|
338 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
339 |
+
logger.info(
|
340 |
+
"encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined."
|
341 |
+
)
|
342 |
+
|
343 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
344 |
+
raise ValueError(
|
345 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
346 |
+
)
|
347 |
+
|
348 |
+
if encoder_hid_dim_type == "text_proj":
|
349 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
350 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
351 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
352 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
353 |
+
# case when `addition_embed_type == "text_image_proj"` (Kadinsky 2.1)`
|
354 |
+
self.encoder_hid_proj = TextImageProjection(
|
355 |
+
text_embed_dim=encoder_hid_dim,
|
356 |
+
image_embed_dim=cross_attention_dim,
|
357 |
+
cross_attention_dim=cross_attention_dim,
|
358 |
+
)
|
359 |
+
elif encoder_hid_dim_type == "image_proj":
|
360 |
+
# Kandinsky 2.2
|
361 |
+
self.encoder_hid_proj = ImageProjection(
|
362 |
+
image_embed_dim=encoder_hid_dim,
|
363 |
+
cross_attention_dim=cross_attention_dim,
|
364 |
+
)
|
365 |
+
elif encoder_hid_dim_type is not None:
|
366 |
+
raise ValueError(
|
367 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
368 |
+
)
|
369 |
+
else:
|
370 |
+
self.encoder_hid_proj = None
|
371 |
+
|
372 |
+
# class embedding
|
373 |
+
if class_embed_type is None and num_class_embeds is not None:
|
374 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
375 |
+
elif class_embed_type == "timestep":
|
376 |
+
self.class_embedding = TimestepEmbedding(
|
377 |
+
timestep_input_dim, time_embed_dim, act_fn=act_fn
|
378 |
+
)
|
379 |
+
elif class_embed_type == "identity":
|
380 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
381 |
+
elif class_embed_type == "projection":
|
382 |
+
if projection_class_embeddings_input_dim is None:
|
383 |
+
raise ValueError(
|
384 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
385 |
+
)
|
386 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
387 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
388 |
+
# 2. it projects from an arbitrary input dimension.
|
389 |
+
#
|
390 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
391 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
392 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
393 |
+
self.class_embedding = TimestepEmbedding(
|
394 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
395 |
+
)
|
396 |
+
elif class_embed_type == "simple_projection":
|
397 |
+
if projection_class_embeddings_input_dim is None:
|
398 |
+
raise ValueError(
|
399 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
400 |
+
)
|
401 |
+
self.class_embedding = nn.Linear(
|
402 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
403 |
+
)
|
404 |
+
else:
|
405 |
+
self.class_embedding = None
|
406 |
+
|
407 |
+
if addition_embed_type == "text":
|
408 |
+
if encoder_hid_dim is not None:
|
409 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
410 |
+
else:
|
411 |
+
text_time_embedding_from_dim = cross_attention_dim
|
412 |
+
|
413 |
+
self.add_embedding = TextTimeEmbedding(
|
414 |
+
text_time_embedding_from_dim,
|
415 |
+
time_embed_dim,
|
416 |
+
num_heads=addition_embed_type_num_heads,
|
417 |
+
)
|
418 |
+
elif addition_embed_type == "text_image":
|
419 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
420 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
421 |
+
# case when `addition_embed_type == "text_image"` (Kadinsky 2.1)`
|
422 |
+
self.add_embedding = TextImageTimeEmbedding(
|
423 |
+
text_embed_dim=cross_attention_dim,
|
424 |
+
image_embed_dim=cross_attention_dim,
|
425 |
+
time_embed_dim=time_embed_dim,
|
426 |
+
)
|
427 |
+
elif addition_embed_type == "text_time":
|
428 |
+
self.add_time_proj = Timesteps(
|
429 |
+
addition_time_embed_dim, flip_sin_to_cos, freq_shift
|
430 |
+
)
|
431 |
+
self.add_embedding = TimestepEmbedding(
|
432 |
+
projection_class_embeddings_input_dim, time_embed_dim
|
433 |
+
)
|
434 |
+
elif addition_embed_type == "image":
|
435 |
+
# Kandinsky 2.2
|
436 |
+
self.add_embedding = ImageTimeEmbedding(
|
437 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
438 |
+
)
|
439 |
+
elif addition_embed_type == "image_hint":
|
440 |
+
# Kandinsky 2.2 ControlNet
|
441 |
+
self.add_embedding = ImageHintTimeEmbedding(
|
442 |
+
image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim
|
443 |
+
)
|
444 |
+
elif addition_embed_type is not None:
|
445 |
+
raise ValueError(
|
446 |
+
f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'."
|
447 |
+
)
|
448 |
+
|
449 |
+
if time_embedding_act_fn is None:
|
450 |
+
self.time_embed_act = None
|
451 |
+
else:
|
452 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
453 |
+
|
454 |
+
self.down_blocks = nn.ModuleList([])
|
455 |
+
self.up_blocks = nn.ModuleList([])
|
456 |
+
|
457 |
+
if isinstance(only_cross_attention, bool):
|
458 |
+
if mid_block_only_cross_attention is None:
|
459 |
+
mid_block_only_cross_attention = only_cross_attention
|
460 |
+
|
461 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
462 |
+
|
463 |
+
if mid_block_only_cross_attention is None:
|
464 |
+
mid_block_only_cross_attention = False
|
465 |
+
|
466 |
+
if isinstance(num_attention_heads, int):
|
467 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
468 |
+
|
469 |
+
if isinstance(attention_head_dim, int):
|
470 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
471 |
+
|
472 |
+
if isinstance(cross_attention_dim, int):
|
473 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
474 |
+
|
475 |
+
if isinstance(layers_per_block, int):
|
476 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
477 |
+
|
478 |
+
if isinstance(transformer_layers_per_block, int):
|
479 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(
|
480 |
+
down_block_types
|
481 |
+
)
|
482 |
+
|
483 |
+
if class_embeddings_concat:
|
484 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
485 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
486 |
+
# regular time embeddings
|
487 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
488 |
+
else:
|
489 |
+
blocks_time_embed_dim = time_embed_dim
|
490 |
+
|
491 |
+
# down
|
492 |
+
output_channel = block_out_channels[0]
|
493 |
+
for i, down_block_type in enumerate(down_block_types):
|
494 |
+
input_channel = output_channel
|
495 |
+
output_channel = block_out_channels[i]
|
496 |
+
is_final_block = i == len(block_out_channels) - 1
|
497 |
+
|
498 |
+
down_block = get_down_block(
|
499 |
+
down_block_type,
|
500 |
+
num_layers=layers_per_block[i],
|
501 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
502 |
+
in_channels=input_channel,
|
503 |
+
out_channels=output_channel,
|
504 |
+
temb_channels=blocks_time_embed_dim,
|
505 |
+
add_downsample=not is_final_block,
|
506 |
+
resnet_eps=norm_eps,
|
507 |
+
resnet_act_fn=act_fn,
|
508 |
+
resnet_groups=norm_num_groups,
|
509 |
+
cross_attention_dim=cross_attention_dim[i],
|
510 |
+
num_attention_heads=num_attention_heads[i],
|
511 |
+
downsample_padding=downsample_padding,
|
512 |
+
dual_cross_attention=dual_cross_attention,
|
513 |
+
use_linear_projection=use_linear_projection,
|
514 |
+
only_cross_attention=only_cross_attention[i],
|
515 |
+
upcast_attention=upcast_attention,
|
516 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
517 |
+
attention_type=attention_type,
|
518 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
519 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
520 |
+
cross_attention_norm=cross_attention_norm,
|
521 |
+
attention_head_dim=attention_head_dim[i]
|
522 |
+
if attention_head_dim[i] is not None
|
523 |
+
else output_channel,
|
524 |
+
dropout=dropout,
|
525 |
+
)
|
526 |
+
self.down_blocks.append(down_block)
|
527 |
+
|
528 |
+
# mid
|
529 |
+
if mid_block_type == "UNetMidBlock2DCrossAttn":
|
530 |
+
self.mid_block = UNetMidBlock2DCrossAttn(
|
531 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
532 |
+
in_channels=block_out_channels[-1],
|
533 |
+
temb_channels=blocks_time_embed_dim,
|
534 |
+
dropout=dropout,
|
535 |
+
resnet_eps=norm_eps,
|
536 |
+
resnet_act_fn=act_fn,
|
537 |
+
output_scale_factor=mid_block_scale_factor,
|
538 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
539 |
+
cross_attention_dim=cross_attention_dim[-1],
|
540 |
+
num_attention_heads=num_attention_heads[-1],
|
541 |
+
resnet_groups=norm_num_groups,
|
542 |
+
dual_cross_attention=dual_cross_attention,
|
543 |
+
use_linear_projection=use_linear_projection,
|
544 |
+
upcast_attention=upcast_attention,
|
545 |
+
attention_type=attention_type,
|
546 |
+
)
|
547 |
+
elif mid_block_type == "UNetMidBlock2DSimpleCrossAttn":
|
548 |
+
raise NotImplementedError(f"Unsupport mid_block_type: {mid_block_type}")
|
549 |
+
elif mid_block_type == "UNetMidBlock2D":
|
550 |
+
self.mid_block = UNetMidBlock2D(
|
551 |
+
in_channels=block_out_channels[-1],
|
552 |
+
temb_channels=blocks_time_embed_dim,
|
553 |
+
dropout=dropout,
|
554 |
+
num_layers=0,
|
555 |
+
resnet_eps=norm_eps,
|
556 |
+
resnet_act_fn=act_fn,
|
557 |
+
output_scale_factor=mid_block_scale_factor,
|
558 |
+
resnet_groups=norm_num_groups,
|
559 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
560 |
+
add_attention=False,
|
561 |
+
)
|
562 |
+
elif mid_block_type is None:
|
563 |
+
self.mid_block = None
|
564 |
+
else:
|
565 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
566 |
+
|
567 |
+
# count how many layers upsample the images
|
568 |
+
self.num_upsamplers = 0
|
569 |
+
|
570 |
+
# up
|
571 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
572 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
573 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
574 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
575 |
+
reversed_transformer_layers_per_block = (
|
576 |
+
list(reversed(transformer_layers_per_block))
|
577 |
+
if reverse_transformer_layers_per_block is None
|
578 |
+
else reverse_transformer_layers_per_block
|
579 |
+
)
|
580 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
581 |
+
|
582 |
+
output_channel = reversed_block_out_channels[0]
|
583 |
+
for i, up_block_type in enumerate(up_block_types):
|
584 |
+
is_final_block = i == len(block_out_channels) - 1
|
585 |
+
|
586 |
+
prev_output_channel = output_channel
|
587 |
+
output_channel = reversed_block_out_channels[i]
|
588 |
+
input_channel = reversed_block_out_channels[
|
589 |
+
min(i + 1, len(block_out_channels) - 1)
|
590 |
+
]
|
591 |
+
|
592 |
+
# add upsample block for all BUT final layer
|
593 |
+
if not is_final_block:
|
594 |
+
add_upsample = True
|
595 |
+
self.num_upsamplers += 1
|
596 |
+
else:
|
597 |
+
add_upsample = False
|
598 |
+
|
599 |
+
up_block = get_up_block(
|
600 |
+
up_block_type,
|
601 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
602 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
603 |
+
in_channels=input_channel,
|
604 |
+
out_channels=output_channel,
|
605 |
+
prev_output_channel=prev_output_channel,
|
606 |
+
temb_channels=blocks_time_embed_dim,
|
607 |
+
add_upsample=add_upsample,
|
608 |
+
resnet_eps=norm_eps,
|
609 |
+
resnet_act_fn=act_fn,
|
610 |
+
resolution_idx=i,
|
611 |
+
resnet_groups=norm_num_groups,
|
612 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
613 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
614 |
+
dual_cross_attention=dual_cross_attention,
|
615 |
+
use_linear_projection=use_linear_projection,
|
616 |
+
only_cross_attention=only_cross_attention[i],
|
617 |
+
upcast_attention=upcast_attention,
|
618 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
619 |
+
attention_type=attention_type,
|
620 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
621 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
622 |
+
cross_attention_norm=cross_attention_norm,
|
623 |
+
attention_head_dim=attention_head_dim[i]
|
624 |
+
if attention_head_dim[i] is not None
|
625 |
+
else output_channel,
|
626 |
+
dropout=dropout,
|
627 |
+
)
|
628 |
+
self.up_blocks.append(up_block)
|
629 |
+
prev_output_channel = output_channel
|
630 |
+
|
631 |
+
# out
|
632 |
+
if norm_num_groups is not None:
|
633 |
+
self.conv_norm_out = nn.GroupNorm(
|
634 |
+
num_channels=block_out_channels[0],
|
635 |
+
num_groups=norm_num_groups,
|
636 |
+
eps=norm_eps,
|
637 |
+
)
|
638 |
+
|
639 |
+
self.conv_act = get_activation(act_fn)
|
640 |
+
|
641 |
+
else:
|
642 |
+
self.conv_norm_out = None
|
643 |
+
self.conv_act = None
|
644 |
+
self.conv_norm_out = None
|
645 |
+
|
646 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
647 |
+
# self.conv_out = nn.Conv2d(
|
648 |
+
# block_out_channels[0],
|
649 |
+
# out_channels,
|
650 |
+
# kernel_size=conv_out_kernel,
|
651 |
+
# padding=conv_out_padding,
|
652 |
+
# )
|
653 |
+
|
654 |
+
if attention_type in ["gated", "gated-text-image"]:
|
655 |
+
positive_len = 768
|
656 |
+
if isinstance(cross_attention_dim, int):
|
657 |
+
positive_len = cross_attention_dim
|
658 |
+
elif isinstance(cross_attention_dim, tuple) or isinstance(
|
659 |
+
cross_attention_dim, list
|
660 |
+
):
|
661 |
+
positive_len = cross_attention_dim[0]
|
662 |
+
|
663 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
664 |
+
self.position_net = PositionNet(
|
665 |
+
positive_len=positive_len,
|
666 |
+
out_dim=cross_attention_dim,
|
667 |
+
feature_type=feature_type,
|
668 |
+
)
|
669 |
+
|
670 |
+
@property
|
671 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
672 |
+
r"""
|
673 |
+
Returns:
|
674 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
675 |
+
indexed by its weight name.
|
676 |
+
"""
|
677 |
+
# set recursively
|
678 |
+
processors = {}
|
679 |
+
|
680 |
+
def fn_recursive_add_processors(
|
681 |
+
name: str,
|
682 |
+
module: torch.nn.Module,
|
683 |
+
processors: Dict[str, AttentionProcessor],
|
684 |
+
):
|
685 |
+
if hasattr(module, "get_processor"):
|
686 |
+
processors[f"{name}.processor"] = module.get_processor(
|
687 |
+
return_deprecated_lora=True
|
688 |
+
)
|
689 |
+
|
690 |
+
for sub_name, child in module.named_children():
|
691 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
692 |
+
|
693 |
+
return processors
|
694 |
+
|
695 |
+
for name, module in self.named_children():
|
696 |
+
fn_recursive_add_processors(name, module, processors)
|
697 |
+
|
698 |
+
return processors
|
699 |
+
|
700 |
+
def set_attn_processor(
|
701 |
+
self,
|
702 |
+
processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]],
|
703 |
+
_remove_lora=False,
|
704 |
+
):
|
705 |
+
r"""
|
706 |
+
Sets the attention processor to use to compute attention.
|
707 |
+
|
708 |
+
Parameters:
|
709 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
710 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
711 |
+
for **all** `Attention` layers.
|
712 |
+
|
713 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
714 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
715 |
+
|
716 |
+
"""
|
717 |
+
count = len(self.attn_processors.keys())
|
718 |
+
|
719 |
+
if isinstance(processor, dict) and len(processor) != count:
|
720 |
+
raise ValueError(
|
721 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
722 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
723 |
+
)
|
724 |
+
|
725 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
726 |
+
if hasattr(module, "set_processor"):
|
727 |
+
if not isinstance(processor, dict):
|
728 |
+
module.set_processor(processor, _remove_lora=_remove_lora)
|
729 |
+
else:
|
730 |
+
module.set_processor(
|
731 |
+
processor.pop(f"{name}.processor"), _remove_lora=_remove_lora
|
732 |
+
)
|
733 |
+
|
734 |
+
for sub_name, child in module.named_children():
|
735 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
736 |
+
|
737 |
+
for name, module in self.named_children():
|
738 |
+
fn_recursive_attn_processor(name, module, processor)
|
739 |
+
|
740 |
+
def set_default_attn_processor(self):
|
741 |
+
"""
|
742 |
+
Disables custom attention processors and sets the default attention implementation.
|
743 |
+
"""
|
744 |
+
if all(
|
745 |
+
proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS
|
746 |
+
for proc in self.attn_processors.values()
|
747 |
+
):
|
748 |
+
processor = AttnAddedKVProcessor()
|
749 |
+
elif all(
|
750 |
+
proc.__class__ in CROSS_ATTENTION_PROCESSORS
|
751 |
+
for proc in self.attn_processors.values()
|
752 |
+
):
|
753 |
+
processor = AttnProcessor()
|
754 |
+
else:
|
755 |
+
raise ValueError(
|
756 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
757 |
+
)
|
758 |
+
|
759 |
+
self.set_attn_processor(processor, _remove_lora=True)
|
760 |
+
|
761 |
+
def set_attention_slice(self, slice_size):
|
762 |
+
r"""
|
763 |
+
Enable sliced attention computation.
|
764 |
+
|
765 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
766 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
767 |
+
|
768 |
+
Args:
|
769 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
770 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
771 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
772 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
773 |
+
must be a multiple of `slice_size`.
|
774 |
+
"""
|
775 |
+
sliceable_head_dims = []
|
776 |
+
|
777 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
778 |
+
if hasattr(module, "set_attention_slice"):
|
779 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
780 |
+
|
781 |
+
for child in module.children():
|
782 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
783 |
+
|
784 |
+
# retrieve number of attention layers
|
785 |
+
for module in self.children():
|
786 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
787 |
+
|
788 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
789 |
+
|
790 |
+
if slice_size == "auto":
|
791 |
+
# half the attention head size is usually a good trade-off between
|
792 |
+
# speed and memory
|
793 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
794 |
+
elif slice_size == "max":
|
795 |
+
# make smallest slice possible
|
796 |
+
slice_size = num_sliceable_layers * [1]
|
797 |
+
|
798 |
+
slice_size = (
|
799 |
+
num_sliceable_layers * [slice_size]
|
800 |
+
if not isinstance(slice_size, list)
|
801 |
+
else slice_size
|
802 |
+
)
|
803 |
+
|
804 |
+
if len(slice_size) != len(sliceable_head_dims):
|
805 |
+
raise ValueError(
|
806 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
807 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
808 |
+
)
|
809 |
+
|
810 |
+
for i in range(len(slice_size)):
|
811 |
+
size = slice_size[i]
|
812 |
+
dim = sliceable_head_dims[i]
|
813 |
+
if size is not None and size > dim:
|
814 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
815 |
+
|
816 |
+
# Recursively walk through all the children.
|
817 |
+
# Any children which exposes the set_attention_slice method
|
818 |
+
# gets the message
|
819 |
+
def fn_recursive_set_attention_slice(
|
820 |
+
module: torch.nn.Module, slice_size: List[int]
|
821 |
+
):
|
822 |
+
if hasattr(module, "set_attention_slice"):
|
823 |
+
module.set_attention_slice(slice_size.pop())
|
824 |
+
|
825 |
+
for child in module.children():
|
826 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
827 |
+
|
828 |
+
reversed_slice_size = list(reversed(slice_size))
|
829 |
+
for module in self.children():
|
830 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
831 |
+
|
832 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
833 |
+
if hasattr(module, "gradient_checkpointing"):
|
834 |
+
module.gradient_checkpointing = value
|
835 |
+
|
836 |
+
def enable_freeu(self, s1, s2, b1, b2):
|
837 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
838 |
+
|
839 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
840 |
+
|
841 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
842 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
843 |
+
|
844 |
+
Args:
|
845 |
+
s1 (`float`):
|
846 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
847 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
848 |
+
s2 (`float`):
|
849 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
850 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
851 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
852 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
853 |
+
"""
|
854 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
855 |
+
setattr(upsample_block, "s1", s1)
|
856 |
+
setattr(upsample_block, "s2", s2)
|
857 |
+
setattr(upsample_block, "b1", b1)
|
858 |
+
setattr(upsample_block, "b2", b2)
|
859 |
+
|
860 |
+
def disable_freeu(self):
|
861 |
+
"""Disables the FreeU mechanism."""
|
862 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
863 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
864 |
+
for k in freeu_keys:
|
865 |
+
if (
|
866 |
+
hasattr(upsample_block, k)
|
867 |
+
or getattr(upsample_block, k, None) is not None
|
868 |
+
):
|
869 |
+
setattr(upsample_block, k, None)
|
870 |
+
|
871 |
+
def forward(
|
872 |
+
self,
|
873 |
+
sample: torch.FloatTensor,
|
874 |
+
timestep: Union[torch.Tensor, float, int],
|
875 |
+
encoder_hidden_states: torch.Tensor,
|
876 |
+
class_labels: Optional[torch.Tensor] = None,
|
877 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
878 |
+
attention_mask: Optional[torch.Tensor] = None,
|
879 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
880 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
881 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
882 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
883 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
884 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
885 |
+
return_dict: bool = True,
|
886 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
887 |
+
r"""
|
888 |
+
The [`UNet2DConditionModel`] forward method.
|
889 |
+
|
890 |
+
Args:
|
891 |
+
sample (`torch.FloatTensor`):
|
892 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
893 |
+
timestep (`torch.FloatTensor` or `float` or `int`): The number of timesteps to denoise an input.
|
894 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
895 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
896 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
897 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
898 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
899 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
900 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
901 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
902 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
903 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
904 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
905 |
+
cross_attention_kwargs (`dict`, *optional*):
|
906 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
907 |
+
`self.processor` in
|
908 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
909 |
+
added_cond_kwargs: (`dict`, *optional*):
|
910 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
911 |
+
are passed along to the UNet blocks.
|
912 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
913 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
914 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
915 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
916 |
+
encoder_attention_mask (`torch.Tensor`):
|
917 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
918 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
919 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
920 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
921 |
+
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
922 |
+
tuple.
|
923 |
+
cross_attention_kwargs (`dict`, *optional*):
|
924 |
+
A kwargs dictionary that if specified is passed along to the [`AttnProcessor`].
|
925 |
+
added_cond_kwargs: (`dict`, *optional*):
|
926 |
+
A kwargs dictionary containin additional embeddings that if specified are added to the embeddings that
|
927 |
+
are passed along to the UNet blocks.
|
928 |
+
down_block_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
929 |
+
additional residuals to be added to UNet long skip connections from down blocks to up blocks for
|
930 |
+
example from ControlNet side model(s)
|
931 |
+
mid_block_additional_residual (`torch.Tensor`, *optional*):
|
932 |
+
additional residual to be added to UNet mid block output, for example from ControlNet side model
|
933 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
934 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
935 |
+
|
936 |
+
Returns:
|
937 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
938 |
+
If `return_dict` is True, an [`~models.unet_2d_condition.UNet2DConditionOutput`] is returned, otherwise
|
939 |
+
a `tuple` is returned where the first element is the sample tensor.
|
940 |
+
"""
|
941 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
942 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
943 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
944 |
+
# on the fly if necessary.
|
945 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
946 |
+
|
947 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
948 |
+
forward_upsample_size = False
|
949 |
+
upsample_size = None
|
950 |
+
|
951 |
+
for dim in sample.shape[-2:]:
|
952 |
+
if dim % default_overall_up_factor != 0:
|
953 |
+
# Forward upsample size to force interpolation output size.
|
954 |
+
forward_upsample_size = True
|
955 |
+
break
|
956 |
+
|
957 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
958 |
+
# expects mask of shape:
|
959 |
+
# [batch, key_tokens]
|
960 |
+
# adds singleton query_tokens dimension:
|
961 |
+
# [batch, 1, key_tokens]
|
962 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
963 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
964 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
965 |
+
if attention_mask is not None:
|
966 |
+
# assume that mask is expressed as:
|
967 |
+
# (1 = keep, 0 = discard)
|
968 |
+
# convert mask into a bias that can be added to attention scores:
|
969 |
+
# (keep = +0, discard = -10000.0)
|
970 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
971 |
+
attention_mask = attention_mask.unsqueeze(1)
|
972 |
+
|
973 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
974 |
+
if encoder_attention_mask is not None:
|
975 |
+
encoder_attention_mask = (
|
976 |
+
1 - encoder_attention_mask.to(sample.dtype)
|
977 |
+
) * -10000.0
|
978 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
979 |
+
|
980 |
+
# 0. center input if necessary
|
981 |
+
if self.config.center_input_sample:
|
982 |
+
sample = 2 * sample - 1.0
|
983 |
+
|
984 |
+
# 1. time
|
985 |
+
timesteps = timestep
|
986 |
+
if not torch.is_tensor(timesteps):
|
987 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
988 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
989 |
+
is_mps = sample.device.type == "mps"
|
990 |
+
if isinstance(timestep, float):
|
991 |
+
dtype = torch.float32 if is_mps else torch.float64
|
992 |
+
else:
|
993 |
+
dtype = torch.int32 if is_mps else torch.int64
|
994 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
995 |
+
elif len(timesteps.shape) == 0:
|
996 |
+
timesteps = timesteps[None].to(sample.device)
|
997 |
+
|
998 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
999 |
+
timesteps = timesteps.expand(sample.shape[0])
|
1000 |
+
|
1001 |
+
t_emb = self.time_proj(timesteps)
|
1002 |
+
|
1003 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1004 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
1005 |
+
# there might be better ways to encapsulate this.
|
1006 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1007 |
+
|
1008 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1009 |
+
aug_emb = None
|
1010 |
+
|
1011 |
+
if self.class_embedding is not None:
|
1012 |
+
if class_labels is None:
|
1013 |
+
raise ValueError(
|
1014 |
+
"class_labels should be provided when num_class_embeds > 0"
|
1015 |
+
)
|
1016 |
+
|
1017 |
+
if self.config.class_embed_type == "timestep":
|
1018 |
+
class_labels = self.time_proj(class_labels)
|
1019 |
+
|
1020 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1021 |
+
# there might be better ways to encapsulate this.
|
1022 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1023 |
+
|
1024 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1025 |
+
|
1026 |
+
if self.config.class_embeddings_concat:
|
1027 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1028 |
+
else:
|
1029 |
+
emb = emb + class_emb
|
1030 |
+
|
1031 |
+
if self.config.addition_embed_type == "text":
|
1032 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1033 |
+
elif self.config.addition_embed_type == "text_image":
|
1034 |
+
# Kandinsky 2.1 - style
|
1035 |
+
if "image_embeds" not in added_cond_kwargs:
|
1036 |
+
raise ValueError(
|
1037 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1041 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1042 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1043 |
+
elif self.config.addition_embed_type == "text_time":
|
1044 |
+
# SDXL - style
|
1045 |
+
if "text_embeds" not in added_cond_kwargs:
|
1046 |
+
raise ValueError(
|
1047 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1048 |
+
)
|
1049 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1050 |
+
if "time_ids" not in added_cond_kwargs:
|
1051 |
+
raise ValueError(
|
1052 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1053 |
+
)
|
1054 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1055 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1056 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1057 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1058 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1059 |
+
aug_emb = self.add_embedding(add_embeds)
|
1060 |
+
elif self.config.addition_embed_type == "image":
|
1061 |
+
# Kandinsky 2.2 - style
|
1062 |
+
if "image_embeds" not in added_cond_kwargs:
|
1063 |
+
raise ValueError(
|
1064 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1065 |
+
)
|
1066 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1067 |
+
aug_emb = self.add_embedding(image_embs)
|
1068 |
+
elif self.config.addition_embed_type == "image_hint":
|
1069 |
+
# Kandinsky 2.2 - style
|
1070 |
+
if (
|
1071 |
+
"image_embeds" not in added_cond_kwargs
|
1072 |
+
or "hint" not in added_cond_kwargs
|
1073 |
+
):
|
1074 |
+
raise ValueError(
|
1075 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1076 |
+
)
|
1077 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1078 |
+
hint = added_cond_kwargs.get("hint")
|
1079 |
+
aug_emb, hint = self.add_embedding(image_embs, hint)
|
1080 |
+
sample = torch.cat([sample, hint], dim=1)
|
1081 |
+
|
1082 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1083 |
+
|
1084 |
+
if self.time_embed_act is not None:
|
1085 |
+
emb = self.time_embed_act(emb)
|
1086 |
+
|
1087 |
+
if (
|
1088 |
+
self.encoder_hid_proj is not None
|
1089 |
+
and self.config.encoder_hid_dim_type == "text_proj"
|
1090 |
+
):
|
1091 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1092 |
+
elif (
|
1093 |
+
self.encoder_hid_proj is not None
|
1094 |
+
and self.config.encoder_hid_dim_type == "text_image_proj"
|
1095 |
+
):
|
1096 |
+
# Kadinsky 2.1 - style
|
1097 |
+
if "image_embeds" not in added_cond_kwargs:
|
1098 |
+
raise ValueError(
|
1099 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1100 |
+
)
|
1101 |
+
|
1102 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1103 |
+
encoder_hidden_states = self.encoder_hid_proj(
|
1104 |
+
encoder_hidden_states, image_embeds
|
1105 |
+
)
|
1106 |
+
elif (
|
1107 |
+
self.encoder_hid_proj is not None
|
1108 |
+
and self.config.encoder_hid_dim_type == "image_proj"
|
1109 |
+
):
|
1110 |
+
# Kandinsky 2.2 - style
|
1111 |
+
if "image_embeds" not in added_cond_kwargs:
|
1112 |
+
raise ValueError(
|
1113 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1114 |
+
)
|
1115 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1116 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1117 |
+
elif (
|
1118 |
+
self.encoder_hid_proj is not None
|
1119 |
+
and self.config.encoder_hid_dim_type == "ip_image_proj"
|
1120 |
+
):
|
1121 |
+
if "image_embeds" not in added_cond_kwargs:
|
1122 |
+
raise ValueError(
|
1123 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1124 |
+
)
|
1125 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1126 |
+
image_embeds = self.encoder_hid_proj(image_embeds).to(
|
1127 |
+
encoder_hidden_states.dtype
|
1128 |
+
)
|
1129 |
+
encoder_hidden_states = torch.cat(
|
1130 |
+
[encoder_hidden_states, image_embeds], dim=1
|
1131 |
+
)
|
1132 |
+
|
1133 |
+
# 2. pre-process
|
1134 |
+
sample = self.conv_in(sample)
|
1135 |
+
|
1136 |
+
# 2.5 GLIGEN position net
|
1137 |
+
if (
|
1138 |
+
cross_attention_kwargs is not None
|
1139 |
+
and cross_attention_kwargs.get("gligen", None) is not None
|
1140 |
+
):
|
1141 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1142 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1143 |
+
cross_attention_kwargs["gligen"] = {
|
1144 |
+
"objs": self.position_net(**gligen_args)
|
1145 |
+
}
|
1146 |
+
|
1147 |
+
# 3. down
|
1148 |
+
lora_scale = (
|
1149 |
+
cross_attention_kwargs.get("scale", 1.0)
|
1150 |
+
if cross_attention_kwargs is not None
|
1151 |
+
else 1.0
|
1152 |
+
)
|
1153 |
+
if USE_PEFT_BACKEND:
|
1154 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1155 |
+
scale_lora_layers(self, lora_scale)
|
1156 |
+
|
1157 |
+
is_controlnet = (
|
1158 |
+
mid_block_additional_residual is not None
|
1159 |
+
and down_block_additional_residuals is not None
|
1160 |
+
)
|
1161 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1162 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1163 |
+
# maintain backward compatibility for legacy usage, where
|
1164 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1165 |
+
# but can only use one or the other
|
1166 |
+
if (
|
1167 |
+
not is_adapter
|
1168 |
+
and mid_block_additional_residual is None
|
1169 |
+
and down_block_additional_residuals is not None
|
1170 |
+
):
|
1171 |
+
deprecate(
|
1172 |
+
"T2I should not use down_block_additional_residuals",
|
1173 |
+
"1.3.0",
|
1174 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1175 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1176 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1177 |
+
standard_warn=False,
|
1178 |
+
)
|
1179 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1180 |
+
is_adapter = True
|
1181 |
+
|
1182 |
+
down_block_res_samples = (sample,)
|
1183 |
+
tot_referece_features = ()
|
1184 |
+
for downsample_block in self.down_blocks:
|
1185 |
+
if (
|
1186 |
+
hasattr(downsample_block, "has_cross_attention")
|
1187 |
+
and downsample_block.has_cross_attention
|
1188 |
+
):
|
1189 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1190 |
+
additional_residuals = {}
|
1191 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1192 |
+
additional_residuals[
|
1193 |
+
"additional_residuals"
|
1194 |
+
] = down_intrablock_additional_residuals.pop(0)
|
1195 |
+
|
1196 |
+
sample, res_samples = downsample_block(
|
1197 |
+
hidden_states=sample,
|
1198 |
+
temb=emb,
|
1199 |
+
encoder_hidden_states=encoder_hidden_states,
|
1200 |
+
attention_mask=attention_mask,
|
1201 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1202 |
+
encoder_attention_mask=encoder_attention_mask,
|
1203 |
+
**additional_residuals,
|
1204 |
+
)
|
1205 |
+
else:
|
1206 |
+
sample, res_samples = downsample_block(
|
1207 |
+
hidden_states=sample, temb=emb, scale=lora_scale
|
1208 |
+
)
|
1209 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1210 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1211 |
+
|
1212 |
+
down_block_res_samples += res_samples
|
1213 |
+
|
1214 |
+
if is_controlnet:
|
1215 |
+
new_down_block_res_samples = ()
|
1216 |
+
|
1217 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1218 |
+
down_block_res_samples, down_block_additional_residuals
|
1219 |
+
):
|
1220 |
+
down_block_res_sample = (
|
1221 |
+
down_block_res_sample + down_block_additional_residual
|
1222 |
+
)
|
1223 |
+
new_down_block_res_samples = new_down_block_res_samples + (
|
1224 |
+
down_block_res_sample,
|
1225 |
+
)
|
1226 |
+
|
1227 |
+
down_block_res_samples = new_down_block_res_samples
|
1228 |
+
|
1229 |
+
# 4. mid
|
1230 |
+
if self.mid_block is not None:
|
1231 |
+
if (
|
1232 |
+
hasattr(self.mid_block, "has_cross_attention")
|
1233 |
+
and self.mid_block.has_cross_attention
|
1234 |
+
):
|
1235 |
+
sample = self.mid_block(
|
1236 |
+
sample,
|
1237 |
+
emb,
|
1238 |
+
encoder_hidden_states=encoder_hidden_states,
|
1239 |
+
attention_mask=attention_mask,
|
1240 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1241 |
+
encoder_attention_mask=encoder_attention_mask,
|
1242 |
+
)
|
1243 |
+
else:
|
1244 |
+
sample = self.mid_block(sample, emb)
|
1245 |
+
|
1246 |
+
# To support T2I-Adapter-XL
|
1247 |
+
if (
|
1248 |
+
is_adapter
|
1249 |
+
and len(down_intrablock_additional_residuals) > 0
|
1250 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1251 |
+
):
|
1252 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1253 |
+
|
1254 |
+
if is_controlnet:
|
1255 |
+
sample = sample + mid_block_additional_residual
|
1256 |
+
|
1257 |
+
# 5. up
|
1258 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1259 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1260 |
+
|
1261 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
1262 |
+
down_block_res_samples = down_block_res_samples[
|
1263 |
+
: -len(upsample_block.resnets)
|
1264 |
+
]
|
1265 |
+
|
1266 |
+
# if we have not reached the final block and need to forward the
|
1267 |
+
# upsample size, we do it here
|
1268 |
+
if not is_final_block and forward_upsample_size:
|
1269 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1270 |
+
|
1271 |
+
if (
|
1272 |
+
hasattr(upsample_block, "has_cross_attention")
|
1273 |
+
and upsample_block.has_cross_attention
|
1274 |
+
):
|
1275 |
+
sample = upsample_block(
|
1276 |
+
hidden_states=sample,
|
1277 |
+
temb=emb,
|
1278 |
+
res_hidden_states_tuple=res_samples,
|
1279 |
+
encoder_hidden_states=encoder_hidden_states,
|
1280 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1281 |
+
upsample_size=upsample_size,
|
1282 |
+
attention_mask=attention_mask,
|
1283 |
+
encoder_attention_mask=encoder_attention_mask,
|
1284 |
+
)
|
1285 |
+
else:
|
1286 |
+
sample = upsample_block(
|
1287 |
+
hidden_states=sample,
|
1288 |
+
temb=emb,
|
1289 |
+
res_hidden_states_tuple=res_samples,
|
1290 |
+
upsample_size=upsample_size,
|
1291 |
+
scale=lora_scale,
|
1292 |
+
)
|
1293 |
+
|
1294 |
+
# 6. post-process
|
1295 |
+
# if self.conv_norm_out:
|
1296 |
+
# sample = self.conv_norm_out(sample)
|
1297 |
+
# sample = self.conv_act(sample)
|
1298 |
+
# sample = self.conv_out(sample)
|
1299 |
+
|
1300 |
+
if USE_PEFT_BACKEND:
|
1301 |
+
# remove `lora_scale` from each PEFT layer
|
1302 |
+
unscale_lora_layers(self, lora_scale)
|
1303 |
+
|
1304 |
+
if not return_dict:
|
1305 |
+
return (sample,)
|
1306 |
+
|
1307 |
+
return UNet2DConditionOutput(sample=sample)
|
musepose/models/unet_3d.py
ADDED
@@ -0,0 +1,675 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/guoyww/AnimateDiff/blob/main/animatediff/models/unet_blocks.py
|
2 |
+
|
3 |
+
from collections import OrderedDict
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from os import PathLike
|
6 |
+
from pathlib import Path
|
7 |
+
from typing import Dict, List, Optional, Tuple, Union
|
8 |
+
|
9 |
+
import torch
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.utils.checkpoint
|
12 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
13 |
+
from diffusers.models.attention_processor import AttentionProcessor
|
14 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
15 |
+
from diffusers.models.modeling_utils import ModelMixin
|
16 |
+
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging
|
17 |
+
from safetensors.torch import load_file
|
18 |
+
|
19 |
+
from .resnet import InflatedConv3d, InflatedGroupNorm
|
20 |
+
from .unet_3d_blocks import UNetMidBlock3DCrossAttn, get_down_block, get_up_block
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
23 |
+
|
24 |
+
|
25 |
+
@dataclass
|
26 |
+
class UNet3DConditionOutput(BaseOutput):
|
27 |
+
sample: torch.FloatTensor
|
28 |
+
|
29 |
+
|
30 |
+
class UNet3DConditionModel(ModelMixin, ConfigMixin):
|
31 |
+
_supports_gradient_checkpointing = True
|
32 |
+
|
33 |
+
@register_to_config
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
sample_size: Optional[int] = None,
|
37 |
+
in_channels: int = 4,
|
38 |
+
out_channels: int = 4,
|
39 |
+
center_input_sample: bool = False,
|
40 |
+
flip_sin_to_cos: bool = True,
|
41 |
+
freq_shift: int = 0,
|
42 |
+
down_block_types: Tuple[str] = (
|
43 |
+
"CrossAttnDownBlock3D",
|
44 |
+
"CrossAttnDownBlock3D",
|
45 |
+
"CrossAttnDownBlock3D",
|
46 |
+
"DownBlock3D",
|
47 |
+
),
|
48 |
+
mid_block_type: str = "UNetMidBlock3DCrossAttn",
|
49 |
+
up_block_types: Tuple[str] = (
|
50 |
+
"UpBlock3D",
|
51 |
+
"CrossAttnUpBlock3D",
|
52 |
+
"CrossAttnUpBlock3D",
|
53 |
+
"CrossAttnUpBlock3D",
|
54 |
+
),
|
55 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
56 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
57 |
+
layers_per_block: int = 2,
|
58 |
+
downsample_padding: int = 1,
|
59 |
+
mid_block_scale_factor: float = 1,
|
60 |
+
act_fn: str = "silu",
|
61 |
+
norm_num_groups: int = 32,
|
62 |
+
norm_eps: float = 1e-5,
|
63 |
+
cross_attention_dim: int = 1280,
|
64 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
65 |
+
dual_cross_attention: bool = False,
|
66 |
+
use_linear_projection: bool = False,
|
67 |
+
class_embed_type: Optional[str] = None,
|
68 |
+
num_class_embeds: Optional[int] = None,
|
69 |
+
upcast_attention: bool = False,
|
70 |
+
resnet_time_scale_shift: str = "default",
|
71 |
+
use_inflated_groupnorm=False,
|
72 |
+
# Additional
|
73 |
+
use_motion_module=False,
|
74 |
+
motion_module_resolutions=(1, 2, 4, 8),
|
75 |
+
motion_module_mid_block=False,
|
76 |
+
motion_module_decoder_only=False,
|
77 |
+
motion_module_type=None,
|
78 |
+
motion_module_kwargs={},
|
79 |
+
unet_use_cross_frame_attention=None,
|
80 |
+
unet_use_temporal_attention=None,
|
81 |
+
):
|
82 |
+
super().__init__()
|
83 |
+
|
84 |
+
self.sample_size = sample_size
|
85 |
+
time_embed_dim = block_out_channels[0] * 4
|
86 |
+
|
87 |
+
# input
|
88 |
+
self.conv_in = InflatedConv3d(
|
89 |
+
in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1)
|
90 |
+
)
|
91 |
+
|
92 |
+
# time
|
93 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
94 |
+
timestep_input_dim = block_out_channels[0]
|
95 |
+
|
96 |
+
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
97 |
+
|
98 |
+
# class embedding
|
99 |
+
if class_embed_type is None and num_class_embeds is not None:
|
100 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
101 |
+
elif class_embed_type == "timestep":
|
102 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
103 |
+
elif class_embed_type == "identity":
|
104 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
105 |
+
else:
|
106 |
+
self.class_embedding = None
|
107 |
+
|
108 |
+
self.down_blocks = nn.ModuleList([])
|
109 |
+
self.mid_block = None
|
110 |
+
self.up_blocks = nn.ModuleList([])
|
111 |
+
|
112 |
+
if isinstance(only_cross_attention, bool):
|
113 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
114 |
+
|
115 |
+
if isinstance(attention_head_dim, int):
|
116 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
117 |
+
|
118 |
+
# down
|
119 |
+
output_channel = block_out_channels[0]
|
120 |
+
for i, down_block_type in enumerate(down_block_types):
|
121 |
+
res = 2**i
|
122 |
+
input_channel = output_channel
|
123 |
+
output_channel = block_out_channels[i]
|
124 |
+
is_final_block = i == len(block_out_channels) - 1
|
125 |
+
|
126 |
+
down_block = get_down_block(
|
127 |
+
down_block_type,
|
128 |
+
num_layers=layers_per_block,
|
129 |
+
in_channels=input_channel,
|
130 |
+
out_channels=output_channel,
|
131 |
+
temb_channels=time_embed_dim,
|
132 |
+
add_downsample=not is_final_block,
|
133 |
+
resnet_eps=norm_eps,
|
134 |
+
resnet_act_fn=act_fn,
|
135 |
+
resnet_groups=norm_num_groups,
|
136 |
+
cross_attention_dim=cross_attention_dim,
|
137 |
+
attn_num_head_channels=attention_head_dim[i],
|
138 |
+
downsample_padding=downsample_padding,
|
139 |
+
dual_cross_attention=dual_cross_attention,
|
140 |
+
use_linear_projection=use_linear_projection,
|
141 |
+
only_cross_attention=only_cross_attention[i],
|
142 |
+
upcast_attention=upcast_attention,
|
143 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
144 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
145 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
146 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
147 |
+
use_motion_module=use_motion_module
|
148 |
+
and (res in motion_module_resolutions)
|
149 |
+
and (not motion_module_decoder_only),
|
150 |
+
motion_module_type=motion_module_type,
|
151 |
+
motion_module_kwargs=motion_module_kwargs,
|
152 |
+
)
|
153 |
+
self.down_blocks.append(down_block)
|
154 |
+
|
155 |
+
# mid
|
156 |
+
if mid_block_type == "UNetMidBlock3DCrossAttn":
|
157 |
+
self.mid_block = UNetMidBlock3DCrossAttn(
|
158 |
+
in_channels=block_out_channels[-1],
|
159 |
+
temb_channels=time_embed_dim,
|
160 |
+
resnet_eps=norm_eps,
|
161 |
+
resnet_act_fn=act_fn,
|
162 |
+
output_scale_factor=mid_block_scale_factor,
|
163 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
164 |
+
cross_attention_dim=cross_attention_dim,
|
165 |
+
attn_num_head_channels=attention_head_dim[-1],
|
166 |
+
resnet_groups=norm_num_groups,
|
167 |
+
dual_cross_attention=dual_cross_attention,
|
168 |
+
use_linear_projection=use_linear_projection,
|
169 |
+
upcast_attention=upcast_attention,
|
170 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
171 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
172 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
173 |
+
use_motion_module=use_motion_module and motion_module_mid_block,
|
174 |
+
motion_module_type=motion_module_type,
|
175 |
+
motion_module_kwargs=motion_module_kwargs,
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
|
179 |
+
|
180 |
+
# count how many layers upsample the videos
|
181 |
+
self.num_upsamplers = 0
|
182 |
+
|
183 |
+
# up
|
184 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
185 |
+
reversed_attention_head_dim = list(reversed(attention_head_dim))
|
186 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
187 |
+
output_channel = reversed_block_out_channels[0]
|
188 |
+
for i, up_block_type in enumerate(up_block_types):
|
189 |
+
res = 2 ** (3 - i)
|
190 |
+
is_final_block = i == len(block_out_channels) - 1
|
191 |
+
|
192 |
+
prev_output_channel = output_channel
|
193 |
+
output_channel = reversed_block_out_channels[i]
|
194 |
+
input_channel = reversed_block_out_channels[
|
195 |
+
min(i + 1, len(block_out_channels) - 1)
|
196 |
+
]
|
197 |
+
|
198 |
+
# add upsample block for all BUT final layer
|
199 |
+
if not is_final_block:
|
200 |
+
add_upsample = True
|
201 |
+
self.num_upsamplers += 1
|
202 |
+
else:
|
203 |
+
add_upsample = False
|
204 |
+
|
205 |
+
up_block = get_up_block(
|
206 |
+
up_block_type,
|
207 |
+
num_layers=layers_per_block + 1,
|
208 |
+
in_channels=input_channel,
|
209 |
+
out_channels=output_channel,
|
210 |
+
prev_output_channel=prev_output_channel,
|
211 |
+
temb_channels=time_embed_dim,
|
212 |
+
add_upsample=add_upsample,
|
213 |
+
resnet_eps=norm_eps,
|
214 |
+
resnet_act_fn=act_fn,
|
215 |
+
resnet_groups=norm_num_groups,
|
216 |
+
cross_attention_dim=cross_attention_dim,
|
217 |
+
attn_num_head_channels=reversed_attention_head_dim[i],
|
218 |
+
dual_cross_attention=dual_cross_attention,
|
219 |
+
use_linear_projection=use_linear_projection,
|
220 |
+
only_cross_attention=only_cross_attention[i],
|
221 |
+
upcast_attention=upcast_attention,
|
222 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
223 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
224 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
225 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
226 |
+
use_motion_module=use_motion_module
|
227 |
+
and (res in motion_module_resolutions),
|
228 |
+
motion_module_type=motion_module_type,
|
229 |
+
motion_module_kwargs=motion_module_kwargs,
|
230 |
+
)
|
231 |
+
self.up_blocks.append(up_block)
|
232 |
+
prev_output_channel = output_channel
|
233 |
+
|
234 |
+
# out
|
235 |
+
if use_inflated_groupnorm:
|
236 |
+
self.conv_norm_out = InflatedGroupNorm(
|
237 |
+
num_channels=block_out_channels[0],
|
238 |
+
num_groups=norm_num_groups,
|
239 |
+
eps=norm_eps,
|
240 |
+
)
|
241 |
+
else:
|
242 |
+
self.conv_norm_out = nn.GroupNorm(
|
243 |
+
num_channels=block_out_channels[0],
|
244 |
+
num_groups=norm_num_groups,
|
245 |
+
eps=norm_eps,
|
246 |
+
)
|
247 |
+
self.conv_act = nn.SiLU()
|
248 |
+
self.conv_out = InflatedConv3d(
|
249 |
+
block_out_channels[0], out_channels, kernel_size=3, padding=1
|
250 |
+
)
|
251 |
+
|
252 |
+
@property
|
253 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
|
254 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
255 |
+
r"""
|
256 |
+
Returns:
|
257 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
258 |
+
indexed by its weight name.
|
259 |
+
"""
|
260 |
+
# set recursively
|
261 |
+
processors = {}
|
262 |
+
|
263 |
+
def fn_recursive_add_processors(
|
264 |
+
name: str,
|
265 |
+
module: torch.nn.Module,
|
266 |
+
processors: Dict[str, AttentionProcessor],
|
267 |
+
):
|
268 |
+
if hasattr(module, "set_processor"):
|
269 |
+
processors[f"{name}.processor"] = module.processor
|
270 |
+
|
271 |
+
for sub_name, child in module.named_children():
|
272 |
+
if "temporal_transformer" not in sub_name:
|
273 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
274 |
+
|
275 |
+
return processors
|
276 |
+
|
277 |
+
for name, module in self.named_children():
|
278 |
+
if "temporal_transformer" not in name:
|
279 |
+
fn_recursive_add_processors(name, module, processors)
|
280 |
+
|
281 |
+
return processors
|
282 |
+
|
283 |
+
def set_attention_slice(self, slice_size):
|
284 |
+
r"""
|
285 |
+
Enable sliced attention computation.
|
286 |
+
|
287 |
+
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
288 |
+
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
289 |
+
|
290 |
+
Args:
|
291 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
292 |
+
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
293 |
+
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
|
294 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
295 |
+
must be a multiple of `slice_size`.
|
296 |
+
"""
|
297 |
+
sliceable_head_dims = []
|
298 |
+
|
299 |
+
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
|
300 |
+
if hasattr(module, "set_attention_slice"):
|
301 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
302 |
+
|
303 |
+
for child in module.children():
|
304 |
+
fn_recursive_retrieve_slicable_dims(child)
|
305 |
+
|
306 |
+
# retrieve number of attention layers
|
307 |
+
for module in self.children():
|
308 |
+
fn_recursive_retrieve_slicable_dims(module)
|
309 |
+
|
310 |
+
num_slicable_layers = len(sliceable_head_dims)
|
311 |
+
|
312 |
+
if slice_size == "auto":
|
313 |
+
# half the attention head size is usually a good trade-off between
|
314 |
+
# speed and memory
|
315 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
316 |
+
elif slice_size == "max":
|
317 |
+
# make smallest slice possible
|
318 |
+
slice_size = num_slicable_layers * [1]
|
319 |
+
|
320 |
+
slice_size = (
|
321 |
+
num_slicable_layers * [slice_size]
|
322 |
+
if not isinstance(slice_size, list)
|
323 |
+
else slice_size
|
324 |
+
)
|
325 |
+
|
326 |
+
if len(slice_size) != len(sliceable_head_dims):
|
327 |
+
raise ValueError(
|
328 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
329 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
330 |
+
)
|
331 |
+
|
332 |
+
for i in range(len(slice_size)):
|
333 |
+
size = slice_size[i]
|
334 |
+
dim = sliceable_head_dims[i]
|
335 |
+
if size is not None and size > dim:
|
336 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
337 |
+
|
338 |
+
# Recursively walk through all the children.
|
339 |
+
# Any children which exposes the set_attention_slice method
|
340 |
+
# gets the message
|
341 |
+
def fn_recursive_set_attention_slice(
|
342 |
+
module: torch.nn.Module, slice_size: List[int]
|
343 |
+
):
|
344 |
+
if hasattr(module, "set_attention_slice"):
|
345 |
+
module.set_attention_slice(slice_size.pop())
|
346 |
+
|
347 |
+
for child in module.children():
|
348 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
349 |
+
|
350 |
+
reversed_slice_size = list(reversed(slice_size))
|
351 |
+
for module in self.children():
|
352 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
353 |
+
|
354 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
355 |
+
if hasattr(module, "gradient_checkpointing"):
|
356 |
+
module.gradient_checkpointing = value
|
357 |
+
|
358 |
+
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.set_attn_processor
|
359 |
+
def set_attn_processor(
|
360 |
+
self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]
|
361 |
+
):
|
362 |
+
r"""
|
363 |
+
Sets the attention processor to use to compute attention.
|
364 |
+
|
365 |
+
Parameters:
|
366 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
367 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
368 |
+
for **all** `Attention` layers.
|
369 |
+
|
370 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
371 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
372 |
+
|
373 |
+
"""
|
374 |
+
count = len(self.attn_processors.keys())
|
375 |
+
|
376 |
+
if isinstance(processor, dict) and len(processor) != count:
|
377 |
+
raise ValueError(
|
378 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
379 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
380 |
+
)
|
381 |
+
|
382 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
383 |
+
if hasattr(module, "set_processor"):
|
384 |
+
if not isinstance(processor, dict):
|
385 |
+
module.set_processor(processor)
|
386 |
+
else:
|
387 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
388 |
+
|
389 |
+
for sub_name, child in module.named_children():
|
390 |
+
if "temporal_transformer" not in sub_name:
|
391 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
392 |
+
|
393 |
+
for name, module in self.named_children():
|
394 |
+
if "temporal_transformer" not in name:
|
395 |
+
fn_recursive_attn_processor(name, module, processor)
|
396 |
+
|
397 |
+
def forward(
|
398 |
+
self,
|
399 |
+
sample: torch.FloatTensor,
|
400 |
+
timestep: Union[torch.Tensor, float, int],
|
401 |
+
encoder_hidden_states: torch.Tensor,
|
402 |
+
class_labels: Optional[torch.Tensor] = None,
|
403 |
+
pose_cond_fea: Optional[torch.Tensor] = None,
|
404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
405 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
406 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
407 |
+
return_dict: bool = True,
|
408 |
+
) -> Union[UNet3DConditionOutput, Tuple]:
|
409 |
+
r"""
|
410 |
+
Args:
|
411 |
+
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
|
412 |
+
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
|
413 |
+
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
|
414 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
415 |
+
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
|
416 |
+
|
417 |
+
Returns:
|
418 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
419 |
+
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
420 |
+
returning a tuple, the first element is the sample tensor.
|
421 |
+
"""
|
422 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
423 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
|
424 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
425 |
+
# on the fly if necessary.
|
426 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
427 |
+
|
428 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
429 |
+
forward_upsample_size = False
|
430 |
+
upsample_size = None
|
431 |
+
|
432 |
+
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
|
433 |
+
logger.info("Forward upsample size to force interpolation output size.")
|
434 |
+
forward_upsample_size = True
|
435 |
+
|
436 |
+
# prepare attention_mask
|
437 |
+
if attention_mask is not None:
|
438 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
439 |
+
attention_mask = attention_mask.unsqueeze(1)
|
440 |
+
|
441 |
+
# center input if necessary
|
442 |
+
if self.config.center_input_sample:
|
443 |
+
sample = 2 * sample - 1.0
|
444 |
+
|
445 |
+
# time
|
446 |
+
timesteps = timestep
|
447 |
+
if not torch.is_tensor(timesteps):
|
448 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
449 |
+
is_mps = sample.device.type == "mps"
|
450 |
+
if isinstance(timestep, float):
|
451 |
+
dtype = torch.float32 if is_mps else torch.float64
|
452 |
+
else:
|
453 |
+
dtype = torch.int32 if is_mps else torch.int64
|
454 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
455 |
+
elif len(timesteps.shape) == 0:
|
456 |
+
timesteps = timesteps[None].to(sample.device)
|
457 |
+
|
458 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
459 |
+
timesteps = timesteps.expand(sample.shape[0])
|
460 |
+
|
461 |
+
t_emb = self.time_proj(timesteps)
|
462 |
+
|
463 |
+
# timesteps does not contain any weights and will always return f32 tensors
|
464 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
465 |
+
# there might be better ways to encapsulate this.
|
466 |
+
t_emb = t_emb.to(dtype=self.dtype)
|
467 |
+
emb = self.time_embedding(t_emb)
|
468 |
+
|
469 |
+
if self.class_embedding is not None:
|
470 |
+
if class_labels is None:
|
471 |
+
raise ValueError(
|
472 |
+
"class_labels should be provided when num_class_embeds > 0"
|
473 |
+
)
|
474 |
+
|
475 |
+
if self.config.class_embed_type == "timestep":
|
476 |
+
class_labels = self.time_proj(class_labels)
|
477 |
+
|
478 |
+
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
479 |
+
emb = emb + class_emb
|
480 |
+
|
481 |
+
# pre-process
|
482 |
+
sample = self.conv_in(sample)
|
483 |
+
if pose_cond_fea is not None:
|
484 |
+
sample = sample + pose_cond_fea
|
485 |
+
|
486 |
+
# down
|
487 |
+
down_block_res_samples = (sample,)
|
488 |
+
for downsample_block in self.down_blocks:
|
489 |
+
if (
|
490 |
+
hasattr(downsample_block, "has_cross_attention")
|
491 |
+
and downsample_block.has_cross_attention
|
492 |
+
):
|
493 |
+
sample, res_samples = downsample_block(
|
494 |
+
hidden_states=sample,
|
495 |
+
temb=emb,
|
496 |
+
encoder_hidden_states=encoder_hidden_states,
|
497 |
+
attention_mask=attention_mask,
|
498 |
+
)
|
499 |
+
else:
|
500 |
+
sample, res_samples = downsample_block(
|
501 |
+
hidden_states=sample,
|
502 |
+
temb=emb,
|
503 |
+
encoder_hidden_states=encoder_hidden_states,
|
504 |
+
)
|
505 |
+
|
506 |
+
down_block_res_samples += res_samples
|
507 |
+
|
508 |
+
if down_block_additional_residuals is not None:
|
509 |
+
new_down_block_res_samples = ()
|
510 |
+
|
511 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
512 |
+
down_block_res_samples, down_block_additional_residuals
|
513 |
+
):
|
514 |
+
down_block_res_sample = (
|
515 |
+
down_block_res_sample + down_block_additional_residual
|
516 |
+
)
|
517 |
+
new_down_block_res_samples += (down_block_res_sample,)
|
518 |
+
|
519 |
+
down_block_res_samples = new_down_block_res_samples
|
520 |
+
|
521 |
+
# mid
|
522 |
+
sample = self.mid_block(
|
523 |
+
sample,
|
524 |
+
emb,
|
525 |
+
encoder_hidden_states=encoder_hidden_states,
|
526 |
+
attention_mask=attention_mask,
|
527 |
+
)
|
528 |
+
|
529 |
+
if mid_block_additional_residual is not None:
|
530 |
+
sample = sample + mid_block_additional_residual
|
531 |
+
|
532 |
+
# up
|
533 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
534 |
+
is_final_block = i == len(self.up_blocks) - 1
|
535 |
+
|
536 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
537 |
+
down_block_res_samples = down_block_res_samples[
|
538 |
+
: -len(upsample_block.resnets)
|
539 |
+
]
|
540 |
+
|
541 |
+
# if we have not reached the final block and need to forward the
|
542 |
+
# upsample size, we do it here
|
543 |
+
if not is_final_block and forward_upsample_size:
|
544 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
545 |
+
|
546 |
+
if (
|
547 |
+
hasattr(upsample_block, "has_cross_attention")
|
548 |
+
and upsample_block.has_cross_attention
|
549 |
+
):
|
550 |
+
sample = upsample_block(
|
551 |
+
hidden_states=sample,
|
552 |
+
temb=emb,
|
553 |
+
res_hidden_states_tuple=res_samples,
|
554 |
+
encoder_hidden_states=encoder_hidden_states,
|
555 |
+
upsample_size=upsample_size,
|
556 |
+
attention_mask=attention_mask,
|
557 |
+
)
|
558 |
+
else:
|
559 |
+
sample = upsample_block(
|
560 |
+
hidden_states=sample,
|
561 |
+
temb=emb,
|
562 |
+
res_hidden_states_tuple=res_samples,
|
563 |
+
upsample_size=upsample_size,
|
564 |
+
encoder_hidden_states=encoder_hidden_states,
|
565 |
+
)
|
566 |
+
|
567 |
+
# post-process
|
568 |
+
sample = self.conv_norm_out(sample)
|
569 |
+
sample = self.conv_act(sample)
|
570 |
+
sample = self.conv_out(sample)
|
571 |
+
|
572 |
+
if not return_dict:
|
573 |
+
return (sample,)
|
574 |
+
|
575 |
+
return UNet3DConditionOutput(sample=sample)
|
576 |
+
|
577 |
+
@classmethod
|
578 |
+
def from_pretrained_2d(
|
579 |
+
cls,
|
580 |
+
pretrained_model_path: PathLike,
|
581 |
+
motion_module_path: PathLike,
|
582 |
+
subfolder=None,
|
583 |
+
unet_additional_kwargs=None,
|
584 |
+
mm_zero_proj_out=False,
|
585 |
+
):
|
586 |
+
pretrained_model_path = Path(pretrained_model_path)
|
587 |
+
motion_module_path = Path(motion_module_path)
|
588 |
+
if subfolder is not None:
|
589 |
+
pretrained_model_path = pretrained_model_path.joinpath(subfolder)
|
590 |
+
logger.info(
|
591 |
+
f"loaded temporal unet's pretrained weights from {pretrained_model_path} ..."
|
592 |
+
)
|
593 |
+
|
594 |
+
config_file = pretrained_model_path / "config.json"
|
595 |
+
if not (config_file.exists() and config_file.is_file()):
|
596 |
+
raise RuntimeError(f"{config_file} does not exist or is not a file")
|
597 |
+
|
598 |
+
unet_config = cls.load_config(config_file)
|
599 |
+
unet_config["_class_name"] = cls.__name__
|
600 |
+
unet_config["down_block_types"] = [
|
601 |
+
"CrossAttnDownBlock3D",
|
602 |
+
"CrossAttnDownBlock3D",
|
603 |
+
"CrossAttnDownBlock3D",
|
604 |
+
"DownBlock3D",
|
605 |
+
]
|
606 |
+
unet_config["up_block_types"] = [
|
607 |
+
"UpBlock3D",
|
608 |
+
"CrossAttnUpBlock3D",
|
609 |
+
"CrossAttnUpBlock3D",
|
610 |
+
"CrossAttnUpBlock3D",
|
611 |
+
]
|
612 |
+
unet_config["mid_block_type"] = "UNetMidBlock3DCrossAttn"
|
613 |
+
|
614 |
+
model = cls.from_config(unet_config, **unet_additional_kwargs)
|
615 |
+
# load the vanilla weights
|
616 |
+
if pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME).exists():
|
617 |
+
logger.debug(
|
618 |
+
f"loading safeTensors weights from {pretrained_model_path} ..."
|
619 |
+
)
|
620 |
+
state_dict = load_file(
|
621 |
+
pretrained_model_path.joinpath(SAFETENSORS_WEIGHTS_NAME), device="cpu"
|
622 |
+
)
|
623 |
+
|
624 |
+
elif pretrained_model_path.joinpath(WEIGHTS_NAME).exists():
|
625 |
+
logger.debug(f"loading weights from {pretrained_model_path} ...")
|
626 |
+
state_dict = torch.load(
|
627 |
+
pretrained_model_path.joinpath(WEIGHTS_NAME),
|
628 |
+
map_location="cpu",
|
629 |
+
weights_only=True,
|
630 |
+
)
|
631 |
+
else:
|
632 |
+
raise FileNotFoundError(f"no weights file found in {pretrained_model_path}")
|
633 |
+
|
634 |
+
# load the motion module weights
|
635 |
+
if motion_module_path.exists() and motion_module_path.is_file():
|
636 |
+
if motion_module_path.suffix.lower() in [".pth", ".pt", ".ckpt"]:
|
637 |
+
logger.info(f"Load motion module params from {motion_module_path}")
|
638 |
+
motion_state_dict = torch.load(
|
639 |
+
motion_module_path, map_location="cpu", weights_only=True
|
640 |
+
)
|
641 |
+
elif motion_module_path.suffix.lower() == ".safetensors":
|
642 |
+
motion_state_dict = load_file(motion_module_path, device="cpu")
|
643 |
+
else:
|
644 |
+
raise RuntimeError(
|
645 |
+
f"unknown file format for motion module weights: {motion_module_path.suffix}"
|
646 |
+
)
|
647 |
+
if mm_zero_proj_out:
|
648 |
+
logger.info(f"Zero initialize proj_out layers in motion module...")
|
649 |
+
new_motion_state_dict = OrderedDict()
|
650 |
+
for k in motion_state_dict:
|
651 |
+
if "proj_out" in k:
|
652 |
+
continue
|
653 |
+
new_motion_state_dict[k] = motion_state_dict[k]
|
654 |
+
motion_state_dict = new_motion_state_dict
|
655 |
+
|
656 |
+
|
657 |
+
|
658 |
+
for weight_name in list(motion_state_dict.keys()):
|
659 |
+
if weight_name[-2:]== 'pe':
|
660 |
+
del motion_state_dict[weight_name]
|
661 |
+
# print(weight_name)
|
662 |
+
|
663 |
+
# merge the state dicts
|
664 |
+
state_dict.update(motion_state_dict)
|
665 |
+
|
666 |
+
# load the weights into the model
|
667 |
+
m, u = model.load_state_dict(state_dict, strict=False)
|
668 |
+
logger.debug(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
|
669 |
+
|
670 |
+
params = [
|
671 |
+
p.numel() if "temporal" in n else 0 for n, p in model.named_parameters()
|
672 |
+
]
|
673 |
+
logger.info(f"Loaded {sum(params) / 1e6}M-parameter motion module")
|
674 |
+
|
675 |
+
return model
|
musepose/models/unet_3d_blocks.py
ADDED
@@ -0,0 +1,871 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_blocks.py
|
2 |
+
|
3 |
+
import pdb
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from .motion_module import get_motion_module
|
9 |
+
|
10 |
+
# from .motion_module import get_motion_module
|
11 |
+
from .resnet import Downsample3D, ResnetBlock3D, Upsample3D
|
12 |
+
from .transformer_3d import Transformer3DModel
|
13 |
+
|
14 |
+
|
15 |
+
def get_down_block(
|
16 |
+
down_block_type,
|
17 |
+
num_layers,
|
18 |
+
in_channels,
|
19 |
+
out_channels,
|
20 |
+
temb_channels,
|
21 |
+
add_downsample,
|
22 |
+
resnet_eps,
|
23 |
+
resnet_act_fn,
|
24 |
+
attn_num_head_channels,
|
25 |
+
resnet_groups=None,
|
26 |
+
cross_attention_dim=None,
|
27 |
+
downsample_padding=None,
|
28 |
+
dual_cross_attention=False,
|
29 |
+
use_linear_projection=False,
|
30 |
+
only_cross_attention=False,
|
31 |
+
upcast_attention=False,
|
32 |
+
resnet_time_scale_shift="default",
|
33 |
+
unet_use_cross_frame_attention=None,
|
34 |
+
unet_use_temporal_attention=None,
|
35 |
+
use_inflated_groupnorm=None,
|
36 |
+
use_motion_module=None,
|
37 |
+
motion_module_type=None,
|
38 |
+
motion_module_kwargs=None,
|
39 |
+
):
|
40 |
+
down_block_type = (
|
41 |
+
down_block_type[7:]
|
42 |
+
if down_block_type.startswith("UNetRes")
|
43 |
+
else down_block_type
|
44 |
+
)
|
45 |
+
if down_block_type == "DownBlock3D":
|
46 |
+
return DownBlock3D(
|
47 |
+
num_layers=num_layers,
|
48 |
+
in_channels=in_channels,
|
49 |
+
out_channels=out_channels,
|
50 |
+
temb_channels=temb_channels,
|
51 |
+
add_downsample=add_downsample,
|
52 |
+
resnet_eps=resnet_eps,
|
53 |
+
resnet_act_fn=resnet_act_fn,
|
54 |
+
resnet_groups=resnet_groups,
|
55 |
+
downsample_padding=downsample_padding,
|
56 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
57 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
58 |
+
use_motion_module=use_motion_module,
|
59 |
+
motion_module_type=motion_module_type,
|
60 |
+
motion_module_kwargs=motion_module_kwargs,
|
61 |
+
)
|
62 |
+
elif down_block_type == "CrossAttnDownBlock3D":
|
63 |
+
if cross_attention_dim is None:
|
64 |
+
raise ValueError(
|
65 |
+
"cross_attention_dim must be specified for CrossAttnDownBlock3D"
|
66 |
+
)
|
67 |
+
return CrossAttnDownBlock3D(
|
68 |
+
num_layers=num_layers,
|
69 |
+
in_channels=in_channels,
|
70 |
+
out_channels=out_channels,
|
71 |
+
temb_channels=temb_channels,
|
72 |
+
add_downsample=add_downsample,
|
73 |
+
resnet_eps=resnet_eps,
|
74 |
+
resnet_act_fn=resnet_act_fn,
|
75 |
+
resnet_groups=resnet_groups,
|
76 |
+
downsample_padding=downsample_padding,
|
77 |
+
cross_attention_dim=cross_attention_dim,
|
78 |
+
attn_num_head_channels=attn_num_head_channels,
|
79 |
+
dual_cross_attention=dual_cross_attention,
|
80 |
+
use_linear_projection=use_linear_projection,
|
81 |
+
only_cross_attention=only_cross_attention,
|
82 |
+
upcast_attention=upcast_attention,
|
83 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
84 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
85 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
86 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
87 |
+
use_motion_module=use_motion_module,
|
88 |
+
motion_module_type=motion_module_type,
|
89 |
+
motion_module_kwargs=motion_module_kwargs,
|
90 |
+
)
|
91 |
+
raise ValueError(f"{down_block_type} does not exist.")
|
92 |
+
|
93 |
+
|
94 |
+
def get_up_block(
|
95 |
+
up_block_type,
|
96 |
+
num_layers,
|
97 |
+
in_channels,
|
98 |
+
out_channels,
|
99 |
+
prev_output_channel,
|
100 |
+
temb_channels,
|
101 |
+
add_upsample,
|
102 |
+
resnet_eps,
|
103 |
+
resnet_act_fn,
|
104 |
+
attn_num_head_channels,
|
105 |
+
resnet_groups=None,
|
106 |
+
cross_attention_dim=None,
|
107 |
+
dual_cross_attention=False,
|
108 |
+
use_linear_projection=False,
|
109 |
+
only_cross_attention=False,
|
110 |
+
upcast_attention=False,
|
111 |
+
resnet_time_scale_shift="default",
|
112 |
+
unet_use_cross_frame_attention=None,
|
113 |
+
unet_use_temporal_attention=None,
|
114 |
+
use_inflated_groupnorm=None,
|
115 |
+
use_motion_module=None,
|
116 |
+
motion_module_type=None,
|
117 |
+
motion_module_kwargs=None,
|
118 |
+
):
|
119 |
+
up_block_type = (
|
120 |
+
up_block_type[7:] if up_block_type.startswith("UNetRes") else up_block_type
|
121 |
+
)
|
122 |
+
if up_block_type == "UpBlock3D":
|
123 |
+
return UpBlock3D(
|
124 |
+
num_layers=num_layers,
|
125 |
+
in_channels=in_channels,
|
126 |
+
out_channels=out_channels,
|
127 |
+
prev_output_channel=prev_output_channel,
|
128 |
+
temb_channels=temb_channels,
|
129 |
+
add_upsample=add_upsample,
|
130 |
+
resnet_eps=resnet_eps,
|
131 |
+
resnet_act_fn=resnet_act_fn,
|
132 |
+
resnet_groups=resnet_groups,
|
133 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
134 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
135 |
+
use_motion_module=use_motion_module,
|
136 |
+
motion_module_type=motion_module_type,
|
137 |
+
motion_module_kwargs=motion_module_kwargs,
|
138 |
+
)
|
139 |
+
elif up_block_type == "CrossAttnUpBlock3D":
|
140 |
+
if cross_attention_dim is None:
|
141 |
+
raise ValueError(
|
142 |
+
"cross_attention_dim must be specified for CrossAttnUpBlock3D"
|
143 |
+
)
|
144 |
+
return CrossAttnUpBlock3D(
|
145 |
+
num_layers=num_layers,
|
146 |
+
in_channels=in_channels,
|
147 |
+
out_channels=out_channels,
|
148 |
+
prev_output_channel=prev_output_channel,
|
149 |
+
temb_channels=temb_channels,
|
150 |
+
add_upsample=add_upsample,
|
151 |
+
resnet_eps=resnet_eps,
|
152 |
+
resnet_act_fn=resnet_act_fn,
|
153 |
+
resnet_groups=resnet_groups,
|
154 |
+
cross_attention_dim=cross_attention_dim,
|
155 |
+
attn_num_head_channels=attn_num_head_channels,
|
156 |
+
dual_cross_attention=dual_cross_attention,
|
157 |
+
use_linear_projection=use_linear_projection,
|
158 |
+
only_cross_attention=only_cross_attention,
|
159 |
+
upcast_attention=upcast_attention,
|
160 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
161 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
162 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
163 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
164 |
+
use_motion_module=use_motion_module,
|
165 |
+
motion_module_type=motion_module_type,
|
166 |
+
motion_module_kwargs=motion_module_kwargs,
|
167 |
+
)
|
168 |
+
raise ValueError(f"{up_block_type} does not exist.")
|
169 |
+
|
170 |
+
|
171 |
+
class UNetMidBlock3DCrossAttn(nn.Module):
|
172 |
+
def __init__(
|
173 |
+
self,
|
174 |
+
in_channels: int,
|
175 |
+
temb_channels: int,
|
176 |
+
dropout: float = 0.0,
|
177 |
+
num_layers: int = 1,
|
178 |
+
resnet_eps: float = 1e-6,
|
179 |
+
resnet_time_scale_shift: str = "default",
|
180 |
+
resnet_act_fn: str = "swish",
|
181 |
+
resnet_groups: int = 32,
|
182 |
+
resnet_pre_norm: bool = True,
|
183 |
+
attn_num_head_channels=1,
|
184 |
+
output_scale_factor=1.0,
|
185 |
+
cross_attention_dim=1280,
|
186 |
+
dual_cross_attention=False,
|
187 |
+
use_linear_projection=False,
|
188 |
+
upcast_attention=False,
|
189 |
+
unet_use_cross_frame_attention=None,
|
190 |
+
unet_use_temporal_attention=None,
|
191 |
+
use_inflated_groupnorm=None,
|
192 |
+
use_motion_module=None,
|
193 |
+
motion_module_type=None,
|
194 |
+
motion_module_kwargs=None,
|
195 |
+
):
|
196 |
+
super().__init__()
|
197 |
+
|
198 |
+
self.has_cross_attention = True
|
199 |
+
self.attn_num_head_channels = attn_num_head_channels
|
200 |
+
resnet_groups = (
|
201 |
+
resnet_groups if resnet_groups is not None else min(in_channels // 4, 32)
|
202 |
+
)
|
203 |
+
|
204 |
+
# there is always at least one resnet
|
205 |
+
resnets = [
|
206 |
+
ResnetBlock3D(
|
207 |
+
in_channels=in_channels,
|
208 |
+
out_channels=in_channels,
|
209 |
+
temb_channels=temb_channels,
|
210 |
+
eps=resnet_eps,
|
211 |
+
groups=resnet_groups,
|
212 |
+
dropout=dropout,
|
213 |
+
time_embedding_norm=resnet_time_scale_shift,
|
214 |
+
non_linearity=resnet_act_fn,
|
215 |
+
output_scale_factor=output_scale_factor,
|
216 |
+
pre_norm=resnet_pre_norm,
|
217 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
218 |
+
)
|
219 |
+
]
|
220 |
+
attentions = []
|
221 |
+
motion_modules = []
|
222 |
+
|
223 |
+
for _ in range(num_layers):
|
224 |
+
if dual_cross_attention:
|
225 |
+
raise NotImplementedError
|
226 |
+
attentions.append(
|
227 |
+
Transformer3DModel(
|
228 |
+
attn_num_head_channels,
|
229 |
+
in_channels // attn_num_head_channels,
|
230 |
+
in_channels=in_channels,
|
231 |
+
num_layers=1,
|
232 |
+
cross_attention_dim=cross_attention_dim,
|
233 |
+
norm_num_groups=resnet_groups,
|
234 |
+
use_linear_projection=use_linear_projection,
|
235 |
+
upcast_attention=upcast_attention,
|
236 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
237 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
238 |
+
)
|
239 |
+
)
|
240 |
+
motion_modules.append(
|
241 |
+
get_motion_module(
|
242 |
+
in_channels=in_channels,
|
243 |
+
motion_module_type=motion_module_type,
|
244 |
+
motion_module_kwargs=motion_module_kwargs,
|
245 |
+
)
|
246 |
+
if use_motion_module
|
247 |
+
else None
|
248 |
+
)
|
249 |
+
resnets.append(
|
250 |
+
ResnetBlock3D(
|
251 |
+
in_channels=in_channels,
|
252 |
+
out_channels=in_channels,
|
253 |
+
temb_channels=temb_channels,
|
254 |
+
eps=resnet_eps,
|
255 |
+
groups=resnet_groups,
|
256 |
+
dropout=dropout,
|
257 |
+
time_embedding_norm=resnet_time_scale_shift,
|
258 |
+
non_linearity=resnet_act_fn,
|
259 |
+
output_scale_factor=output_scale_factor,
|
260 |
+
pre_norm=resnet_pre_norm,
|
261 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
262 |
+
)
|
263 |
+
)
|
264 |
+
|
265 |
+
self.attentions = nn.ModuleList(attentions)
|
266 |
+
self.resnets = nn.ModuleList(resnets)
|
267 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
268 |
+
|
269 |
+
def forward(
|
270 |
+
self,
|
271 |
+
hidden_states,
|
272 |
+
temb=None,
|
273 |
+
encoder_hidden_states=None,
|
274 |
+
attention_mask=None,
|
275 |
+
):
|
276 |
+
hidden_states = self.resnets[0](hidden_states, temb)
|
277 |
+
for attn, resnet, motion_module in zip(
|
278 |
+
self.attentions, self.resnets[1:], self.motion_modules
|
279 |
+
):
|
280 |
+
hidden_states = attn(
|
281 |
+
hidden_states,
|
282 |
+
encoder_hidden_states=encoder_hidden_states,
|
283 |
+
).sample
|
284 |
+
hidden_states = (
|
285 |
+
motion_module(
|
286 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
287 |
+
)
|
288 |
+
if motion_module is not None
|
289 |
+
else hidden_states
|
290 |
+
)
|
291 |
+
hidden_states = resnet(hidden_states, temb)
|
292 |
+
|
293 |
+
return hidden_states
|
294 |
+
|
295 |
+
|
296 |
+
class CrossAttnDownBlock3D(nn.Module):
|
297 |
+
def __init__(
|
298 |
+
self,
|
299 |
+
in_channels: int,
|
300 |
+
out_channels: int,
|
301 |
+
temb_channels: int,
|
302 |
+
dropout: float = 0.0,
|
303 |
+
num_layers: int = 1,
|
304 |
+
resnet_eps: float = 1e-6,
|
305 |
+
resnet_time_scale_shift: str = "default",
|
306 |
+
resnet_act_fn: str = "swish",
|
307 |
+
resnet_groups: int = 32,
|
308 |
+
resnet_pre_norm: bool = True,
|
309 |
+
attn_num_head_channels=1,
|
310 |
+
cross_attention_dim=1280,
|
311 |
+
output_scale_factor=1.0,
|
312 |
+
downsample_padding=1,
|
313 |
+
add_downsample=True,
|
314 |
+
dual_cross_attention=False,
|
315 |
+
use_linear_projection=False,
|
316 |
+
only_cross_attention=False,
|
317 |
+
upcast_attention=False,
|
318 |
+
unet_use_cross_frame_attention=None,
|
319 |
+
unet_use_temporal_attention=None,
|
320 |
+
use_inflated_groupnorm=None,
|
321 |
+
use_motion_module=None,
|
322 |
+
motion_module_type=None,
|
323 |
+
motion_module_kwargs=None,
|
324 |
+
):
|
325 |
+
super().__init__()
|
326 |
+
resnets = []
|
327 |
+
attentions = []
|
328 |
+
motion_modules = []
|
329 |
+
|
330 |
+
self.has_cross_attention = True
|
331 |
+
self.attn_num_head_channels = attn_num_head_channels
|
332 |
+
|
333 |
+
for i in range(num_layers):
|
334 |
+
in_channels = in_channels if i == 0 else out_channels
|
335 |
+
resnets.append(
|
336 |
+
ResnetBlock3D(
|
337 |
+
in_channels=in_channels,
|
338 |
+
out_channels=out_channels,
|
339 |
+
temb_channels=temb_channels,
|
340 |
+
eps=resnet_eps,
|
341 |
+
groups=resnet_groups,
|
342 |
+
dropout=dropout,
|
343 |
+
time_embedding_norm=resnet_time_scale_shift,
|
344 |
+
non_linearity=resnet_act_fn,
|
345 |
+
output_scale_factor=output_scale_factor,
|
346 |
+
pre_norm=resnet_pre_norm,
|
347 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
348 |
+
)
|
349 |
+
)
|
350 |
+
if dual_cross_attention:
|
351 |
+
raise NotImplementedError
|
352 |
+
attentions.append(
|
353 |
+
Transformer3DModel(
|
354 |
+
attn_num_head_channels,
|
355 |
+
out_channels // attn_num_head_channels,
|
356 |
+
in_channels=out_channels,
|
357 |
+
num_layers=1,
|
358 |
+
cross_attention_dim=cross_attention_dim,
|
359 |
+
norm_num_groups=resnet_groups,
|
360 |
+
use_linear_projection=use_linear_projection,
|
361 |
+
only_cross_attention=only_cross_attention,
|
362 |
+
upcast_attention=upcast_attention,
|
363 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
364 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
365 |
+
)
|
366 |
+
)
|
367 |
+
motion_modules.append(
|
368 |
+
get_motion_module(
|
369 |
+
in_channels=out_channels,
|
370 |
+
motion_module_type=motion_module_type,
|
371 |
+
motion_module_kwargs=motion_module_kwargs,
|
372 |
+
)
|
373 |
+
if use_motion_module
|
374 |
+
else None
|
375 |
+
)
|
376 |
+
|
377 |
+
self.attentions = nn.ModuleList(attentions)
|
378 |
+
self.resnets = nn.ModuleList(resnets)
|
379 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
380 |
+
|
381 |
+
if add_downsample:
|
382 |
+
self.downsamplers = nn.ModuleList(
|
383 |
+
[
|
384 |
+
Downsample3D(
|
385 |
+
out_channels,
|
386 |
+
use_conv=True,
|
387 |
+
out_channels=out_channels,
|
388 |
+
padding=downsample_padding,
|
389 |
+
name="op",
|
390 |
+
)
|
391 |
+
]
|
392 |
+
)
|
393 |
+
else:
|
394 |
+
self.downsamplers = None
|
395 |
+
|
396 |
+
self.gradient_checkpointing = False
|
397 |
+
|
398 |
+
def forward(
|
399 |
+
self,
|
400 |
+
hidden_states,
|
401 |
+
temb=None,
|
402 |
+
encoder_hidden_states=None,
|
403 |
+
attention_mask=None,
|
404 |
+
):
|
405 |
+
output_states = ()
|
406 |
+
|
407 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
408 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
409 |
+
):
|
410 |
+
# self.gradient_checkpointing = False
|
411 |
+
if self.training and self.gradient_checkpointing:
|
412 |
+
|
413 |
+
def create_custom_forward(module, return_dict=None):
|
414 |
+
def custom_forward(*inputs):
|
415 |
+
if return_dict is not None:
|
416 |
+
return module(*inputs, return_dict=return_dict)
|
417 |
+
else:
|
418 |
+
return module(*inputs)
|
419 |
+
|
420 |
+
return custom_forward
|
421 |
+
|
422 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
423 |
+
create_custom_forward(resnet), hidden_states, temb
|
424 |
+
)
|
425 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
426 |
+
create_custom_forward(attn, return_dict=False),
|
427 |
+
hidden_states,
|
428 |
+
encoder_hidden_states,
|
429 |
+
)[0]
|
430 |
+
|
431 |
+
# add motion module
|
432 |
+
if motion_module is not None:
|
433 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
434 |
+
create_custom_forward(motion_module),
|
435 |
+
hidden_states.requires_grad_(),
|
436 |
+
temb,
|
437 |
+
encoder_hidden_states,
|
438 |
+
)
|
439 |
+
|
440 |
+
# # add motion module
|
441 |
+
# hidden_states = (
|
442 |
+
# motion_module(
|
443 |
+
# hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
444 |
+
# )
|
445 |
+
# if motion_module is not None
|
446 |
+
# else hidden_states
|
447 |
+
# )
|
448 |
+
|
449 |
+
else:
|
450 |
+
hidden_states = resnet(hidden_states, temb)
|
451 |
+
hidden_states = attn(
|
452 |
+
hidden_states,
|
453 |
+
encoder_hidden_states=encoder_hidden_states,
|
454 |
+
).sample
|
455 |
+
|
456 |
+
# add motion module
|
457 |
+
hidden_states = (
|
458 |
+
motion_module(
|
459 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
460 |
+
)
|
461 |
+
if motion_module is not None
|
462 |
+
else hidden_states
|
463 |
+
)
|
464 |
+
|
465 |
+
output_states += (hidden_states,)
|
466 |
+
|
467 |
+
if self.downsamplers is not None:
|
468 |
+
for downsampler in self.downsamplers:
|
469 |
+
hidden_states = downsampler(hidden_states)
|
470 |
+
|
471 |
+
output_states += (hidden_states,)
|
472 |
+
|
473 |
+
return hidden_states, output_states
|
474 |
+
|
475 |
+
|
476 |
+
class DownBlock3D(nn.Module):
|
477 |
+
def __init__(
|
478 |
+
self,
|
479 |
+
in_channels: int,
|
480 |
+
out_channels: int,
|
481 |
+
temb_channels: int,
|
482 |
+
dropout: float = 0.0,
|
483 |
+
num_layers: int = 1,
|
484 |
+
resnet_eps: float = 1e-6,
|
485 |
+
resnet_time_scale_shift: str = "default",
|
486 |
+
resnet_act_fn: str = "swish",
|
487 |
+
resnet_groups: int = 32,
|
488 |
+
resnet_pre_norm: bool = True,
|
489 |
+
output_scale_factor=1.0,
|
490 |
+
add_downsample=True,
|
491 |
+
downsample_padding=1,
|
492 |
+
use_inflated_groupnorm=None,
|
493 |
+
use_motion_module=None,
|
494 |
+
motion_module_type=None,
|
495 |
+
motion_module_kwargs=None,
|
496 |
+
):
|
497 |
+
super().__init__()
|
498 |
+
resnets = []
|
499 |
+
motion_modules = []
|
500 |
+
|
501 |
+
# use_motion_module = False
|
502 |
+
for i in range(num_layers):
|
503 |
+
in_channels = in_channels if i == 0 else out_channels
|
504 |
+
resnets.append(
|
505 |
+
ResnetBlock3D(
|
506 |
+
in_channels=in_channels,
|
507 |
+
out_channels=out_channels,
|
508 |
+
temb_channels=temb_channels,
|
509 |
+
eps=resnet_eps,
|
510 |
+
groups=resnet_groups,
|
511 |
+
dropout=dropout,
|
512 |
+
time_embedding_norm=resnet_time_scale_shift,
|
513 |
+
non_linearity=resnet_act_fn,
|
514 |
+
output_scale_factor=output_scale_factor,
|
515 |
+
pre_norm=resnet_pre_norm,
|
516 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
517 |
+
)
|
518 |
+
)
|
519 |
+
motion_modules.append(
|
520 |
+
get_motion_module(
|
521 |
+
in_channels=out_channels,
|
522 |
+
motion_module_type=motion_module_type,
|
523 |
+
motion_module_kwargs=motion_module_kwargs,
|
524 |
+
)
|
525 |
+
if use_motion_module
|
526 |
+
else None
|
527 |
+
)
|
528 |
+
|
529 |
+
self.resnets = nn.ModuleList(resnets)
|
530 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
531 |
+
|
532 |
+
if add_downsample:
|
533 |
+
self.downsamplers = nn.ModuleList(
|
534 |
+
[
|
535 |
+
Downsample3D(
|
536 |
+
out_channels,
|
537 |
+
use_conv=True,
|
538 |
+
out_channels=out_channels,
|
539 |
+
padding=downsample_padding,
|
540 |
+
name="op",
|
541 |
+
)
|
542 |
+
]
|
543 |
+
)
|
544 |
+
else:
|
545 |
+
self.downsamplers = None
|
546 |
+
|
547 |
+
self.gradient_checkpointing = False
|
548 |
+
|
549 |
+
def forward(self, hidden_states, temb=None, encoder_hidden_states=None):
|
550 |
+
output_states = ()
|
551 |
+
|
552 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
553 |
+
# print(f"DownBlock3D {self.gradient_checkpointing = }")
|
554 |
+
if self.training and self.gradient_checkpointing:
|
555 |
+
|
556 |
+
def create_custom_forward(module):
|
557 |
+
def custom_forward(*inputs):
|
558 |
+
return module(*inputs)
|
559 |
+
|
560 |
+
return custom_forward
|
561 |
+
|
562 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
563 |
+
create_custom_forward(resnet), hidden_states, temb
|
564 |
+
)
|
565 |
+
if motion_module is not None:
|
566 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
567 |
+
create_custom_forward(motion_module),
|
568 |
+
hidden_states.requires_grad_(),
|
569 |
+
temb,
|
570 |
+
encoder_hidden_states,
|
571 |
+
)
|
572 |
+
else:
|
573 |
+
hidden_states = resnet(hidden_states, temb)
|
574 |
+
|
575 |
+
# add motion module
|
576 |
+
hidden_states = (
|
577 |
+
motion_module(
|
578 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
579 |
+
)
|
580 |
+
if motion_module is not None
|
581 |
+
else hidden_states
|
582 |
+
)
|
583 |
+
|
584 |
+
output_states += (hidden_states,)
|
585 |
+
|
586 |
+
if self.downsamplers is not None:
|
587 |
+
for downsampler in self.downsamplers:
|
588 |
+
hidden_states = downsampler(hidden_states)
|
589 |
+
|
590 |
+
output_states += (hidden_states,)
|
591 |
+
|
592 |
+
return hidden_states, output_states
|
593 |
+
|
594 |
+
|
595 |
+
class CrossAttnUpBlock3D(nn.Module):
|
596 |
+
def __init__(
|
597 |
+
self,
|
598 |
+
in_channels: int,
|
599 |
+
out_channels: int,
|
600 |
+
prev_output_channel: int,
|
601 |
+
temb_channels: int,
|
602 |
+
dropout: float = 0.0,
|
603 |
+
num_layers: int = 1,
|
604 |
+
resnet_eps: float = 1e-6,
|
605 |
+
resnet_time_scale_shift: str = "default",
|
606 |
+
resnet_act_fn: str = "swish",
|
607 |
+
resnet_groups: int = 32,
|
608 |
+
resnet_pre_norm: bool = True,
|
609 |
+
attn_num_head_channels=1,
|
610 |
+
cross_attention_dim=1280,
|
611 |
+
output_scale_factor=1.0,
|
612 |
+
add_upsample=True,
|
613 |
+
dual_cross_attention=False,
|
614 |
+
use_linear_projection=False,
|
615 |
+
only_cross_attention=False,
|
616 |
+
upcast_attention=False,
|
617 |
+
unet_use_cross_frame_attention=None,
|
618 |
+
unet_use_temporal_attention=None,
|
619 |
+
use_motion_module=None,
|
620 |
+
use_inflated_groupnorm=None,
|
621 |
+
motion_module_type=None,
|
622 |
+
motion_module_kwargs=None,
|
623 |
+
):
|
624 |
+
super().__init__()
|
625 |
+
resnets = []
|
626 |
+
attentions = []
|
627 |
+
motion_modules = []
|
628 |
+
|
629 |
+
self.has_cross_attention = True
|
630 |
+
self.attn_num_head_channels = attn_num_head_channels
|
631 |
+
|
632 |
+
for i in range(num_layers):
|
633 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
634 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
635 |
+
|
636 |
+
resnets.append(
|
637 |
+
ResnetBlock3D(
|
638 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
639 |
+
out_channels=out_channels,
|
640 |
+
temb_channels=temb_channels,
|
641 |
+
eps=resnet_eps,
|
642 |
+
groups=resnet_groups,
|
643 |
+
dropout=dropout,
|
644 |
+
time_embedding_norm=resnet_time_scale_shift,
|
645 |
+
non_linearity=resnet_act_fn,
|
646 |
+
output_scale_factor=output_scale_factor,
|
647 |
+
pre_norm=resnet_pre_norm,
|
648 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
649 |
+
)
|
650 |
+
)
|
651 |
+
if dual_cross_attention:
|
652 |
+
raise NotImplementedError
|
653 |
+
attentions.append(
|
654 |
+
Transformer3DModel(
|
655 |
+
attn_num_head_channels,
|
656 |
+
out_channels // attn_num_head_channels,
|
657 |
+
in_channels=out_channels,
|
658 |
+
num_layers=1,
|
659 |
+
cross_attention_dim=cross_attention_dim,
|
660 |
+
norm_num_groups=resnet_groups,
|
661 |
+
use_linear_projection=use_linear_projection,
|
662 |
+
only_cross_attention=only_cross_attention,
|
663 |
+
upcast_attention=upcast_attention,
|
664 |
+
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
|
665 |
+
unet_use_temporal_attention=unet_use_temporal_attention,
|
666 |
+
)
|
667 |
+
)
|
668 |
+
motion_modules.append(
|
669 |
+
get_motion_module(
|
670 |
+
in_channels=out_channels,
|
671 |
+
motion_module_type=motion_module_type,
|
672 |
+
motion_module_kwargs=motion_module_kwargs,
|
673 |
+
)
|
674 |
+
if use_motion_module
|
675 |
+
else None
|
676 |
+
)
|
677 |
+
|
678 |
+
self.attentions = nn.ModuleList(attentions)
|
679 |
+
self.resnets = nn.ModuleList(resnets)
|
680 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
681 |
+
|
682 |
+
if add_upsample:
|
683 |
+
self.upsamplers = nn.ModuleList(
|
684 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
685 |
+
)
|
686 |
+
else:
|
687 |
+
self.upsamplers = None
|
688 |
+
|
689 |
+
self.gradient_checkpointing = False
|
690 |
+
|
691 |
+
def forward(
|
692 |
+
self,
|
693 |
+
hidden_states,
|
694 |
+
res_hidden_states_tuple,
|
695 |
+
temb=None,
|
696 |
+
encoder_hidden_states=None,
|
697 |
+
upsample_size=None,
|
698 |
+
attention_mask=None,
|
699 |
+
):
|
700 |
+
for i, (resnet, attn, motion_module) in enumerate(
|
701 |
+
zip(self.resnets, self.attentions, self.motion_modules)
|
702 |
+
):
|
703 |
+
# pop res hidden states
|
704 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
705 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
706 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
707 |
+
|
708 |
+
if self.training and self.gradient_checkpointing:
|
709 |
+
|
710 |
+
def create_custom_forward(module, return_dict=None):
|
711 |
+
def custom_forward(*inputs):
|
712 |
+
if return_dict is not None:
|
713 |
+
return module(*inputs, return_dict=return_dict)
|
714 |
+
else:
|
715 |
+
return module(*inputs)
|
716 |
+
|
717 |
+
return custom_forward
|
718 |
+
|
719 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
720 |
+
create_custom_forward(resnet), hidden_states, temb
|
721 |
+
)
|
722 |
+
hidden_states = attn(
|
723 |
+
hidden_states,
|
724 |
+
encoder_hidden_states=encoder_hidden_states,
|
725 |
+
).sample
|
726 |
+
if motion_module is not None:
|
727 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
728 |
+
create_custom_forward(motion_module),
|
729 |
+
hidden_states.requires_grad_(),
|
730 |
+
temb,
|
731 |
+
encoder_hidden_states,
|
732 |
+
)
|
733 |
+
|
734 |
+
else:
|
735 |
+
hidden_states = resnet(hidden_states, temb)
|
736 |
+
hidden_states = attn(
|
737 |
+
hidden_states,
|
738 |
+
encoder_hidden_states=encoder_hidden_states,
|
739 |
+
).sample
|
740 |
+
|
741 |
+
# add motion module
|
742 |
+
hidden_states = (
|
743 |
+
motion_module(
|
744 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
745 |
+
)
|
746 |
+
if motion_module is not None
|
747 |
+
else hidden_states
|
748 |
+
)
|
749 |
+
|
750 |
+
if self.upsamplers is not None:
|
751 |
+
for upsampler in self.upsamplers:
|
752 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
753 |
+
|
754 |
+
return hidden_states
|
755 |
+
|
756 |
+
|
757 |
+
class UpBlock3D(nn.Module):
|
758 |
+
def __init__(
|
759 |
+
self,
|
760 |
+
in_channels: int,
|
761 |
+
prev_output_channel: int,
|
762 |
+
out_channels: int,
|
763 |
+
temb_channels: int,
|
764 |
+
dropout: float = 0.0,
|
765 |
+
num_layers: int = 1,
|
766 |
+
resnet_eps: float = 1e-6,
|
767 |
+
resnet_time_scale_shift: str = "default",
|
768 |
+
resnet_act_fn: str = "swish",
|
769 |
+
resnet_groups: int = 32,
|
770 |
+
resnet_pre_norm: bool = True,
|
771 |
+
output_scale_factor=1.0,
|
772 |
+
add_upsample=True,
|
773 |
+
use_inflated_groupnorm=None,
|
774 |
+
use_motion_module=None,
|
775 |
+
motion_module_type=None,
|
776 |
+
motion_module_kwargs=None,
|
777 |
+
):
|
778 |
+
super().__init__()
|
779 |
+
resnets = []
|
780 |
+
motion_modules = []
|
781 |
+
|
782 |
+
# use_motion_module = False
|
783 |
+
for i in range(num_layers):
|
784 |
+
res_skip_channels = in_channels if (i == num_layers - 1) else out_channels
|
785 |
+
resnet_in_channels = prev_output_channel if i == 0 else out_channels
|
786 |
+
|
787 |
+
resnets.append(
|
788 |
+
ResnetBlock3D(
|
789 |
+
in_channels=resnet_in_channels + res_skip_channels,
|
790 |
+
out_channels=out_channels,
|
791 |
+
temb_channels=temb_channels,
|
792 |
+
eps=resnet_eps,
|
793 |
+
groups=resnet_groups,
|
794 |
+
dropout=dropout,
|
795 |
+
time_embedding_norm=resnet_time_scale_shift,
|
796 |
+
non_linearity=resnet_act_fn,
|
797 |
+
output_scale_factor=output_scale_factor,
|
798 |
+
pre_norm=resnet_pre_norm,
|
799 |
+
use_inflated_groupnorm=use_inflated_groupnorm,
|
800 |
+
)
|
801 |
+
)
|
802 |
+
motion_modules.append(
|
803 |
+
get_motion_module(
|
804 |
+
in_channels=out_channels,
|
805 |
+
motion_module_type=motion_module_type,
|
806 |
+
motion_module_kwargs=motion_module_kwargs,
|
807 |
+
)
|
808 |
+
if use_motion_module
|
809 |
+
else None
|
810 |
+
)
|
811 |
+
|
812 |
+
self.resnets = nn.ModuleList(resnets)
|
813 |
+
self.motion_modules = nn.ModuleList(motion_modules)
|
814 |
+
|
815 |
+
if add_upsample:
|
816 |
+
self.upsamplers = nn.ModuleList(
|
817 |
+
[Upsample3D(out_channels, use_conv=True, out_channels=out_channels)]
|
818 |
+
)
|
819 |
+
else:
|
820 |
+
self.upsamplers = None
|
821 |
+
|
822 |
+
self.gradient_checkpointing = False
|
823 |
+
|
824 |
+
def forward(
|
825 |
+
self,
|
826 |
+
hidden_states,
|
827 |
+
res_hidden_states_tuple,
|
828 |
+
temb=None,
|
829 |
+
upsample_size=None,
|
830 |
+
encoder_hidden_states=None,
|
831 |
+
):
|
832 |
+
for resnet, motion_module in zip(self.resnets, self.motion_modules):
|
833 |
+
# pop res hidden states
|
834 |
+
res_hidden_states = res_hidden_states_tuple[-1]
|
835 |
+
res_hidden_states_tuple = res_hidden_states_tuple[:-1]
|
836 |
+
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1)
|
837 |
+
|
838 |
+
# print(f"UpBlock3D {self.gradient_checkpointing = }")
|
839 |
+
if self.training and self.gradient_checkpointing:
|
840 |
+
|
841 |
+
def create_custom_forward(module):
|
842 |
+
def custom_forward(*inputs):
|
843 |
+
return module(*inputs)
|
844 |
+
|
845 |
+
return custom_forward
|
846 |
+
|
847 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
848 |
+
create_custom_forward(resnet), hidden_states, temb
|
849 |
+
)
|
850 |
+
if motion_module is not None:
|
851 |
+
hidden_states = torch.utils.checkpoint.checkpoint(
|
852 |
+
create_custom_forward(motion_module),
|
853 |
+
hidden_states.requires_grad_(),
|
854 |
+
temb,
|
855 |
+
encoder_hidden_states,
|
856 |
+
)
|
857 |
+
else:
|
858 |
+
hidden_states = resnet(hidden_states, temb)
|
859 |
+
hidden_states = (
|
860 |
+
motion_module(
|
861 |
+
hidden_states, temb, encoder_hidden_states=encoder_hidden_states
|
862 |
+
)
|
863 |
+
if motion_module is not None
|
864 |
+
else hidden_states
|
865 |
+
)
|
866 |
+
|
867 |
+
if self.upsamplers is not None:
|
868 |
+
for upsampler in self.upsamplers:
|
869 |
+
hidden_states = upsampler(hidden_states, upsample_size)
|
870 |
+
|
871 |
+
return hidden_states
|
musepose/pipelines/__init__.py
ADDED
File without changes
|
musepose/pipelines/context.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: Adapted from cli
|
2 |
+
from typing import Callable, List, Optional
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def ordered_halving(val):
|
8 |
+
bin_str = f"{val:064b}"
|
9 |
+
bin_flip = bin_str[::-1]
|
10 |
+
as_int = int(bin_flip, 2)
|
11 |
+
|
12 |
+
return as_int / (1 << 64)
|
13 |
+
|
14 |
+
|
15 |
+
def uniform(
|
16 |
+
step: int = ...,
|
17 |
+
num_steps: Optional[int] = None,
|
18 |
+
num_frames: int = ...,
|
19 |
+
context_size: Optional[int] = None,
|
20 |
+
context_stride: int = 3,
|
21 |
+
context_overlap: int = 4,
|
22 |
+
closed_loop: bool = False,
|
23 |
+
):
|
24 |
+
if num_frames <= context_size:
|
25 |
+
yield list(range(num_frames))
|
26 |
+
return
|
27 |
+
|
28 |
+
context_stride = min(
|
29 |
+
context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1
|
30 |
+
)
|
31 |
+
|
32 |
+
for context_step in 1 << np.arange(context_stride):
|
33 |
+
pad = int(round(num_frames * ordered_halving(step)))
|
34 |
+
for j in range(
|
35 |
+
int(ordered_halving(step) * context_step) + pad,
|
36 |
+
num_frames + pad + (0 if closed_loop else -context_overlap),
|
37 |
+
(context_size * context_step - context_overlap),
|
38 |
+
):
|
39 |
+
yield [
|
40 |
+
e % num_frames
|
41 |
+
for e in range(j, j + context_size * context_step, context_step)
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
def get_context_scheduler(name: str) -> Callable:
|
46 |
+
if name == "uniform":
|
47 |
+
return uniform
|
48 |
+
else:
|
49 |
+
raise ValueError(f"Unknown context_overlap policy {name}")
|
50 |
+
|
51 |
+
|
52 |
+
def get_total_steps(
|
53 |
+
scheduler,
|
54 |
+
timesteps: List[int],
|
55 |
+
num_steps: Optional[int] = None,
|
56 |
+
num_frames: int = ...,
|
57 |
+
context_size: Optional[int] = None,
|
58 |
+
context_stride: int = 3,
|
59 |
+
context_overlap: int = 4,
|
60 |
+
closed_loop: bool = True,
|
61 |
+
):
|
62 |
+
return sum(
|
63 |
+
len(
|
64 |
+
list(
|
65 |
+
scheduler(
|
66 |
+
i,
|
67 |
+
num_steps,
|
68 |
+
num_frames,
|
69 |
+
context_size,
|
70 |
+
context_stride,
|
71 |
+
context_overlap,
|
72 |
+
)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
for i in range(len(timesteps))
|
76 |
+
)
|
musepose/pipelines/pipeline_pose2img.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from diffusers.schedulers import (
|
10 |
+
DDIMScheduler,
|
11 |
+
DPMSolverMultistepScheduler,
|
12 |
+
EulerAncestralDiscreteScheduler,
|
13 |
+
EulerDiscreteScheduler,
|
14 |
+
LMSDiscreteScheduler,
|
15 |
+
PNDMScheduler,
|
16 |
+
)
|
17 |
+
from diffusers.utils import BaseOutput, is_accelerate_available
|
18 |
+
from diffusers.utils.torch_utils import randn_tensor
|
19 |
+
from einops import rearrange
|
20 |
+
from tqdm import tqdm
|
21 |
+
from transformers import CLIPImageProcessor
|
22 |
+
|
23 |
+
from musepose.models.mutual_self_attention import ReferenceAttentionControl
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class Pose2ImagePipelineOutput(BaseOutput):
|
28 |
+
images: Union[torch.Tensor, np.ndarray]
|
29 |
+
|
30 |
+
|
31 |
+
class Pose2ImagePipeline(DiffusionPipeline):
|
32 |
+
_optional_components = []
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
vae,
|
37 |
+
image_encoder,
|
38 |
+
reference_unet,
|
39 |
+
denoising_unet,
|
40 |
+
pose_guider,
|
41 |
+
scheduler: Union[
|
42 |
+
DDIMScheduler,
|
43 |
+
PNDMScheduler,
|
44 |
+
LMSDiscreteScheduler,
|
45 |
+
EulerDiscreteScheduler,
|
46 |
+
EulerAncestralDiscreteScheduler,
|
47 |
+
DPMSolverMultistepScheduler,
|
48 |
+
],
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.register_modules(
|
53 |
+
vae=vae,
|
54 |
+
image_encoder=image_encoder,
|
55 |
+
reference_unet=reference_unet,
|
56 |
+
denoising_unet=denoising_unet,
|
57 |
+
pose_guider=pose_guider,
|
58 |
+
scheduler=scheduler,
|
59 |
+
)
|
60 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
61 |
+
self.clip_image_processor = CLIPImageProcessor()
|
62 |
+
self.ref_image_processor = VaeImageProcessor(
|
63 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
64 |
+
)
|
65 |
+
self.cond_image_processor = VaeImageProcessor(
|
66 |
+
vae_scale_factor=self.vae_scale_factor,
|
67 |
+
do_convert_rgb=True,
|
68 |
+
do_normalize=False,
|
69 |
+
)
|
70 |
+
|
71 |
+
def enable_vae_slicing(self):
|
72 |
+
self.vae.enable_slicing()
|
73 |
+
|
74 |
+
def disable_vae_slicing(self):
|
75 |
+
self.vae.disable_slicing()
|
76 |
+
|
77 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
78 |
+
if is_accelerate_available():
|
79 |
+
from accelerate import cpu_offload
|
80 |
+
else:
|
81 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
82 |
+
|
83 |
+
device = torch.device(f"cuda:{gpu_id}")
|
84 |
+
|
85 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
86 |
+
if cpu_offloaded_model is not None:
|
87 |
+
cpu_offload(cpu_offloaded_model, device)
|
88 |
+
|
89 |
+
@property
|
90 |
+
def _execution_device(self):
|
91 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
92 |
+
return self.device
|
93 |
+
for module in self.unet.modules():
|
94 |
+
if (
|
95 |
+
hasattr(module, "_hf_hook")
|
96 |
+
and hasattr(module._hf_hook, "execution_device")
|
97 |
+
and module._hf_hook.execution_device is not None
|
98 |
+
):
|
99 |
+
return torch.device(module._hf_hook.execution_device)
|
100 |
+
return self.device
|
101 |
+
|
102 |
+
def decode_latents(self, latents):
|
103 |
+
video_length = latents.shape[2]
|
104 |
+
latents = 1 / 0.18215 * latents
|
105 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
106 |
+
# video = self.vae.decode(latents).sample
|
107 |
+
video = []
|
108 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
109 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
110 |
+
video = torch.cat(video)
|
111 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
112 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
113 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
114 |
+
video = video.cpu().float().numpy()
|
115 |
+
return video
|
116 |
+
|
117 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
118 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
119 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
120 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
121 |
+
# and should be between [0, 1]
|
122 |
+
|
123 |
+
accepts_eta = "eta" in set(
|
124 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
125 |
+
)
|
126 |
+
extra_step_kwargs = {}
|
127 |
+
if accepts_eta:
|
128 |
+
extra_step_kwargs["eta"] = eta
|
129 |
+
|
130 |
+
# check if the scheduler accepts generator
|
131 |
+
accepts_generator = "generator" in set(
|
132 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
133 |
+
)
|
134 |
+
if accepts_generator:
|
135 |
+
extra_step_kwargs["generator"] = generator
|
136 |
+
return extra_step_kwargs
|
137 |
+
|
138 |
+
def prepare_latents(
|
139 |
+
self,
|
140 |
+
batch_size,
|
141 |
+
num_channels_latents,
|
142 |
+
width,
|
143 |
+
height,
|
144 |
+
dtype,
|
145 |
+
device,
|
146 |
+
generator,
|
147 |
+
latents=None,
|
148 |
+
):
|
149 |
+
shape = (
|
150 |
+
batch_size,
|
151 |
+
num_channels_latents,
|
152 |
+
height // self.vae_scale_factor,
|
153 |
+
width // self.vae_scale_factor,
|
154 |
+
)
|
155 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
156 |
+
raise ValueError(
|
157 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
158 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
159 |
+
)
|
160 |
+
|
161 |
+
if latents is None:
|
162 |
+
latents = randn_tensor(
|
163 |
+
shape, generator=generator, device=device, dtype=dtype
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
latents = latents.to(device)
|
167 |
+
|
168 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
169 |
+
latents = latents * self.scheduler.init_noise_sigma
|
170 |
+
return latents
|
171 |
+
|
172 |
+
def prepare_condition(
|
173 |
+
self,
|
174 |
+
cond_image,
|
175 |
+
width,
|
176 |
+
height,
|
177 |
+
device,
|
178 |
+
dtype,
|
179 |
+
do_classififer_free_guidance=False,
|
180 |
+
):
|
181 |
+
image = self.cond_image_processor.preprocess(
|
182 |
+
cond_image, height=height, width=width
|
183 |
+
).to(dtype=torch.float32)
|
184 |
+
|
185 |
+
image = image.to(device=device, dtype=dtype)
|
186 |
+
|
187 |
+
if do_classififer_free_guidance:
|
188 |
+
image = torch.cat([image] * 2)
|
189 |
+
|
190 |
+
return image
|
191 |
+
|
192 |
+
@torch.no_grad()
|
193 |
+
def __call__(
|
194 |
+
self,
|
195 |
+
ref_image,
|
196 |
+
pose_image,
|
197 |
+
width,
|
198 |
+
height,
|
199 |
+
num_inference_steps,
|
200 |
+
guidance_scale,
|
201 |
+
num_images_per_prompt=1,
|
202 |
+
eta: float = 0.0,
|
203 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
204 |
+
output_type: Optional[str] = "tensor",
|
205 |
+
return_dict: bool = True,
|
206 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
207 |
+
callback_steps: Optional[int] = 1,
|
208 |
+
**kwargs,
|
209 |
+
):
|
210 |
+
# Default height and width to unet
|
211 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
212 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
213 |
+
|
214 |
+
device = self._execution_device
|
215 |
+
|
216 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
217 |
+
|
218 |
+
# Prepare timesteps
|
219 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
220 |
+
timesteps = self.scheduler.timesteps
|
221 |
+
|
222 |
+
batch_size = 1
|
223 |
+
|
224 |
+
# Prepare clip image embeds
|
225 |
+
clip_image = self.clip_image_processor.preprocess(
|
226 |
+
ref_image.resize((224, 224)), return_tensors="pt"
|
227 |
+
).pixel_values
|
228 |
+
clip_image_embeds = self.image_encoder(
|
229 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
230 |
+
).image_embeds
|
231 |
+
image_prompt_embeds = clip_image_embeds.unsqueeze(1)
|
232 |
+
uncond_image_prompt_embeds = torch.zeros_like(image_prompt_embeds)
|
233 |
+
|
234 |
+
if do_classifier_free_guidance:
|
235 |
+
image_prompt_embeds = torch.cat(
|
236 |
+
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0
|
237 |
+
)
|
238 |
+
|
239 |
+
reference_control_writer = ReferenceAttentionControl(
|
240 |
+
self.reference_unet,
|
241 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
242 |
+
mode="write",
|
243 |
+
batch_size=batch_size,
|
244 |
+
fusion_blocks="full",
|
245 |
+
)
|
246 |
+
reference_control_reader = ReferenceAttentionControl(
|
247 |
+
self.denoising_unet,
|
248 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
249 |
+
mode="read",
|
250 |
+
batch_size=batch_size,
|
251 |
+
fusion_blocks="full",
|
252 |
+
)
|
253 |
+
|
254 |
+
num_channels_latents = self.denoising_unet.in_channels
|
255 |
+
latents = self.prepare_latents(
|
256 |
+
batch_size * num_images_per_prompt,
|
257 |
+
num_channels_latents,
|
258 |
+
width,
|
259 |
+
height,
|
260 |
+
clip_image_embeds.dtype,
|
261 |
+
device,
|
262 |
+
generator,
|
263 |
+
)
|
264 |
+
latents = latents.unsqueeze(2) # (bs, c, 1, h', w')
|
265 |
+
latents_dtype = latents.dtype
|
266 |
+
|
267 |
+
# Prepare extra step kwargs.
|
268 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
269 |
+
|
270 |
+
# Prepare ref image latents
|
271 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
272 |
+
ref_image, height=height, width=width
|
273 |
+
) # (bs, c, width, height)
|
274 |
+
ref_image_tensor = ref_image_tensor.to(
|
275 |
+
dtype=self.vae.dtype, device=self.vae.device
|
276 |
+
)
|
277 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
278 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
279 |
+
|
280 |
+
# Prepare pose condition image
|
281 |
+
pose_cond_tensor = self.cond_image_processor.preprocess(
|
282 |
+
pose_image, height=height, width=width
|
283 |
+
)
|
284 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
285 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
286 |
+
device=device, dtype=self.pose_guider.dtype
|
287 |
+
)
|
288 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
289 |
+
pose_fea = (
|
290 |
+
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea
|
291 |
+
)
|
292 |
+
|
293 |
+
# denoising loop
|
294 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
295 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
296 |
+
for i, t in enumerate(timesteps):
|
297 |
+
# 1. Forward reference image
|
298 |
+
if i == 0:
|
299 |
+
self.reference_unet(
|
300 |
+
ref_image_latents.repeat(
|
301 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
302 |
+
),
|
303 |
+
torch.zeros_like(t),
|
304 |
+
encoder_hidden_states=image_prompt_embeds,
|
305 |
+
return_dict=False,
|
306 |
+
)
|
307 |
+
|
308 |
+
# 2. Update reference unet feature into denosing net
|
309 |
+
reference_control_reader.update(reference_control_writer)
|
310 |
+
|
311 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
312 |
+
latent_model_input = (
|
313 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
314 |
+
)
|
315 |
+
latent_model_input = self.scheduler.scale_model_input(
|
316 |
+
latent_model_input, t
|
317 |
+
)
|
318 |
+
|
319 |
+
noise_pred = self.denoising_unet(
|
320 |
+
latent_model_input,
|
321 |
+
t,
|
322 |
+
encoder_hidden_states=image_prompt_embeds,
|
323 |
+
pose_cond_fea=pose_fea,
|
324 |
+
return_dict=False,
|
325 |
+
)[0]
|
326 |
+
|
327 |
+
# perform guidance
|
328 |
+
if do_classifier_free_guidance:
|
329 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
330 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
331 |
+
noise_pred_text - noise_pred_uncond
|
332 |
+
)
|
333 |
+
|
334 |
+
# compute the previous noisy sample x_t -> x_t-1
|
335 |
+
latents = self.scheduler.step(
|
336 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
337 |
+
)[0]
|
338 |
+
|
339 |
+
# call the callback, if provided
|
340 |
+
if i == len(timesteps) - 1 or (
|
341 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
342 |
+
):
|
343 |
+
progress_bar.update()
|
344 |
+
if callback is not None and i % callback_steps == 0:
|
345 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
346 |
+
callback(step_idx, t, latents)
|
347 |
+
reference_control_reader.clear()
|
348 |
+
reference_control_writer.clear()
|
349 |
+
|
350 |
+
# Post-processing
|
351 |
+
image = self.decode_latents(latents) # (b, c, 1, h, w)
|
352 |
+
|
353 |
+
# Convert to tensor
|
354 |
+
if output_type == "tensor":
|
355 |
+
image = torch.from_numpy(image)
|
356 |
+
|
357 |
+
if not return_dict:
|
358 |
+
return image
|
359 |
+
|
360 |
+
return Pose2ImagePipelineOutput(images=image)
|
musepose/pipelines/pipeline_pose2vid.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler,
|
10 |
+
EulerAncestralDiscreteScheduler,
|
11 |
+
EulerDiscreteScheduler, LMSDiscreteScheduler,
|
12 |
+
PNDMScheduler)
|
13 |
+
from diffusers.utils import BaseOutput, is_accelerate_available
|
14 |
+
from diffusers.utils.torch_utils import randn_tensor
|
15 |
+
from einops import rearrange
|
16 |
+
from tqdm import tqdm
|
17 |
+
from transformers import CLIPImageProcessor
|
18 |
+
|
19 |
+
from musepose.models.mutual_self_attention import ReferenceAttentionControl
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class Pose2VideoPipelineOutput(BaseOutput):
|
24 |
+
videos: Union[torch.Tensor, np.ndarray]
|
25 |
+
|
26 |
+
|
27 |
+
class Pose2VideoPipeline(DiffusionPipeline):
|
28 |
+
_optional_components = []
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
vae,
|
33 |
+
image_encoder,
|
34 |
+
reference_unet,
|
35 |
+
denoising_unet,
|
36 |
+
pose_guider,
|
37 |
+
scheduler: Union[
|
38 |
+
DDIMScheduler,
|
39 |
+
PNDMScheduler,
|
40 |
+
LMSDiscreteScheduler,
|
41 |
+
EulerDiscreteScheduler,
|
42 |
+
EulerAncestralDiscreteScheduler,
|
43 |
+
DPMSolverMultistepScheduler,
|
44 |
+
],
|
45 |
+
image_proj_model=None,
|
46 |
+
tokenizer=None,
|
47 |
+
text_encoder=None,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.register_modules(
|
52 |
+
vae=vae,
|
53 |
+
image_encoder=image_encoder,
|
54 |
+
reference_unet=reference_unet,
|
55 |
+
denoising_unet=denoising_unet,
|
56 |
+
pose_guider=pose_guider,
|
57 |
+
scheduler=scheduler,
|
58 |
+
image_proj_model=image_proj_model,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
text_encoder=text_encoder,
|
61 |
+
)
|
62 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
63 |
+
self.clip_image_processor = CLIPImageProcessor()
|
64 |
+
self.ref_image_processor = VaeImageProcessor(
|
65 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
66 |
+
)
|
67 |
+
self.cond_image_processor = VaeImageProcessor(
|
68 |
+
vae_scale_factor=self.vae_scale_factor,
|
69 |
+
do_convert_rgb=True,
|
70 |
+
do_normalize=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
def enable_vae_slicing(self):
|
74 |
+
self.vae.enable_slicing()
|
75 |
+
|
76 |
+
def disable_vae_slicing(self):
|
77 |
+
self.vae.disable_slicing()
|
78 |
+
|
79 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
80 |
+
if is_accelerate_available():
|
81 |
+
from accelerate import cpu_offload
|
82 |
+
else:
|
83 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
84 |
+
|
85 |
+
device = torch.device(f"cuda:{gpu_id}")
|
86 |
+
|
87 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
88 |
+
if cpu_offloaded_model is not None:
|
89 |
+
cpu_offload(cpu_offloaded_model, device)
|
90 |
+
|
91 |
+
@property
|
92 |
+
def _execution_device(self):
|
93 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
94 |
+
return self.device
|
95 |
+
for module in self.unet.modules():
|
96 |
+
if (
|
97 |
+
hasattr(module, "_hf_hook")
|
98 |
+
and hasattr(module._hf_hook, "execution_device")
|
99 |
+
and module._hf_hook.execution_device is not None
|
100 |
+
):
|
101 |
+
return torch.device(module._hf_hook.execution_device)
|
102 |
+
return self.device
|
103 |
+
|
104 |
+
def decode_latents(self, latents):
|
105 |
+
video_length = latents.shape[2]
|
106 |
+
latents = 1 / 0.18215 * latents
|
107 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
108 |
+
# video = self.vae.decode(latents).sample
|
109 |
+
video = []
|
110 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
111 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
112 |
+
video = torch.cat(video)
|
113 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
114 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
115 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
116 |
+
video = video.cpu().float().numpy()
|
117 |
+
return video
|
118 |
+
|
119 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
120 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
121 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
122 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
123 |
+
# and should be between [0, 1]
|
124 |
+
|
125 |
+
accepts_eta = "eta" in set(
|
126 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
127 |
+
)
|
128 |
+
extra_step_kwargs = {}
|
129 |
+
if accepts_eta:
|
130 |
+
extra_step_kwargs["eta"] = eta
|
131 |
+
|
132 |
+
# check if the scheduler accepts generator
|
133 |
+
accepts_generator = "generator" in set(
|
134 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
135 |
+
)
|
136 |
+
if accepts_generator:
|
137 |
+
extra_step_kwargs["generator"] = generator
|
138 |
+
return extra_step_kwargs
|
139 |
+
|
140 |
+
def prepare_latents(
|
141 |
+
self,
|
142 |
+
batch_size,
|
143 |
+
num_channels_latents,
|
144 |
+
width,
|
145 |
+
height,
|
146 |
+
video_length,
|
147 |
+
dtype,
|
148 |
+
device,
|
149 |
+
generator,
|
150 |
+
latents=None,
|
151 |
+
):
|
152 |
+
shape = (
|
153 |
+
batch_size,
|
154 |
+
num_channels_latents,
|
155 |
+
video_length,
|
156 |
+
height // self.vae_scale_factor,
|
157 |
+
width // self.vae_scale_factor,
|
158 |
+
)
|
159 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
160 |
+
raise ValueError(
|
161 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
162 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
163 |
+
)
|
164 |
+
|
165 |
+
if latents is None:
|
166 |
+
latents = randn_tensor(
|
167 |
+
shape, generator=generator, device=device, dtype=dtype
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
latents = latents.to(device)
|
171 |
+
|
172 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
173 |
+
latents = latents * self.scheduler.init_noise_sigma
|
174 |
+
return latents
|
175 |
+
|
176 |
+
def _encode_prompt(
|
177 |
+
self,
|
178 |
+
prompt,
|
179 |
+
device,
|
180 |
+
num_videos_per_prompt,
|
181 |
+
do_classifier_free_guidance,
|
182 |
+
negative_prompt,
|
183 |
+
):
|
184 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
185 |
+
|
186 |
+
text_inputs = self.tokenizer(
|
187 |
+
prompt,
|
188 |
+
padding="max_length",
|
189 |
+
max_length=self.tokenizer.model_max_length,
|
190 |
+
truncation=True,
|
191 |
+
return_tensors="pt",
|
192 |
+
)
|
193 |
+
text_input_ids = text_inputs.input_ids
|
194 |
+
untruncated_ids = self.tokenizer(
|
195 |
+
prompt, padding="longest", return_tensors="pt"
|
196 |
+
).input_ids
|
197 |
+
|
198 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
199 |
+
text_input_ids, untruncated_ids
|
200 |
+
):
|
201 |
+
removed_text = self.tokenizer.batch_decode(
|
202 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
203 |
+
)
|
204 |
+
|
205 |
+
if (
|
206 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
207 |
+
and self.text_encoder.config.use_attention_mask
|
208 |
+
):
|
209 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
210 |
+
else:
|
211 |
+
attention_mask = None
|
212 |
+
|
213 |
+
text_embeddings = self.text_encoder(
|
214 |
+
text_input_ids.to(device),
|
215 |
+
attention_mask=attention_mask,
|
216 |
+
)
|
217 |
+
text_embeddings = text_embeddings[0]
|
218 |
+
|
219 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
220 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
221 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
222 |
+
text_embeddings = text_embeddings.view(
|
223 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
224 |
+
)
|
225 |
+
|
226 |
+
# get unconditional embeddings for classifier free guidance
|
227 |
+
if do_classifier_free_guidance:
|
228 |
+
uncond_tokens: List[str]
|
229 |
+
if negative_prompt is None:
|
230 |
+
uncond_tokens = [""] * batch_size
|
231 |
+
elif type(prompt) is not type(negative_prompt):
|
232 |
+
raise TypeError(
|
233 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
234 |
+
f" {type(prompt)}."
|
235 |
+
)
|
236 |
+
elif isinstance(negative_prompt, str):
|
237 |
+
uncond_tokens = [negative_prompt]
|
238 |
+
elif batch_size != len(negative_prompt):
|
239 |
+
raise ValueError(
|
240 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
241 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
242 |
+
" the batch size of `prompt`."
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
uncond_tokens = negative_prompt
|
246 |
+
|
247 |
+
max_length = text_input_ids.shape[-1]
|
248 |
+
uncond_input = self.tokenizer(
|
249 |
+
uncond_tokens,
|
250 |
+
padding="max_length",
|
251 |
+
max_length=max_length,
|
252 |
+
truncation=True,
|
253 |
+
return_tensors="pt",
|
254 |
+
)
|
255 |
+
|
256 |
+
if (
|
257 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
258 |
+
and self.text_encoder.config.use_attention_mask
|
259 |
+
):
|
260 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
261 |
+
else:
|
262 |
+
attention_mask = None
|
263 |
+
|
264 |
+
uncond_embeddings = self.text_encoder(
|
265 |
+
uncond_input.input_ids.to(device),
|
266 |
+
attention_mask=attention_mask,
|
267 |
+
)
|
268 |
+
uncond_embeddings = uncond_embeddings[0]
|
269 |
+
|
270 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
271 |
+
seq_len = uncond_embeddings.shape[1]
|
272 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
273 |
+
uncond_embeddings = uncond_embeddings.view(
|
274 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
275 |
+
)
|
276 |
+
|
277 |
+
# For classifier free guidance, we need to do two forward passes.
|
278 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
279 |
+
# to avoid doing two forward passes
|
280 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
281 |
+
|
282 |
+
return text_embeddings
|
283 |
+
|
284 |
+
@torch.no_grad()
|
285 |
+
def __call__(
|
286 |
+
self,
|
287 |
+
ref_image,
|
288 |
+
pose_images,
|
289 |
+
width,
|
290 |
+
height,
|
291 |
+
video_length,
|
292 |
+
num_inference_steps,
|
293 |
+
guidance_scale,
|
294 |
+
num_images_per_prompt=1,
|
295 |
+
eta: float = 0.0,
|
296 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
297 |
+
output_type: Optional[str] = "tensor",
|
298 |
+
return_dict: bool = True,
|
299 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
300 |
+
callback_steps: Optional[int] = 1,
|
301 |
+
**kwargs,
|
302 |
+
):
|
303 |
+
# Default height and width to unet
|
304 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
305 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
306 |
+
|
307 |
+
device = self._execution_device
|
308 |
+
|
309 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
310 |
+
|
311 |
+
# Prepare timesteps
|
312 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
313 |
+
timesteps = self.scheduler.timesteps
|
314 |
+
|
315 |
+
batch_size = 1
|
316 |
+
|
317 |
+
# Prepare clip image embeds
|
318 |
+
clip_image = self.clip_image_processor.preprocess(
|
319 |
+
ref_image, return_tensors="pt"
|
320 |
+
).pixel_values
|
321 |
+
clip_image_embeds = self.image_encoder(
|
322 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
323 |
+
).image_embeds
|
324 |
+
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
|
325 |
+
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
|
326 |
+
|
327 |
+
if do_classifier_free_guidance:
|
328 |
+
encoder_hidden_states = torch.cat(
|
329 |
+
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
|
330 |
+
)
|
331 |
+
reference_control_writer = ReferenceAttentionControl(
|
332 |
+
self.reference_unet,
|
333 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
334 |
+
mode="write",
|
335 |
+
batch_size=batch_size,
|
336 |
+
fusion_blocks="full",
|
337 |
+
)
|
338 |
+
reference_control_reader = ReferenceAttentionControl(
|
339 |
+
self.denoising_unet,
|
340 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
341 |
+
mode="read",
|
342 |
+
batch_size=batch_size,
|
343 |
+
fusion_blocks="full",
|
344 |
+
)
|
345 |
+
|
346 |
+
num_channels_latents = self.denoising_unet.in_channels
|
347 |
+
latents = self.prepare_latents(
|
348 |
+
batch_size * num_images_per_prompt,
|
349 |
+
num_channels_latents,
|
350 |
+
width,
|
351 |
+
height,
|
352 |
+
video_length,
|
353 |
+
clip_image_embeds.dtype,
|
354 |
+
device,
|
355 |
+
generator,
|
356 |
+
)
|
357 |
+
|
358 |
+
# Prepare extra step kwargs.
|
359 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
360 |
+
|
361 |
+
# Prepare ref image latents
|
362 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
363 |
+
ref_image, height=height, width=width
|
364 |
+
) # (bs, c, width, height)
|
365 |
+
ref_image_tensor = ref_image_tensor.to(
|
366 |
+
dtype=self.vae.dtype, device=self.vae.device
|
367 |
+
)
|
368 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
369 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
370 |
+
|
371 |
+
# Prepare a list of pose condition images
|
372 |
+
pose_cond_tensor_list = []
|
373 |
+
for pose_image in pose_images:
|
374 |
+
pose_cond_tensor = (
|
375 |
+
torch.from_numpy(np.array(pose_image.resize((width, height)))) / 255.0
|
376 |
+
)
|
377 |
+
pose_cond_tensor = pose_cond_tensor.permute(2, 0, 1).unsqueeze(
|
378 |
+
1
|
379 |
+
) # (c, 1, h, w)
|
380 |
+
pose_cond_tensor_list.append(pose_cond_tensor)
|
381 |
+
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=1) # (c, t, h, w)
|
382 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(0)
|
383 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
384 |
+
device=device, dtype=self.pose_guider.dtype
|
385 |
+
)
|
386 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
387 |
+
pose_fea = (
|
388 |
+
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea
|
389 |
+
)
|
390 |
+
|
391 |
+
# denoising loop
|
392 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
393 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
394 |
+
for i, t in enumerate(timesteps):
|
395 |
+
# 1. Forward reference image
|
396 |
+
if i == 0:
|
397 |
+
self.reference_unet(
|
398 |
+
ref_image_latents.repeat(
|
399 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
400 |
+
),
|
401 |
+
torch.zeros_like(t),
|
402 |
+
# t,
|
403 |
+
encoder_hidden_states=encoder_hidden_states,
|
404 |
+
return_dict=False,
|
405 |
+
)
|
406 |
+
reference_control_reader.update(reference_control_writer)
|
407 |
+
|
408 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
409 |
+
latent_model_input = (
|
410 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
411 |
+
)
|
412 |
+
latent_model_input = self.scheduler.scale_model_input(
|
413 |
+
latent_model_input, t
|
414 |
+
)
|
415 |
+
|
416 |
+
noise_pred = self.denoising_unet(
|
417 |
+
latent_model_input,
|
418 |
+
t,
|
419 |
+
encoder_hidden_states=encoder_hidden_states,
|
420 |
+
pose_cond_fea=pose_fea,
|
421 |
+
return_dict=False,
|
422 |
+
)[0]
|
423 |
+
|
424 |
+
# perform guidance
|
425 |
+
if do_classifier_free_guidance:
|
426 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
427 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
428 |
+
noise_pred_text - noise_pred_uncond
|
429 |
+
)
|
430 |
+
|
431 |
+
# compute the previous noisy sample x_t -> x_t-1
|
432 |
+
latents = self.scheduler.step(
|
433 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
434 |
+
)[0]
|
435 |
+
|
436 |
+
# call the callback, if provided
|
437 |
+
if i == len(timesteps) - 1 or (
|
438 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
439 |
+
):
|
440 |
+
progress_bar.update()
|
441 |
+
if callback is not None and i % callback_steps == 0:
|
442 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
443 |
+
callback(step_idx, t, latents)
|
444 |
+
|
445 |
+
reference_control_reader.clear()
|
446 |
+
reference_control_writer.clear()
|
447 |
+
|
448 |
+
# Post-processing
|
449 |
+
images = self.decode_latents(latents) # (b, c, f, h, w)
|
450 |
+
|
451 |
+
# Convert to tensor
|
452 |
+
if output_type == "tensor":
|
453 |
+
images = torch.from_numpy(images)
|
454 |
+
|
455 |
+
if not return_dict:
|
456 |
+
return images
|
457 |
+
|
458 |
+
return Pose2VideoPipelineOutput(videos=images)
|
musepose/pipelines/pipeline_pose2vid_long.py
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from diffusers.image_processor import VaeImageProcessor
|
11 |
+
from diffusers.schedulers import (
|
12 |
+
DDIMScheduler,
|
13 |
+
DPMSolverMultistepScheduler,
|
14 |
+
EulerAncestralDiscreteScheduler,
|
15 |
+
EulerDiscreteScheduler,
|
16 |
+
LMSDiscreteScheduler,
|
17 |
+
PNDMScheduler,
|
18 |
+
)
|
19 |
+
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
|
20 |
+
from diffusers.utils.torch_utils import randn_tensor
|
21 |
+
from einops import rearrange
|
22 |
+
from tqdm import tqdm
|
23 |
+
from transformers import CLIPImageProcessor
|
24 |
+
|
25 |
+
from musepose.models.mutual_self_attention import ReferenceAttentionControl
|
26 |
+
from musepose.pipelines.context import get_context_scheduler
|
27 |
+
from musepose.pipelines.utils import get_tensor_interpolation_method
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class Pose2VideoPipelineOutput(BaseOutput):
|
32 |
+
videos: Union[torch.Tensor, np.ndarray]
|
33 |
+
|
34 |
+
|
35 |
+
class Pose2VideoPipeline(DiffusionPipeline):
|
36 |
+
_optional_components = []
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
vae,
|
41 |
+
image_encoder,
|
42 |
+
reference_unet,
|
43 |
+
denoising_unet,
|
44 |
+
pose_guider,
|
45 |
+
scheduler: Union[
|
46 |
+
DDIMScheduler,
|
47 |
+
PNDMScheduler,
|
48 |
+
LMSDiscreteScheduler,
|
49 |
+
EulerDiscreteScheduler,
|
50 |
+
EulerAncestralDiscreteScheduler,
|
51 |
+
DPMSolverMultistepScheduler,
|
52 |
+
],
|
53 |
+
image_proj_model=None,
|
54 |
+
tokenizer=None,
|
55 |
+
text_encoder=None,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.register_modules(
|
60 |
+
vae=vae,
|
61 |
+
image_encoder=image_encoder,
|
62 |
+
reference_unet=reference_unet,
|
63 |
+
denoising_unet=denoising_unet,
|
64 |
+
pose_guider=pose_guider,
|
65 |
+
scheduler=scheduler,
|
66 |
+
image_proj_model=image_proj_model,
|
67 |
+
tokenizer=tokenizer,
|
68 |
+
text_encoder=text_encoder,
|
69 |
+
)
|
70 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
71 |
+
self.clip_image_processor = CLIPImageProcessor()
|
72 |
+
self.ref_image_processor = VaeImageProcessor(
|
73 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
74 |
+
)
|
75 |
+
self.cond_image_processor = VaeImageProcessor(
|
76 |
+
vae_scale_factor=self.vae_scale_factor,
|
77 |
+
do_convert_rgb=True,
|
78 |
+
do_normalize=False,
|
79 |
+
)
|
80 |
+
|
81 |
+
def enable_vae_slicing(self):
|
82 |
+
self.vae.enable_slicing()
|
83 |
+
|
84 |
+
def disable_vae_slicing(self):
|
85 |
+
self.vae.disable_slicing()
|
86 |
+
|
87 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
88 |
+
if is_accelerate_available():
|
89 |
+
from accelerate import cpu_offload
|
90 |
+
else:
|
91 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
92 |
+
|
93 |
+
device = torch.device(f"cuda:{gpu_id}")
|
94 |
+
|
95 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
96 |
+
if cpu_offloaded_model is not None:
|
97 |
+
cpu_offload(cpu_offloaded_model, device)
|
98 |
+
|
99 |
+
@property
|
100 |
+
def _execution_device(self):
|
101 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
102 |
+
return self.device
|
103 |
+
for module in self.unet.modules():
|
104 |
+
if (
|
105 |
+
hasattr(module, "_hf_hook")
|
106 |
+
and hasattr(module._hf_hook, "execution_device")
|
107 |
+
and module._hf_hook.execution_device is not None
|
108 |
+
):
|
109 |
+
return torch.device(module._hf_hook.execution_device)
|
110 |
+
return self.device
|
111 |
+
|
112 |
+
def decode_latents(self, latents):
|
113 |
+
video_length = latents.shape[2]
|
114 |
+
latents = 1 / 0.18215 * latents
|
115 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
116 |
+
# video = self.vae.decode(latents).sample
|
117 |
+
video = []
|
118 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
119 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
120 |
+
video = torch.cat(video)
|
121 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
122 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
123 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
124 |
+
video = video.cpu().float().numpy()
|
125 |
+
return video
|
126 |
+
|
127 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
128 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
129 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
130 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
131 |
+
# and should be between [0, 1]
|
132 |
+
|
133 |
+
accepts_eta = "eta" in set(
|
134 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
135 |
+
)
|
136 |
+
extra_step_kwargs = {}
|
137 |
+
if accepts_eta:
|
138 |
+
extra_step_kwargs["eta"] = eta
|
139 |
+
|
140 |
+
# check if the scheduler accepts generator
|
141 |
+
accepts_generator = "generator" in set(
|
142 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
143 |
+
)
|
144 |
+
if accepts_generator:
|
145 |
+
extra_step_kwargs["generator"] = generator
|
146 |
+
return extra_step_kwargs
|
147 |
+
|
148 |
+
def prepare_latents(
|
149 |
+
self,
|
150 |
+
batch_size,
|
151 |
+
num_channels_latents,
|
152 |
+
width,
|
153 |
+
height,
|
154 |
+
video_length,
|
155 |
+
dtype,
|
156 |
+
device,
|
157 |
+
generator,
|
158 |
+
latents=None,
|
159 |
+
):
|
160 |
+
shape = (
|
161 |
+
batch_size,
|
162 |
+
num_channels_latents,
|
163 |
+
video_length,
|
164 |
+
height // self.vae_scale_factor,
|
165 |
+
width // self.vae_scale_factor,
|
166 |
+
)
|
167 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
168 |
+
raise ValueError(
|
169 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
170 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
171 |
+
)
|
172 |
+
|
173 |
+
if latents is None:
|
174 |
+
latents = randn_tensor(
|
175 |
+
shape, generator=generator, device=device, dtype=dtype
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
latents = latents.to(device)
|
179 |
+
|
180 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
181 |
+
latents = latents * self.scheduler.init_noise_sigma
|
182 |
+
return latents
|
183 |
+
|
184 |
+
def _encode_prompt(
|
185 |
+
self,
|
186 |
+
prompt,
|
187 |
+
device,
|
188 |
+
num_videos_per_prompt,
|
189 |
+
do_classifier_free_guidance,
|
190 |
+
negative_prompt,
|
191 |
+
):
|
192 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
193 |
+
|
194 |
+
text_inputs = self.tokenizer(
|
195 |
+
prompt,
|
196 |
+
padding="max_length",
|
197 |
+
max_length=self.tokenizer.model_max_length,
|
198 |
+
truncation=True,
|
199 |
+
return_tensors="pt",
|
200 |
+
)
|
201 |
+
text_input_ids = text_inputs.input_ids
|
202 |
+
untruncated_ids = self.tokenizer(
|
203 |
+
prompt, padding="longest", return_tensors="pt"
|
204 |
+
).input_ids
|
205 |
+
|
206 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
207 |
+
text_input_ids, untruncated_ids
|
208 |
+
):
|
209 |
+
removed_text = self.tokenizer.batch_decode(
|
210 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
211 |
+
)
|
212 |
+
|
213 |
+
if (
|
214 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
215 |
+
and self.text_encoder.config.use_attention_mask
|
216 |
+
):
|
217 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
218 |
+
else:
|
219 |
+
attention_mask = None
|
220 |
+
|
221 |
+
text_embeddings = self.text_encoder(
|
222 |
+
text_input_ids.to(device),
|
223 |
+
attention_mask=attention_mask,
|
224 |
+
)
|
225 |
+
text_embeddings = text_embeddings[0]
|
226 |
+
|
227 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
228 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
229 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
230 |
+
text_embeddings = text_embeddings.view(
|
231 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
232 |
+
)
|
233 |
+
|
234 |
+
# get unconditional embeddings for classifier free guidance
|
235 |
+
if do_classifier_free_guidance:
|
236 |
+
uncond_tokens: List[str]
|
237 |
+
if negative_prompt is None:
|
238 |
+
uncond_tokens = [""] * batch_size
|
239 |
+
elif type(prompt) is not type(negative_prompt):
|
240 |
+
raise TypeError(
|
241 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
242 |
+
f" {type(prompt)}."
|
243 |
+
)
|
244 |
+
elif isinstance(negative_prompt, str):
|
245 |
+
uncond_tokens = [negative_prompt]
|
246 |
+
elif batch_size != len(negative_prompt):
|
247 |
+
raise ValueError(
|
248 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
249 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
250 |
+
" the batch size of `prompt`."
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
uncond_tokens = negative_prompt
|
254 |
+
|
255 |
+
max_length = text_input_ids.shape[-1]
|
256 |
+
uncond_input = self.tokenizer(
|
257 |
+
uncond_tokens,
|
258 |
+
padding="max_length",
|
259 |
+
max_length=max_length,
|
260 |
+
truncation=True,
|
261 |
+
return_tensors="pt",
|
262 |
+
)
|
263 |
+
|
264 |
+
if (
|
265 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
266 |
+
and self.text_encoder.config.use_attention_mask
|
267 |
+
):
|
268 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
269 |
+
else:
|
270 |
+
attention_mask = None
|
271 |
+
|
272 |
+
uncond_embeddings = self.text_encoder(
|
273 |
+
uncond_input.input_ids.to(device),
|
274 |
+
attention_mask=attention_mask,
|
275 |
+
)
|
276 |
+
uncond_embeddings = uncond_embeddings[0]
|
277 |
+
|
278 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
279 |
+
seq_len = uncond_embeddings.shape[1]
|
280 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
281 |
+
uncond_embeddings = uncond_embeddings.view(
|
282 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
283 |
+
)
|
284 |
+
|
285 |
+
# For classifier free guidance, we need to do two forward passes.
|
286 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
287 |
+
# to avoid doing two forward passes
|
288 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
289 |
+
|
290 |
+
return text_embeddings
|
291 |
+
|
292 |
+
def interpolate_latents(
|
293 |
+
self, latents: torch.Tensor, interpolation_factor: int, device
|
294 |
+
):
|
295 |
+
if interpolation_factor < 2:
|
296 |
+
return latents
|
297 |
+
|
298 |
+
new_latents = torch.zeros(
|
299 |
+
(
|
300 |
+
latents.shape[0],
|
301 |
+
latents.shape[1],
|
302 |
+
((latents.shape[2] - 1) * interpolation_factor) + 1,
|
303 |
+
latents.shape[3],
|
304 |
+
latents.shape[4],
|
305 |
+
),
|
306 |
+
device=latents.device,
|
307 |
+
dtype=latents.dtype,
|
308 |
+
)
|
309 |
+
|
310 |
+
org_video_length = latents.shape[2]
|
311 |
+
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
|
312 |
+
|
313 |
+
new_index = 0
|
314 |
+
|
315 |
+
v0 = None
|
316 |
+
v1 = None
|
317 |
+
|
318 |
+
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
|
319 |
+
v0 = latents[:, :, i0, :, :]
|
320 |
+
v1 = latents[:, :, i1, :, :]
|
321 |
+
|
322 |
+
new_latents[:, :, new_index, :, :] = v0
|
323 |
+
new_index += 1
|
324 |
+
|
325 |
+
for f in rate:
|
326 |
+
v = get_tensor_interpolation_method()(
|
327 |
+
v0.to(device=device), v1.to(device=device), f
|
328 |
+
)
|
329 |
+
new_latents[:, :, new_index, :, :] = v.to(latents.device)
|
330 |
+
new_index += 1
|
331 |
+
|
332 |
+
new_latents[:, :, new_index, :, :] = v1
|
333 |
+
new_index += 1
|
334 |
+
|
335 |
+
return new_latents
|
336 |
+
|
337 |
+
@torch.no_grad()
|
338 |
+
def __call__(
|
339 |
+
self,
|
340 |
+
ref_image,
|
341 |
+
pose_images,
|
342 |
+
width,
|
343 |
+
height,
|
344 |
+
video_length,
|
345 |
+
num_inference_steps,
|
346 |
+
guidance_scale,
|
347 |
+
num_images_per_prompt=1,
|
348 |
+
eta: float = 0.0,
|
349 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
350 |
+
output_type: Optional[str] = "tensor",
|
351 |
+
return_dict: bool = True,
|
352 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
353 |
+
callback_steps: Optional[int] = 1,
|
354 |
+
context_schedule="uniform",
|
355 |
+
context_frames=24,
|
356 |
+
context_stride=1,
|
357 |
+
context_overlap=4,
|
358 |
+
context_batch_size=1,
|
359 |
+
interpolation_factor=1,
|
360 |
+
**kwargs,
|
361 |
+
):
|
362 |
+
# Default height and width to unet
|
363 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
364 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
365 |
+
|
366 |
+
device = self._execution_device
|
367 |
+
|
368 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
369 |
+
|
370 |
+
# Prepare timesteps
|
371 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
372 |
+
timesteps = self.scheduler.timesteps
|
373 |
+
|
374 |
+
batch_size = 1
|
375 |
+
|
376 |
+
# Prepare clip image embeds
|
377 |
+
clip_image = self.clip_image_processor.preprocess(
|
378 |
+
ref_image.resize((224, 224)), return_tensors="pt"
|
379 |
+
).pixel_values
|
380 |
+
clip_image_embeds = self.image_encoder(
|
381 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
382 |
+
).image_embeds
|
383 |
+
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
|
384 |
+
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
|
385 |
+
|
386 |
+
if do_classifier_free_guidance:
|
387 |
+
encoder_hidden_states = torch.cat(
|
388 |
+
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
|
389 |
+
)
|
390 |
+
|
391 |
+
reference_control_writer = ReferenceAttentionControl(
|
392 |
+
self.reference_unet,
|
393 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
394 |
+
mode="write",
|
395 |
+
batch_size=batch_size,
|
396 |
+
fusion_blocks="full",
|
397 |
+
)
|
398 |
+
reference_control_reader = ReferenceAttentionControl(
|
399 |
+
self.denoising_unet,
|
400 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
401 |
+
mode="read",
|
402 |
+
batch_size=batch_size,
|
403 |
+
fusion_blocks="full",
|
404 |
+
)
|
405 |
+
|
406 |
+
num_channels_latents = self.denoising_unet.in_channels
|
407 |
+
latents = self.prepare_latents(
|
408 |
+
batch_size * num_images_per_prompt,
|
409 |
+
num_channels_latents,
|
410 |
+
width,
|
411 |
+
height,
|
412 |
+
video_length,
|
413 |
+
clip_image_embeds.dtype,
|
414 |
+
device,
|
415 |
+
generator,
|
416 |
+
)
|
417 |
+
|
418 |
+
# Prepare extra step kwargs.
|
419 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
420 |
+
|
421 |
+
# Prepare ref image latents
|
422 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
423 |
+
ref_image, height=height, width=width
|
424 |
+
) # (bs, c, width, height)
|
425 |
+
ref_image_tensor = ref_image_tensor.to(
|
426 |
+
dtype=self.vae.dtype, device=self.vae.device
|
427 |
+
)
|
428 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
429 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
430 |
+
|
431 |
+
# Prepare a list of pose condition images
|
432 |
+
pose_cond_tensor_list = []
|
433 |
+
for pose_image in pose_images:
|
434 |
+
pose_cond_tensor = self.cond_image_processor.preprocess(
|
435 |
+
pose_image, height=height, width=width
|
436 |
+
)
|
437 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
438 |
+
pose_cond_tensor_list.append(pose_cond_tensor)
|
439 |
+
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=2) # (bs, c, t, h, w)
|
440 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
441 |
+
device=device, dtype=self.pose_guider.dtype
|
442 |
+
)
|
443 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
444 |
+
|
445 |
+
context_scheduler = get_context_scheduler(context_schedule)
|
446 |
+
|
447 |
+
# denoising loop
|
448 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
449 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
450 |
+
for i, t in enumerate(timesteps):
|
451 |
+
noise_pred = torch.zeros(
|
452 |
+
(
|
453 |
+
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
|
454 |
+
*latents.shape[1:],
|
455 |
+
),
|
456 |
+
device=latents.device,
|
457 |
+
dtype=latents.dtype,
|
458 |
+
)
|
459 |
+
counter = torch.zeros(
|
460 |
+
(1, 1, latents.shape[2], 1, 1),
|
461 |
+
device=latents.device,
|
462 |
+
dtype=latents.dtype,
|
463 |
+
)
|
464 |
+
|
465 |
+
# 1. Forward reference image
|
466 |
+
if i == 0:
|
467 |
+
self.reference_unet(
|
468 |
+
ref_image_latents.repeat(
|
469 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
470 |
+
),
|
471 |
+
torch.zeros_like(t),
|
472 |
+
# t,
|
473 |
+
encoder_hidden_states=encoder_hidden_states,
|
474 |
+
return_dict=False,
|
475 |
+
)
|
476 |
+
reference_control_reader.update(reference_control_writer)
|
477 |
+
|
478 |
+
context_queue = list(
|
479 |
+
context_scheduler(
|
480 |
+
0,
|
481 |
+
num_inference_steps,
|
482 |
+
latents.shape[2],
|
483 |
+
context_frames,
|
484 |
+
context_stride,
|
485 |
+
0,
|
486 |
+
)
|
487 |
+
)
|
488 |
+
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
|
489 |
+
|
490 |
+
context_queue = list(
|
491 |
+
context_scheduler(
|
492 |
+
0,
|
493 |
+
num_inference_steps,
|
494 |
+
latents.shape[2],
|
495 |
+
context_frames,
|
496 |
+
context_stride,
|
497 |
+
context_overlap,
|
498 |
+
)
|
499 |
+
)
|
500 |
+
|
501 |
+
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
|
502 |
+
global_context = []
|
503 |
+
for i in range(num_context_batches):
|
504 |
+
global_context.append(
|
505 |
+
context_queue[
|
506 |
+
i * context_batch_size : (i + 1) * context_batch_size
|
507 |
+
]
|
508 |
+
)
|
509 |
+
|
510 |
+
for context in global_context:
|
511 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
512 |
+
latent_model_input = (
|
513 |
+
torch.cat([latents[:, :, c] for c in context])
|
514 |
+
.to(device)
|
515 |
+
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
516 |
+
)
|
517 |
+
latent_model_input = self.scheduler.scale_model_input(
|
518 |
+
latent_model_input, t
|
519 |
+
)
|
520 |
+
b, c, f, h, w = latent_model_input.shape
|
521 |
+
latent_pose_input = torch.cat(
|
522 |
+
[pose_fea[:, :, c] for c in context]
|
523 |
+
).repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
524 |
+
|
525 |
+
pred = self.denoising_unet(
|
526 |
+
latent_model_input,
|
527 |
+
t,
|
528 |
+
encoder_hidden_states=encoder_hidden_states[:b],
|
529 |
+
pose_cond_fea=latent_pose_input,
|
530 |
+
return_dict=False,
|
531 |
+
)[0]
|
532 |
+
|
533 |
+
for j, c in enumerate(context):
|
534 |
+
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
|
535 |
+
counter[:, :, c] = counter[:, :, c] + 1
|
536 |
+
|
537 |
+
# perform guidance
|
538 |
+
if do_classifier_free_guidance:
|
539 |
+
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
|
540 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
541 |
+
noise_pred_text - noise_pred_uncond
|
542 |
+
)
|
543 |
+
|
544 |
+
latents = self.scheduler.step(
|
545 |
+
noise_pred, t, latents, **extra_step_kwargs
|
546 |
+
).prev_sample
|
547 |
+
|
548 |
+
if i == len(timesteps) - 1 or (
|
549 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
550 |
+
):
|
551 |
+
progress_bar.update()
|
552 |
+
if callback is not None and i % callback_steps == 0:
|
553 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
554 |
+
callback(step_idx, t, latents)
|
555 |
+
|
556 |
+
reference_control_reader.clear()
|
557 |
+
reference_control_writer.clear()
|
558 |
+
|
559 |
+
if interpolation_factor > 0:
|
560 |
+
latents = self.interpolate_latents(latents, interpolation_factor, device)
|
561 |
+
# Post-processing
|
562 |
+
images = self.decode_latents(latents) # (b, c, f, h, w)
|
563 |
+
|
564 |
+
# Convert to tensor
|
565 |
+
if output_type == "tensor":
|
566 |
+
images = torch.from_numpy(images)
|
567 |
+
|
568 |
+
if not return_dict:
|
569 |
+
return images
|
570 |
+
|
571 |
+
return Pose2VideoPipelineOutput(videos=images)
|
musepose/pipelines/utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
tensor_interpolation = None
|
4 |
+
|
5 |
+
|
6 |
+
def get_tensor_interpolation_method():
|
7 |
+
return tensor_interpolation
|
8 |
+
|
9 |
+
|
10 |
+
def set_tensor_interpolation_method(is_slerp):
|
11 |
+
global tensor_interpolation
|
12 |
+
tensor_interpolation = slerp if is_slerp else linear
|
13 |
+
|
14 |
+
|
15 |
+
def linear(v1, v2, t):
|
16 |
+
return (1.0 - t) * v1 + t * v2
|
17 |
+
|
18 |
+
|
19 |
+
def slerp(
|
20 |
+
v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995
|
21 |
+
) -> torch.Tensor:
|
22 |
+
u0 = v0 / v0.norm()
|
23 |
+
u1 = v1 / v1.norm()
|
24 |
+
dot = (u0 * u1).sum()
|
25 |
+
if dot.abs() > DOT_THRESHOLD:
|
26 |
+
# logger.info(f'warning: v0 and v1 close to parallel, using linear interpolation instead.')
|
27 |
+
return (1.0 - t) * v0 + t * v1
|
28 |
+
omega = dot.acos()
|
29 |
+
return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()
|
musepose/utils/util.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
import shutil
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import av
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torchvision
|
12 |
+
from einops import rearrange
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def seed_everything(seed):
|
17 |
+
import random
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
torch.cuda.manual_seed_all(seed)
|
23 |
+
np.random.seed(seed % (2**32))
|
24 |
+
random.seed(seed)
|
25 |
+
|
26 |
+
|
27 |
+
def import_filename(filename):
|
28 |
+
spec = importlib.util.spec_from_file_location("mymodule", filename)
|
29 |
+
module = importlib.util.module_from_spec(spec)
|
30 |
+
sys.modules[spec.name] = module
|
31 |
+
spec.loader.exec_module(module)
|
32 |
+
return module
|
33 |
+
|
34 |
+
|
35 |
+
def delete_additional_ckpt(base_path, num_keep):
|
36 |
+
dirs = []
|
37 |
+
for d in os.listdir(base_path):
|
38 |
+
if d.startswith("checkpoint-"):
|
39 |
+
dirs.append(d)
|
40 |
+
num_tot = len(dirs)
|
41 |
+
if num_tot <= num_keep:
|
42 |
+
return
|
43 |
+
# ensure ckpt is sorted and delete the ealier!
|
44 |
+
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
|
45 |
+
for d in del_dirs:
|
46 |
+
path_to_dir = osp.join(base_path, d)
|
47 |
+
if osp.exists(path_to_dir):
|
48 |
+
shutil.rmtree(path_to_dir)
|
49 |
+
|
50 |
+
|
51 |
+
def save_videos_from_pil(pil_images, path, fps=8):
|
52 |
+
import av
|
53 |
+
|
54 |
+
save_fmt = Path(path).suffix
|
55 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
56 |
+
width, height = pil_images[0].size
|
57 |
+
|
58 |
+
if save_fmt == ".mp4":
|
59 |
+
codec = "libx264"
|
60 |
+
container = av.open(path, "w")
|
61 |
+
stream = container.add_stream(codec, rate=fps)
|
62 |
+
|
63 |
+
stream.width = width
|
64 |
+
stream.height = height
|
65 |
+
stream.pix_fmt = 'yuv420p'
|
66 |
+
stream.bit_rate = 10000000
|
67 |
+
stream.options["crf"] = "18"
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
for pil_image in pil_images:
|
72 |
+
# pil_image = Image.fromarray(image_arr).convert("RGB")
|
73 |
+
av_frame = av.VideoFrame.from_image(pil_image)
|
74 |
+
container.mux(stream.encode(av_frame))
|
75 |
+
container.mux(stream.encode())
|
76 |
+
container.close()
|
77 |
+
|
78 |
+
elif save_fmt == ".gif":
|
79 |
+
pil_images[0].save(
|
80 |
+
fp=path,
|
81 |
+
format="GIF",
|
82 |
+
append_images=pil_images[1:],
|
83 |
+
save_all=True,
|
84 |
+
duration=(1 / fps * 1000),
|
85 |
+
loop=0,
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
|
89 |
+
|
90 |
+
|
91 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
|
92 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
93 |
+
height, width = videos.shape[-2:]
|
94 |
+
outputs = []
|
95 |
+
|
96 |
+
for x in videos:
|
97 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
|
98 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
|
99 |
+
if rescale:
|
100 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
101 |
+
x = (x * 255).numpy().astype(np.uint8)
|
102 |
+
x = Image.fromarray(x)
|
103 |
+
|
104 |
+
outputs.append(x)
|
105 |
+
|
106 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
107 |
+
|
108 |
+
save_videos_from_pil(outputs, path, fps)
|
109 |
+
|
110 |
+
|
111 |
+
def read_frames(video_path):
|
112 |
+
container = av.open(video_path)
|
113 |
+
|
114 |
+
video_stream = next(s for s in container.streams if s.type == "video")
|
115 |
+
frames = []
|
116 |
+
for packet in container.demux(video_stream):
|
117 |
+
for frame in packet.decode():
|
118 |
+
image = Image.frombytes(
|
119 |
+
"RGB",
|
120 |
+
(frame.width, frame.height),
|
121 |
+
frame.to_rgb().to_ndarray(),
|
122 |
+
)
|
123 |
+
frames.append(image)
|
124 |
+
|
125 |
+
return frames
|
126 |
+
|
127 |
+
|
128 |
+
def get_fps(video_path):
|
129 |
+
container = av.open(video_path)
|
130 |
+
video_stream = next(s for s in container.streams if s.type == "video")
|
131 |
+
fps = video_stream.average_rate
|
132 |
+
container.close()
|
133 |
+
return fps
|
pipelines/__init__.py
ADDED
File without changes
|
pipelines/context.py
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: Adapted from cli
|
2 |
+
from typing import Callable, List, Optional
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
|
6 |
+
|
7 |
+
def ordered_halving(val):
|
8 |
+
bin_str = f"{val:064b}"
|
9 |
+
bin_flip = bin_str[::-1]
|
10 |
+
as_int = int(bin_flip, 2)
|
11 |
+
|
12 |
+
return as_int / (1 << 64)
|
13 |
+
|
14 |
+
|
15 |
+
def uniform(
|
16 |
+
step: int = ...,
|
17 |
+
num_steps: Optional[int] = None,
|
18 |
+
num_frames: int = ...,
|
19 |
+
context_size: Optional[int] = None,
|
20 |
+
context_stride: int = 3,
|
21 |
+
context_overlap: int = 4,
|
22 |
+
closed_loop: bool = False,
|
23 |
+
):
|
24 |
+
if num_frames <= context_size:
|
25 |
+
yield list(range(num_frames))
|
26 |
+
return
|
27 |
+
|
28 |
+
context_stride = min(
|
29 |
+
context_stride, int(np.ceil(np.log2(num_frames / context_size))) + 1
|
30 |
+
)
|
31 |
+
|
32 |
+
for context_step in 1 << np.arange(context_stride):
|
33 |
+
pad = int(round(num_frames * ordered_halving(step)))
|
34 |
+
for j in range(
|
35 |
+
int(ordered_halving(step) * context_step) + pad,
|
36 |
+
num_frames + pad + (0 if closed_loop else -context_overlap),
|
37 |
+
(context_size * context_step - context_overlap),
|
38 |
+
):
|
39 |
+
yield [
|
40 |
+
e % num_frames
|
41 |
+
for e in range(j, j + context_size * context_step, context_step)
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
def get_context_scheduler(name: str) -> Callable:
|
46 |
+
if name == "uniform":
|
47 |
+
return uniform
|
48 |
+
else:
|
49 |
+
raise ValueError(f"Unknown context_overlap policy {name}")
|
50 |
+
|
51 |
+
|
52 |
+
def get_total_steps(
|
53 |
+
scheduler,
|
54 |
+
timesteps: List[int],
|
55 |
+
num_steps: Optional[int] = None,
|
56 |
+
num_frames: int = ...,
|
57 |
+
context_size: Optional[int] = None,
|
58 |
+
context_stride: int = 3,
|
59 |
+
context_overlap: int = 4,
|
60 |
+
closed_loop: bool = True,
|
61 |
+
):
|
62 |
+
return sum(
|
63 |
+
len(
|
64 |
+
list(
|
65 |
+
scheduler(
|
66 |
+
i,
|
67 |
+
num_steps,
|
68 |
+
num_frames,
|
69 |
+
context_size,
|
70 |
+
context_stride,
|
71 |
+
context_overlap,
|
72 |
+
)
|
73 |
+
)
|
74 |
+
)
|
75 |
+
for i in range(len(timesteps))
|
76 |
+
)
|
pipelines/pipeline_pose2img.py
ADDED
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from diffusers.schedulers import (
|
10 |
+
DDIMScheduler,
|
11 |
+
DPMSolverMultistepScheduler,
|
12 |
+
EulerAncestralDiscreteScheduler,
|
13 |
+
EulerDiscreteScheduler,
|
14 |
+
LMSDiscreteScheduler,
|
15 |
+
PNDMScheduler,
|
16 |
+
)
|
17 |
+
from diffusers.utils import BaseOutput, is_accelerate_available
|
18 |
+
from diffusers.utils.torch_utils import randn_tensor
|
19 |
+
from einops import rearrange
|
20 |
+
from tqdm import tqdm
|
21 |
+
from transformers import CLIPImageProcessor
|
22 |
+
|
23 |
+
from musepose.models.mutual_self_attention import ReferenceAttentionControl
|
24 |
+
|
25 |
+
|
26 |
+
@dataclass
|
27 |
+
class Pose2ImagePipelineOutput(BaseOutput):
|
28 |
+
images: Union[torch.Tensor, np.ndarray]
|
29 |
+
|
30 |
+
|
31 |
+
class Pose2ImagePipeline(DiffusionPipeline):
|
32 |
+
_optional_components = []
|
33 |
+
|
34 |
+
def __init__(
|
35 |
+
self,
|
36 |
+
vae,
|
37 |
+
image_encoder,
|
38 |
+
reference_unet,
|
39 |
+
denoising_unet,
|
40 |
+
pose_guider,
|
41 |
+
scheduler: Union[
|
42 |
+
DDIMScheduler,
|
43 |
+
PNDMScheduler,
|
44 |
+
LMSDiscreteScheduler,
|
45 |
+
EulerDiscreteScheduler,
|
46 |
+
EulerAncestralDiscreteScheduler,
|
47 |
+
DPMSolverMultistepScheduler,
|
48 |
+
],
|
49 |
+
):
|
50 |
+
super().__init__()
|
51 |
+
|
52 |
+
self.register_modules(
|
53 |
+
vae=vae,
|
54 |
+
image_encoder=image_encoder,
|
55 |
+
reference_unet=reference_unet,
|
56 |
+
denoising_unet=denoising_unet,
|
57 |
+
pose_guider=pose_guider,
|
58 |
+
scheduler=scheduler,
|
59 |
+
)
|
60 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
61 |
+
self.clip_image_processor = CLIPImageProcessor()
|
62 |
+
self.ref_image_processor = VaeImageProcessor(
|
63 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
64 |
+
)
|
65 |
+
self.cond_image_processor = VaeImageProcessor(
|
66 |
+
vae_scale_factor=self.vae_scale_factor,
|
67 |
+
do_convert_rgb=True,
|
68 |
+
do_normalize=False,
|
69 |
+
)
|
70 |
+
|
71 |
+
def enable_vae_slicing(self):
|
72 |
+
self.vae.enable_slicing()
|
73 |
+
|
74 |
+
def disable_vae_slicing(self):
|
75 |
+
self.vae.disable_slicing()
|
76 |
+
|
77 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
78 |
+
if is_accelerate_available():
|
79 |
+
from accelerate import cpu_offload
|
80 |
+
else:
|
81 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
82 |
+
|
83 |
+
device = torch.device(f"cuda:{gpu_id}")
|
84 |
+
|
85 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
86 |
+
if cpu_offloaded_model is not None:
|
87 |
+
cpu_offload(cpu_offloaded_model, device)
|
88 |
+
|
89 |
+
@property
|
90 |
+
def _execution_device(self):
|
91 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
92 |
+
return self.device
|
93 |
+
for module in self.unet.modules():
|
94 |
+
if (
|
95 |
+
hasattr(module, "_hf_hook")
|
96 |
+
and hasattr(module._hf_hook, "execution_device")
|
97 |
+
and module._hf_hook.execution_device is not None
|
98 |
+
):
|
99 |
+
return torch.device(module._hf_hook.execution_device)
|
100 |
+
return self.device
|
101 |
+
|
102 |
+
def decode_latents(self, latents):
|
103 |
+
video_length = latents.shape[2]
|
104 |
+
latents = 1 / 0.18215 * latents
|
105 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
106 |
+
# video = self.vae.decode(latents).sample
|
107 |
+
video = []
|
108 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
109 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
110 |
+
video = torch.cat(video)
|
111 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
112 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
113 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
114 |
+
video = video.cpu().float().numpy()
|
115 |
+
return video
|
116 |
+
|
117 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
118 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
119 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
120 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
121 |
+
# and should be between [0, 1]
|
122 |
+
|
123 |
+
accepts_eta = "eta" in set(
|
124 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
125 |
+
)
|
126 |
+
extra_step_kwargs = {}
|
127 |
+
if accepts_eta:
|
128 |
+
extra_step_kwargs["eta"] = eta
|
129 |
+
|
130 |
+
# check if the scheduler accepts generator
|
131 |
+
accepts_generator = "generator" in set(
|
132 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
133 |
+
)
|
134 |
+
if accepts_generator:
|
135 |
+
extra_step_kwargs["generator"] = generator
|
136 |
+
return extra_step_kwargs
|
137 |
+
|
138 |
+
def prepare_latents(
|
139 |
+
self,
|
140 |
+
batch_size,
|
141 |
+
num_channels_latents,
|
142 |
+
width,
|
143 |
+
height,
|
144 |
+
dtype,
|
145 |
+
device,
|
146 |
+
generator,
|
147 |
+
latents=None,
|
148 |
+
):
|
149 |
+
shape = (
|
150 |
+
batch_size,
|
151 |
+
num_channels_latents,
|
152 |
+
height // self.vae_scale_factor,
|
153 |
+
width // self.vae_scale_factor,
|
154 |
+
)
|
155 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
156 |
+
raise ValueError(
|
157 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
158 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
159 |
+
)
|
160 |
+
|
161 |
+
if latents is None:
|
162 |
+
latents = randn_tensor(
|
163 |
+
shape, generator=generator, device=device, dtype=dtype
|
164 |
+
)
|
165 |
+
else:
|
166 |
+
latents = latents.to(device)
|
167 |
+
|
168 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
169 |
+
latents = latents * self.scheduler.init_noise_sigma
|
170 |
+
return latents
|
171 |
+
|
172 |
+
def prepare_condition(
|
173 |
+
self,
|
174 |
+
cond_image,
|
175 |
+
width,
|
176 |
+
height,
|
177 |
+
device,
|
178 |
+
dtype,
|
179 |
+
do_classififer_free_guidance=False,
|
180 |
+
):
|
181 |
+
image = self.cond_image_processor.preprocess(
|
182 |
+
cond_image, height=height, width=width
|
183 |
+
).to(dtype=torch.float32)
|
184 |
+
|
185 |
+
image = image.to(device=device, dtype=dtype)
|
186 |
+
|
187 |
+
if do_classififer_free_guidance:
|
188 |
+
image = torch.cat([image] * 2)
|
189 |
+
|
190 |
+
return image
|
191 |
+
|
192 |
+
@torch.no_grad()
|
193 |
+
def __call__(
|
194 |
+
self,
|
195 |
+
ref_image,
|
196 |
+
pose_image,
|
197 |
+
width,
|
198 |
+
height,
|
199 |
+
num_inference_steps,
|
200 |
+
guidance_scale,
|
201 |
+
num_images_per_prompt=1,
|
202 |
+
eta: float = 0.0,
|
203 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
204 |
+
output_type: Optional[str] = "tensor",
|
205 |
+
return_dict: bool = True,
|
206 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
207 |
+
callback_steps: Optional[int] = 1,
|
208 |
+
**kwargs,
|
209 |
+
):
|
210 |
+
# Default height and width to unet
|
211 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
212 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
213 |
+
|
214 |
+
device = self._execution_device
|
215 |
+
|
216 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
217 |
+
|
218 |
+
# Prepare timesteps
|
219 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
220 |
+
timesteps = self.scheduler.timesteps
|
221 |
+
|
222 |
+
batch_size = 1
|
223 |
+
|
224 |
+
# Prepare clip image embeds
|
225 |
+
clip_image = self.clip_image_processor.preprocess(
|
226 |
+
ref_image.resize((224, 224)), return_tensors="pt"
|
227 |
+
).pixel_values
|
228 |
+
clip_image_embeds = self.image_encoder(
|
229 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
230 |
+
).image_embeds
|
231 |
+
image_prompt_embeds = clip_image_embeds.unsqueeze(1)
|
232 |
+
uncond_image_prompt_embeds = torch.zeros_like(image_prompt_embeds)
|
233 |
+
|
234 |
+
if do_classifier_free_guidance:
|
235 |
+
image_prompt_embeds = torch.cat(
|
236 |
+
[uncond_image_prompt_embeds, image_prompt_embeds], dim=0
|
237 |
+
)
|
238 |
+
|
239 |
+
reference_control_writer = ReferenceAttentionControl(
|
240 |
+
self.reference_unet,
|
241 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
242 |
+
mode="write",
|
243 |
+
batch_size=batch_size,
|
244 |
+
fusion_blocks="full",
|
245 |
+
)
|
246 |
+
reference_control_reader = ReferenceAttentionControl(
|
247 |
+
self.denoising_unet,
|
248 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
249 |
+
mode="read",
|
250 |
+
batch_size=batch_size,
|
251 |
+
fusion_blocks="full",
|
252 |
+
)
|
253 |
+
|
254 |
+
num_channels_latents = self.denoising_unet.in_channels
|
255 |
+
latents = self.prepare_latents(
|
256 |
+
batch_size * num_images_per_prompt,
|
257 |
+
num_channels_latents,
|
258 |
+
width,
|
259 |
+
height,
|
260 |
+
clip_image_embeds.dtype,
|
261 |
+
device,
|
262 |
+
generator,
|
263 |
+
)
|
264 |
+
latents = latents.unsqueeze(2) # (bs, c, 1, h', w')
|
265 |
+
latents_dtype = latents.dtype
|
266 |
+
|
267 |
+
# Prepare extra step kwargs.
|
268 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
269 |
+
|
270 |
+
# Prepare ref image latents
|
271 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
272 |
+
ref_image, height=height, width=width
|
273 |
+
) # (bs, c, width, height)
|
274 |
+
ref_image_tensor = ref_image_tensor.to(
|
275 |
+
dtype=self.vae.dtype, device=self.vae.device
|
276 |
+
)
|
277 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
278 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
279 |
+
|
280 |
+
# Prepare pose condition image
|
281 |
+
pose_cond_tensor = self.cond_image_processor.preprocess(
|
282 |
+
pose_image, height=height, width=width
|
283 |
+
)
|
284 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
285 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
286 |
+
device=device, dtype=self.pose_guider.dtype
|
287 |
+
)
|
288 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
289 |
+
pose_fea = (
|
290 |
+
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea
|
291 |
+
)
|
292 |
+
|
293 |
+
# denoising loop
|
294 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
295 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
296 |
+
for i, t in enumerate(timesteps):
|
297 |
+
# 1. Forward reference image
|
298 |
+
if i == 0:
|
299 |
+
self.reference_unet(
|
300 |
+
ref_image_latents.repeat(
|
301 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
302 |
+
),
|
303 |
+
torch.zeros_like(t),
|
304 |
+
encoder_hidden_states=image_prompt_embeds,
|
305 |
+
return_dict=False,
|
306 |
+
)
|
307 |
+
|
308 |
+
# 2. Update reference unet feature into denosing net
|
309 |
+
reference_control_reader.update(reference_control_writer)
|
310 |
+
|
311 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
312 |
+
latent_model_input = (
|
313 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
314 |
+
)
|
315 |
+
latent_model_input = self.scheduler.scale_model_input(
|
316 |
+
latent_model_input, t
|
317 |
+
)
|
318 |
+
|
319 |
+
noise_pred = self.denoising_unet(
|
320 |
+
latent_model_input,
|
321 |
+
t,
|
322 |
+
encoder_hidden_states=image_prompt_embeds,
|
323 |
+
pose_cond_fea=pose_fea,
|
324 |
+
return_dict=False,
|
325 |
+
)[0]
|
326 |
+
|
327 |
+
# perform guidance
|
328 |
+
if do_classifier_free_guidance:
|
329 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
330 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
331 |
+
noise_pred_text - noise_pred_uncond
|
332 |
+
)
|
333 |
+
|
334 |
+
# compute the previous noisy sample x_t -> x_t-1
|
335 |
+
latents = self.scheduler.step(
|
336 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
337 |
+
)[0]
|
338 |
+
|
339 |
+
# call the callback, if provided
|
340 |
+
if i == len(timesteps) - 1 or (
|
341 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
342 |
+
):
|
343 |
+
progress_bar.update()
|
344 |
+
if callback is not None and i % callback_steps == 0:
|
345 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
346 |
+
callback(step_idx, t, latents)
|
347 |
+
reference_control_reader.clear()
|
348 |
+
reference_control_writer.clear()
|
349 |
+
|
350 |
+
# Post-processing
|
351 |
+
image = self.decode_latents(latents) # (b, c, 1, h, w)
|
352 |
+
|
353 |
+
# Convert to tensor
|
354 |
+
if output_type == "tensor":
|
355 |
+
image = torch.from_numpy(image)
|
356 |
+
|
357 |
+
if not return_dict:
|
358 |
+
return image
|
359 |
+
|
360 |
+
return Pose2ImagePipelineOutput(images=image)
|
pipelines/pipeline_pose2vid.py
ADDED
@@ -0,0 +1,458 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Callable, List, Optional, Union
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import torch
|
7 |
+
from diffusers import DiffusionPipeline
|
8 |
+
from diffusers.image_processor import VaeImageProcessor
|
9 |
+
from diffusers.schedulers import (DDIMScheduler, DPMSolverMultistepScheduler,
|
10 |
+
EulerAncestralDiscreteScheduler,
|
11 |
+
EulerDiscreteScheduler, LMSDiscreteScheduler,
|
12 |
+
PNDMScheduler)
|
13 |
+
from diffusers.utils import BaseOutput, is_accelerate_available
|
14 |
+
from diffusers.utils.torch_utils import randn_tensor
|
15 |
+
from einops import rearrange
|
16 |
+
from tqdm import tqdm
|
17 |
+
from transformers import CLIPImageProcessor
|
18 |
+
|
19 |
+
from musepose.models.mutual_self_attention import ReferenceAttentionControl
|
20 |
+
|
21 |
+
|
22 |
+
@dataclass
|
23 |
+
class Pose2VideoPipelineOutput(BaseOutput):
|
24 |
+
videos: Union[torch.Tensor, np.ndarray]
|
25 |
+
|
26 |
+
|
27 |
+
class Pose2VideoPipeline(DiffusionPipeline):
|
28 |
+
_optional_components = []
|
29 |
+
|
30 |
+
def __init__(
|
31 |
+
self,
|
32 |
+
vae,
|
33 |
+
image_encoder,
|
34 |
+
reference_unet,
|
35 |
+
denoising_unet,
|
36 |
+
pose_guider,
|
37 |
+
scheduler: Union[
|
38 |
+
DDIMScheduler,
|
39 |
+
PNDMScheduler,
|
40 |
+
LMSDiscreteScheduler,
|
41 |
+
EulerDiscreteScheduler,
|
42 |
+
EulerAncestralDiscreteScheduler,
|
43 |
+
DPMSolverMultistepScheduler,
|
44 |
+
],
|
45 |
+
image_proj_model=None,
|
46 |
+
tokenizer=None,
|
47 |
+
text_encoder=None,
|
48 |
+
):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
self.register_modules(
|
52 |
+
vae=vae,
|
53 |
+
image_encoder=image_encoder,
|
54 |
+
reference_unet=reference_unet,
|
55 |
+
denoising_unet=denoising_unet,
|
56 |
+
pose_guider=pose_guider,
|
57 |
+
scheduler=scheduler,
|
58 |
+
image_proj_model=image_proj_model,
|
59 |
+
tokenizer=tokenizer,
|
60 |
+
text_encoder=text_encoder,
|
61 |
+
)
|
62 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
63 |
+
self.clip_image_processor = CLIPImageProcessor()
|
64 |
+
self.ref_image_processor = VaeImageProcessor(
|
65 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
66 |
+
)
|
67 |
+
self.cond_image_processor = VaeImageProcessor(
|
68 |
+
vae_scale_factor=self.vae_scale_factor,
|
69 |
+
do_convert_rgb=True,
|
70 |
+
do_normalize=False,
|
71 |
+
)
|
72 |
+
|
73 |
+
def enable_vae_slicing(self):
|
74 |
+
self.vae.enable_slicing()
|
75 |
+
|
76 |
+
def disable_vae_slicing(self):
|
77 |
+
self.vae.disable_slicing()
|
78 |
+
|
79 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
80 |
+
if is_accelerate_available():
|
81 |
+
from accelerate import cpu_offload
|
82 |
+
else:
|
83 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
84 |
+
|
85 |
+
device = torch.device(f"cuda:{gpu_id}")
|
86 |
+
|
87 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
88 |
+
if cpu_offloaded_model is not None:
|
89 |
+
cpu_offload(cpu_offloaded_model, device)
|
90 |
+
|
91 |
+
@property
|
92 |
+
def _execution_device(self):
|
93 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
94 |
+
return self.device
|
95 |
+
for module in self.unet.modules():
|
96 |
+
if (
|
97 |
+
hasattr(module, "_hf_hook")
|
98 |
+
and hasattr(module._hf_hook, "execution_device")
|
99 |
+
and module._hf_hook.execution_device is not None
|
100 |
+
):
|
101 |
+
return torch.device(module._hf_hook.execution_device)
|
102 |
+
return self.device
|
103 |
+
|
104 |
+
def decode_latents(self, latents):
|
105 |
+
video_length = latents.shape[2]
|
106 |
+
latents = 1 / 0.18215 * latents
|
107 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
108 |
+
# video = self.vae.decode(latents).sample
|
109 |
+
video = []
|
110 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
111 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
112 |
+
video = torch.cat(video)
|
113 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
114 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
115 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
116 |
+
video = video.cpu().float().numpy()
|
117 |
+
return video
|
118 |
+
|
119 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
120 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
121 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
122 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
123 |
+
# and should be between [0, 1]
|
124 |
+
|
125 |
+
accepts_eta = "eta" in set(
|
126 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
127 |
+
)
|
128 |
+
extra_step_kwargs = {}
|
129 |
+
if accepts_eta:
|
130 |
+
extra_step_kwargs["eta"] = eta
|
131 |
+
|
132 |
+
# check if the scheduler accepts generator
|
133 |
+
accepts_generator = "generator" in set(
|
134 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
135 |
+
)
|
136 |
+
if accepts_generator:
|
137 |
+
extra_step_kwargs["generator"] = generator
|
138 |
+
return extra_step_kwargs
|
139 |
+
|
140 |
+
def prepare_latents(
|
141 |
+
self,
|
142 |
+
batch_size,
|
143 |
+
num_channels_latents,
|
144 |
+
width,
|
145 |
+
height,
|
146 |
+
video_length,
|
147 |
+
dtype,
|
148 |
+
device,
|
149 |
+
generator,
|
150 |
+
latents=None,
|
151 |
+
):
|
152 |
+
shape = (
|
153 |
+
batch_size,
|
154 |
+
num_channels_latents,
|
155 |
+
video_length,
|
156 |
+
height // self.vae_scale_factor,
|
157 |
+
width // self.vae_scale_factor,
|
158 |
+
)
|
159 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
160 |
+
raise ValueError(
|
161 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
162 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
163 |
+
)
|
164 |
+
|
165 |
+
if latents is None:
|
166 |
+
latents = randn_tensor(
|
167 |
+
shape, generator=generator, device=device, dtype=dtype
|
168 |
+
)
|
169 |
+
else:
|
170 |
+
latents = latents.to(device)
|
171 |
+
|
172 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
173 |
+
latents = latents * self.scheduler.init_noise_sigma
|
174 |
+
return latents
|
175 |
+
|
176 |
+
def _encode_prompt(
|
177 |
+
self,
|
178 |
+
prompt,
|
179 |
+
device,
|
180 |
+
num_videos_per_prompt,
|
181 |
+
do_classifier_free_guidance,
|
182 |
+
negative_prompt,
|
183 |
+
):
|
184 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
185 |
+
|
186 |
+
text_inputs = self.tokenizer(
|
187 |
+
prompt,
|
188 |
+
padding="max_length",
|
189 |
+
max_length=self.tokenizer.model_max_length,
|
190 |
+
truncation=True,
|
191 |
+
return_tensors="pt",
|
192 |
+
)
|
193 |
+
text_input_ids = text_inputs.input_ids
|
194 |
+
untruncated_ids = self.tokenizer(
|
195 |
+
prompt, padding="longest", return_tensors="pt"
|
196 |
+
).input_ids
|
197 |
+
|
198 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
199 |
+
text_input_ids, untruncated_ids
|
200 |
+
):
|
201 |
+
removed_text = self.tokenizer.batch_decode(
|
202 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
203 |
+
)
|
204 |
+
|
205 |
+
if (
|
206 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
207 |
+
and self.text_encoder.config.use_attention_mask
|
208 |
+
):
|
209 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
210 |
+
else:
|
211 |
+
attention_mask = None
|
212 |
+
|
213 |
+
text_embeddings = self.text_encoder(
|
214 |
+
text_input_ids.to(device),
|
215 |
+
attention_mask=attention_mask,
|
216 |
+
)
|
217 |
+
text_embeddings = text_embeddings[0]
|
218 |
+
|
219 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
220 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
221 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
222 |
+
text_embeddings = text_embeddings.view(
|
223 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
224 |
+
)
|
225 |
+
|
226 |
+
# get unconditional embeddings for classifier free guidance
|
227 |
+
if do_classifier_free_guidance:
|
228 |
+
uncond_tokens: List[str]
|
229 |
+
if negative_prompt is None:
|
230 |
+
uncond_tokens = [""] * batch_size
|
231 |
+
elif type(prompt) is not type(negative_prompt):
|
232 |
+
raise TypeError(
|
233 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
234 |
+
f" {type(prompt)}."
|
235 |
+
)
|
236 |
+
elif isinstance(negative_prompt, str):
|
237 |
+
uncond_tokens = [negative_prompt]
|
238 |
+
elif batch_size != len(negative_prompt):
|
239 |
+
raise ValueError(
|
240 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
241 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
242 |
+
" the batch size of `prompt`."
|
243 |
+
)
|
244 |
+
else:
|
245 |
+
uncond_tokens = negative_prompt
|
246 |
+
|
247 |
+
max_length = text_input_ids.shape[-1]
|
248 |
+
uncond_input = self.tokenizer(
|
249 |
+
uncond_tokens,
|
250 |
+
padding="max_length",
|
251 |
+
max_length=max_length,
|
252 |
+
truncation=True,
|
253 |
+
return_tensors="pt",
|
254 |
+
)
|
255 |
+
|
256 |
+
if (
|
257 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
258 |
+
and self.text_encoder.config.use_attention_mask
|
259 |
+
):
|
260 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
261 |
+
else:
|
262 |
+
attention_mask = None
|
263 |
+
|
264 |
+
uncond_embeddings = self.text_encoder(
|
265 |
+
uncond_input.input_ids.to(device),
|
266 |
+
attention_mask=attention_mask,
|
267 |
+
)
|
268 |
+
uncond_embeddings = uncond_embeddings[0]
|
269 |
+
|
270 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
271 |
+
seq_len = uncond_embeddings.shape[1]
|
272 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
273 |
+
uncond_embeddings = uncond_embeddings.view(
|
274 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
275 |
+
)
|
276 |
+
|
277 |
+
# For classifier free guidance, we need to do two forward passes.
|
278 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
279 |
+
# to avoid doing two forward passes
|
280 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
281 |
+
|
282 |
+
return text_embeddings
|
283 |
+
|
284 |
+
@torch.no_grad()
|
285 |
+
def __call__(
|
286 |
+
self,
|
287 |
+
ref_image,
|
288 |
+
pose_images,
|
289 |
+
width,
|
290 |
+
height,
|
291 |
+
video_length,
|
292 |
+
num_inference_steps,
|
293 |
+
guidance_scale,
|
294 |
+
num_images_per_prompt=1,
|
295 |
+
eta: float = 0.0,
|
296 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
297 |
+
output_type: Optional[str] = "tensor",
|
298 |
+
return_dict: bool = True,
|
299 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
300 |
+
callback_steps: Optional[int] = 1,
|
301 |
+
**kwargs,
|
302 |
+
):
|
303 |
+
# Default height and width to unet
|
304 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
305 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
306 |
+
|
307 |
+
device = self._execution_device
|
308 |
+
|
309 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
310 |
+
|
311 |
+
# Prepare timesteps
|
312 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
313 |
+
timesteps = self.scheduler.timesteps
|
314 |
+
|
315 |
+
batch_size = 1
|
316 |
+
|
317 |
+
# Prepare clip image embeds
|
318 |
+
clip_image = self.clip_image_processor.preprocess(
|
319 |
+
ref_image, return_tensors="pt"
|
320 |
+
).pixel_values
|
321 |
+
clip_image_embeds = self.image_encoder(
|
322 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
323 |
+
).image_embeds
|
324 |
+
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
|
325 |
+
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
|
326 |
+
|
327 |
+
if do_classifier_free_guidance:
|
328 |
+
encoder_hidden_states = torch.cat(
|
329 |
+
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
|
330 |
+
)
|
331 |
+
reference_control_writer = ReferenceAttentionControl(
|
332 |
+
self.reference_unet,
|
333 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
334 |
+
mode="write",
|
335 |
+
batch_size=batch_size,
|
336 |
+
fusion_blocks="full",
|
337 |
+
)
|
338 |
+
reference_control_reader = ReferenceAttentionControl(
|
339 |
+
self.denoising_unet,
|
340 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
341 |
+
mode="read",
|
342 |
+
batch_size=batch_size,
|
343 |
+
fusion_blocks="full",
|
344 |
+
)
|
345 |
+
|
346 |
+
num_channels_latents = self.denoising_unet.in_channels
|
347 |
+
latents = self.prepare_latents(
|
348 |
+
batch_size * num_images_per_prompt,
|
349 |
+
num_channels_latents,
|
350 |
+
width,
|
351 |
+
height,
|
352 |
+
video_length,
|
353 |
+
clip_image_embeds.dtype,
|
354 |
+
device,
|
355 |
+
generator,
|
356 |
+
)
|
357 |
+
|
358 |
+
# Prepare extra step kwargs.
|
359 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
360 |
+
|
361 |
+
# Prepare ref image latents
|
362 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
363 |
+
ref_image, height=height, width=width
|
364 |
+
) # (bs, c, width, height)
|
365 |
+
ref_image_tensor = ref_image_tensor.to(
|
366 |
+
dtype=self.vae.dtype, device=self.vae.device
|
367 |
+
)
|
368 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
369 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
370 |
+
|
371 |
+
# Prepare a list of pose condition images
|
372 |
+
pose_cond_tensor_list = []
|
373 |
+
for pose_image in pose_images:
|
374 |
+
pose_cond_tensor = (
|
375 |
+
torch.from_numpy(np.array(pose_image.resize((width, height)))) / 255.0
|
376 |
+
)
|
377 |
+
pose_cond_tensor = pose_cond_tensor.permute(2, 0, 1).unsqueeze(
|
378 |
+
1
|
379 |
+
) # (c, 1, h, w)
|
380 |
+
pose_cond_tensor_list.append(pose_cond_tensor)
|
381 |
+
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=1) # (c, t, h, w)
|
382 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(0)
|
383 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
384 |
+
device=device, dtype=self.pose_guider.dtype
|
385 |
+
)
|
386 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
387 |
+
pose_fea = (
|
388 |
+
torch.cat([pose_fea] * 2) if do_classifier_free_guidance else pose_fea
|
389 |
+
)
|
390 |
+
|
391 |
+
# denoising loop
|
392 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
393 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
394 |
+
for i, t in enumerate(timesteps):
|
395 |
+
# 1. Forward reference image
|
396 |
+
if i == 0:
|
397 |
+
self.reference_unet(
|
398 |
+
ref_image_latents.repeat(
|
399 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
400 |
+
),
|
401 |
+
torch.zeros_like(t),
|
402 |
+
# t,
|
403 |
+
encoder_hidden_states=encoder_hidden_states,
|
404 |
+
return_dict=False,
|
405 |
+
)
|
406 |
+
reference_control_reader.update(reference_control_writer)
|
407 |
+
|
408 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
409 |
+
latent_model_input = (
|
410 |
+
torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
411 |
+
)
|
412 |
+
latent_model_input = self.scheduler.scale_model_input(
|
413 |
+
latent_model_input, t
|
414 |
+
)
|
415 |
+
|
416 |
+
noise_pred = self.denoising_unet(
|
417 |
+
latent_model_input,
|
418 |
+
t,
|
419 |
+
encoder_hidden_states=encoder_hidden_states,
|
420 |
+
pose_cond_fea=pose_fea,
|
421 |
+
return_dict=False,
|
422 |
+
)[0]
|
423 |
+
|
424 |
+
# perform guidance
|
425 |
+
if do_classifier_free_guidance:
|
426 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
427 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
428 |
+
noise_pred_text - noise_pred_uncond
|
429 |
+
)
|
430 |
+
|
431 |
+
# compute the previous noisy sample x_t -> x_t-1
|
432 |
+
latents = self.scheduler.step(
|
433 |
+
noise_pred, t, latents, **extra_step_kwargs, return_dict=False
|
434 |
+
)[0]
|
435 |
+
|
436 |
+
# call the callback, if provided
|
437 |
+
if i == len(timesteps) - 1 or (
|
438 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
439 |
+
):
|
440 |
+
progress_bar.update()
|
441 |
+
if callback is not None and i % callback_steps == 0:
|
442 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
443 |
+
callback(step_idx, t, latents)
|
444 |
+
|
445 |
+
reference_control_reader.clear()
|
446 |
+
reference_control_writer.clear()
|
447 |
+
|
448 |
+
# Post-processing
|
449 |
+
images = self.decode_latents(latents) # (b, c, f, h, w)
|
450 |
+
|
451 |
+
# Convert to tensor
|
452 |
+
if output_type == "tensor":
|
453 |
+
images = torch.from_numpy(images)
|
454 |
+
|
455 |
+
if not return_dict:
|
456 |
+
return images
|
457 |
+
|
458 |
+
return Pose2VideoPipelineOutput(videos=images)
|
pipelines/pipeline_pose2vid_long.py
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://github.com/magic-research/magic-animate/blob/main/magicanimate/pipelines/pipeline_animation.py
|
2 |
+
import inspect
|
3 |
+
import math
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Callable, List, Optional, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import torch
|
9 |
+
from diffusers import DiffusionPipeline
|
10 |
+
from diffusers.image_processor import VaeImageProcessor
|
11 |
+
from diffusers.schedulers import (
|
12 |
+
DDIMScheduler,
|
13 |
+
DPMSolverMultistepScheduler,
|
14 |
+
EulerAncestralDiscreteScheduler,
|
15 |
+
EulerDiscreteScheduler,
|
16 |
+
LMSDiscreteScheduler,
|
17 |
+
PNDMScheduler,
|
18 |
+
)
|
19 |
+
from diffusers.utils import BaseOutput, deprecate, is_accelerate_available, logging
|
20 |
+
from diffusers.utils.torch_utils import randn_tensor
|
21 |
+
from einops import rearrange
|
22 |
+
from tqdm import tqdm
|
23 |
+
from transformers import CLIPImageProcessor
|
24 |
+
|
25 |
+
from musepose.models.mutual_self_attention import ReferenceAttentionControl
|
26 |
+
from musepose.pipelines.context import get_context_scheduler
|
27 |
+
from musepose.pipelines.utils import get_tensor_interpolation_method
|
28 |
+
|
29 |
+
|
30 |
+
@dataclass
|
31 |
+
class Pose2VideoPipelineOutput(BaseOutput):
|
32 |
+
videos: Union[torch.Tensor, np.ndarray]
|
33 |
+
|
34 |
+
|
35 |
+
class Pose2VideoPipeline(DiffusionPipeline):
|
36 |
+
_optional_components = []
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
vae,
|
41 |
+
image_encoder,
|
42 |
+
reference_unet,
|
43 |
+
denoising_unet,
|
44 |
+
pose_guider,
|
45 |
+
scheduler: Union[
|
46 |
+
DDIMScheduler,
|
47 |
+
PNDMScheduler,
|
48 |
+
LMSDiscreteScheduler,
|
49 |
+
EulerDiscreteScheduler,
|
50 |
+
EulerAncestralDiscreteScheduler,
|
51 |
+
DPMSolverMultistepScheduler,
|
52 |
+
],
|
53 |
+
image_proj_model=None,
|
54 |
+
tokenizer=None,
|
55 |
+
text_encoder=None,
|
56 |
+
):
|
57 |
+
super().__init__()
|
58 |
+
|
59 |
+
self.register_modules(
|
60 |
+
vae=vae,
|
61 |
+
image_encoder=image_encoder,
|
62 |
+
reference_unet=reference_unet,
|
63 |
+
denoising_unet=denoising_unet,
|
64 |
+
pose_guider=pose_guider,
|
65 |
+
scheduler=scheduler,
|
66 |
+
image_proj_model=image_proj_model,
|
67 |
+
tokenizer=tokenizer,
|
68 |
+
text_encoder=text_encoder,
|
69 |
+
)
|
70 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
71 |
+
self.clip_image_processor = CLIPImageProcessor()
|
72 |
+
self.ref_image_processor = VaeImageProcessor(
|
73 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True
|
74 |
+
)
|
75 |
+
self.cond_image_processor = VaeImageProcessor(
|
76 |
+
vae_scale_factor=self.vae_scale_factor,
|
77 |
+
do_convert_rgb=True,
|
78 |
+
do_normalize=False,
|
79 |
+
)
|
80 |
+
|
81 |
+
def enable_vae_slicing(self):
|
82 |
+
self.vae.enable_slicing()
|
83 |
+
|
84 |
+
def disable_vae_slicing(self):
|
85 |
+
self.vae.disable_slicing()
|
86 |
+
|
87 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
88 |
+
if is_accelerate_available():
|
89 |
+
from accelerate import cpu_offload
|
90 |
+
else:
|
91 |
+
raise ImportError("Please install accelerate via `pip install accelerate`")
|
92 |
+
|
93 |
+
device = torch.device(f"cuda:{gpu_id}")
|
94 |
+
|
95 |
+
for cpu_offloaded_model in [self.unet, self.text_encoder, self.vae]:
|
96 |
+
if cpu_offloaded_model is not None:
|
97 |
+
cpu_offload(cpu_offloaded_model, device)
|
98 |
+
|
99 |
+
@property
|
100 |
+
def _execution_device(self):
|
101 |
+
if self.device != torch.device("meta") or not hasattr(self.unet, "_hf_hook"):
|
102 |
+
return self.device
|
103 |
+
for module in self.unet.modules():
|
104 |
+
if (
|
105 |
+
hasattr(module, "_hf_hook")
|
106 |
+
and hasattr(module._hf_hook, "execution_device")
|
107 |
+
and module._hf_hook.execution_device is not None
|
108 |
+
):
|
109 |
+
return torch.device(module._hf_hook.execution_device)
|
110 |
+
return self.device
|
111 |
+
|
112 |
+
def decode_latents(self, latents):
|
113 |
+
video_length = latents.shape[2]
|
114 |
+
latents = 1 / 0.18215 * latents
|
115 |
+
latents = rearrange(latents, "b c f h w -> (b f) c h w")
|
116 |
+
# video = self.vae.decode(latents).sample
|
117 |
+
video = []
|
118 |
+
for frame_idx in tqdm(range(latents.shape[0])):
|
119 |
+
video.append(self.vae.decode(latents[frame_idx : frame_idx + 1]).sample)
|
120 |
+
video = torch.cat(video)
|
121 |
+
video = rearrange(video, "(b f) c h w -> b c f h w", f=video_length)
|
122 |
+
video = (video / 2 + 0.5).clamp(0, 1)
|
123 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
124 |
+
video = video.cpu().float().numpy()
|
125 |
+
return video
|
126 |
+
|
127 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
128 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
129 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
130 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
131 |
+
# and should be between [0, 1]
|
132 |
+
|
133 |
+
accepts_eta = "eta" in set(
|
134 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
135 |
+
)
|
136 |
+
extra_step_kwargs = {}
|
137 |
+
if accepts_eta:
|
138 |
+
extra_step_kwargs["eta"] = eta
|
139 |
+
|
140 |
+
# check if the scheduler accepts generator
|
141 |
+
accepts_generator = "generator" in set(
|
142 |
+
inspect.signature(self.scheduler.step).parameters.keys()
|
143 |
+
)
|
144 |
+
if accepts_generator:
|
145 |
+
extra_step_kwargs["generator"] = generator
|
146 |
+
return extra_step_kwargs
|
147 |
+
|
148 |
+
def prepare_latents(
|
149 |
+
self,
|
150 |
+
batch_size,
|
151 |
+
num_channels_latents,
|
152 |
+
width,
|
153 |
+
height,
|
154 |
+
video_length,
|
155 |
+
dtype,
|
156 |
+
device,
|
157 |
+
generator,
|
158 |
+
latents=None,
|
159 |
+
):
|
160 |
+
shape = (
|
161 |
+
batch_size,
|
162 |
+
num_channels_latents,
|
163 |
+
video_length,
|
164 |
+
height // self.vae_scale_factor,
|
165 |
+
width // self.vae_scale_factor,
|
166 |
+
)
|
167 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
168 |
+
raise ValueError(
|
169 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
170 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
171 |
+
)
|
172 |
+
|
173 |
+
if latents is None:
|
174 |
+
latents = randn_tensor(
|
175 |
+
shape, generator=generator, device=device, dtype=dtype
|
176 |
+
)
|
177 |
+
else:
|
178 |
+
latents = latents.to(device)
|
179 |
+
|
180 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
181 |
+
latents = latents * self.scheduler.init_noise_sigma
|
182 |
+
return latents
|
183 |
+
|
184 |
+
def _encode_prompt(
|
185 |
+
self,
|
186 |
+
prompt,
|
187 |
+
device,
|
188 |
+
num_videos_per_prompt,
|
189 |
+
do_classifier_free_guidance,
|
190 |
+
negative_prompt,
|
191 |
+
):
|
192 |
+
batch_size = len(prompt) if isinstance(prompt, list) else 1
|
193 |
+
|
194 |
+
text_inputs = self.tokenizer(
|
195 |
+
prompt,
|
196 |
+
padding="max_length",
|
197 |
+
max_length=self.tokenizer.model_max_length,
|
198 |
+
truncation=True,
|
199 |
+
return_tensors="pt",
|
200 |
+
)
|
201 |
+
text_input_ids = text_inputs.input_ids
|
202 |
+
untruncated_ids = self.tokenizer(
|
203 |
+
prompt, padding="longest", return_tensors="pt"
|
204 |
+
).input_ids
|
205 |
+
|
206 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
207 |
+
text_input_ids, untruncated_ids
|
208 |
+
):
|
209 |
+
removed_text = self.tokenizer.batch_decode(
|
210 |
+
untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
|
211 |
+
)
|
212 |
+
|
213 |
+
if (
|
214 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
215 |
+
and self.text_encoder.config.use_attention_mask
|
216 |
+
):
|
217 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
218 |
+
else:
|
219 |
+
attention_mask = None
|
220 |
+
|
221 |
+
text_embeddings = self.text_encoder(
|
222 |
+
text_input_ids.to(device),
|
223 |
+
attention_mask=attention_mask,
|
224 |
+
)
|
225 |
+
text_embeddings = text_embeddings[0]
|
226 |
+
|
227 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
228 |
+
bs_embed, seq_len, _ = text_embeddings.shape
|
229 |
+
text_embeddings = text_embeddings.repeat(1, num_videos_per_prompt, 1)
|
230 |
+
text_embeddings = text_embeddings.view(
|
231 |
+
bs_embed * num_videos_per_prompt, seq_len, -1
|
232 |
+
)
|
233 |
+
|
234 |
+
# get unconditional embeddings for classifier free guidance
|
235 |
+
if do_classifier_free_guidance:
|
236 |
+
uncond_tokens: List[str]
|
237 |
+
if negative_prompt is None:
|
238 |
+
uncond_tokens = [""] * batch_size
|
239 |
+
elif type(prompt) is not type(negative_prompt):
|
240 |
+
raise TypeError(
|
241 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
242 |
+
f" {type(prompt)}."
|
243 |
+
)
|
244 |
+
elif isinstance(negative_prompt, str):
|
245 |
+
uncond_tokens = [negative_prompt]
|
246 |
+
elif batch_size != len(negative_prompt):
|
247 |
+
raise ValueError(
|
248 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
249 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
250 |
+
" the batch size of `prompt`."
|
251 |
+
)
|
252 |
+
else:
|
253 |
+
uncond_tokens = negative_prompt
|
254 |
+
|
255 |
+
max_length = text_input_ids.shape[-1]
|
256 |
+
uncond_input = self.tokenizer(
|
257 |
+
uncond_tokens,
|
258 |
+
padding="max_length",
|
259 |
+
max_length=max_length,
|
260 |
+
truncation=True,
|
261 |
+
return_tensors="pt",
|
262 |
+
)
|
263 |
+
|
264 |
+
if (
|
265 |
+
hasattr(self.text_encoder.config, "use_attention_mask")
|
266 |
+
and self.text_encoder.config.use_attention_mask
|
267 |
+
):
|
268 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
269 |
+
else:
|
270 |
+
attention_mask = None
|
271 |
+
|
272 |
+
uncond_embeddings = self.text_encoder(
|
273 |
+
uncond_input.input_ids.to(device),
|
274 |
+
attention_mask=attention_mask,
|
275 |
+
)
|
276 |
+
uncond_embeddings = uncond_embeddings[0]
|
277 |
+
|
278 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
279 |
+
seq_len = uncond_embeddings.shape[1]
|
280 |
+
uncond_embeddings = uncond_embeddings.repeat(1, num_videos_per_prompt, 1)
|
281 |
+
uncond_embeddings = uncond_embeddings.view(
|
282 |
+
batch_size * num_videos_per_prompt, seq_len, -1
|
283 |
+
)
|
284 |
+
|
285 |
+
# For classifier free guidance, we need to do two forward passes.
|
286 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
287 |
+
# to avoid doing two forward passes
|
288 |
+
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
289 |
+
|
290 |
+
return text_embeddings
|
291 |
+
|
292 |
+
def interpolate_latents(
|
293 |
+
self, latents: torch.Tensor, interpolation_factor: int, device
|
294 |
+
):
|
295 |
+
if interpolation_factor < 2:
|
296 |
+
return latents
|
297 |
+
|
298 |
+
new_latents = torch.zeros(
|
299 |
+
(
|
300 |
+
latents.shape[0],
|
301 |
+
latents.shape[1],
|
302 |
+
((latents.shape[2] - 1) * interpolation_factor) + 1,
|
303 |
+
latents.shape[3],
|
304 |
+
latents.shape[4],
|
305 |
+
),
|
306 |
+
device=latents.device,
|
307 |
+
dtype=latents.dtype,
|
308 |
+
)
|
309 |
+
|
310 |
+
org_video_length = latents.shape[2]
|
311 |
+
rate = [i / interpolation_factor for i in range(interpolation_factor)][1:]
|
312 |
+
|
313 |
+
new_index = 0
|
314 |
+
|
315 |
+
v0 = None
|
316 |
+
v1 = None
|
317 |
+
|
318 |
+
for i0, i1 in zip(range(org_video_length), range(org_video_length)[1:]):
|
319 |
+
v0 = latents[:, :, i0, :, :]
|
320 |
+
v1 = latents[:, :, i1, :, :]
|
321 |
+
|
322 |
+
new_latents[:, :, new_index, :, :] = v0
|
323 |
+
new_index += 1
|
324 |
+
|
325 |
+
for f in rate:
|
326 |
+
v = get_tensor_interpolation_method()(
|
327 |
+
v0.to(device=device), v1.to(device=device), f
|
328 |
+
)
|
329 |
+
new_latents[:, :, new_index, :, :] = v.to(latents.device)
|
330 |
+
new_index += 1
|
331 |
+
|
332 |
+
new_latents[:, :, new_index, :, :] = v1
|
333 |
+
new_index += 1
|
334 |
+
|
335 |
+
return new_latents
|
336 |
+
|
337 |
+
@torch.no_grad()
|
338 |
+
def __call__(
|
339 |
+
self,
|
340 |
+
ref_image,
|
341 |
+
pose_images,
|
342 |
+
width,
|
343 |
+
height,
|
344 |
+
video_length,
|
345 |
+
num_inference_steps,
|
346 |
+
guidance_scale,
|
347 |
+
num_images_per_prompt=1,
|
348 |
+
eta: float = 0.0,
|
349 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
350 |
+
output_type: Optional[str] = "tensor",
|
351 |
+
return_dict: bool = True,
|
352 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
353 |
+
callback_steps: Optional[int] = 1,
|
354 |
+
context_schedule="uniform",
|
355 |
+
context_frames=24,
|
356 |
+
context_stride=1,
|
357 |
+
context_overlap=4,
|
358 |
+
context_batch_size=1,
|
359 |
+
interpolation_factor=1,
|
360 |
+
**kwargs,
|
361 |
+
):
|
362 |
+
# Default height and width to unet
|
363 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
364 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
365 |
+
|
366 |
+
device = self._execution_device
|
367 |
+
|
368 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
369 |
+
|
370 |
+
# Prepare timesteps
|
371 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
372 |
+
timesteps = self.scheduler.timesteps
|
373 |
+
|
374 |
+
batch_size = 1
|
375 |
+
|
376 |
+
# Prepare clip image embeds
|
377 |
+
clip_image = self.clip_image_processor.preprocess(
|
378 |
+
ref_image.resize((224, 224)), return_tensors="pt"
|
379 |
+
).pixel_values
|
380 |
+
clip_image_embeds = self.image_encoder(
|
381 |
+
clip_image.to(device, dtype=self.image_encoder.dtype)
|
382 |
+
).image_embeds
|
383 |
+
encoder_hidden_states = clip_image_embeds.unsqueeze(1)
|
384 |
+
uncond_encoder_hidden_states = torch.zeros_like(encoder_hidden_states)
|
385 |
+
|
386 |
+
if do_classifier_free_guidance:
|
387 |
+
encoder_hidden_states = torch.cat(
|
388 |
+
[uncond_encoder_hidden_states, encoder_hidden_states], dim=0
|
389 |
+
)
|
390 |
+
|
391 |
+
reference_control_writer = ReferenceAttentionControl(
|
392 |
+
self.reference_unet,
|
393 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
394 |
+
mode="write",
|
395 |
+
batch_size=batch_size,
|
396 |
+
fusion_blocks="full",
|
397 |
+
)
|
398 |
+
reference_control_reader = ReferenceAttentionControl(
|
399 |
+
self.denoising_unet,
|
400 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
401 |
+
mode="read",
|
402 |
+
batch_size=batch_size,
|
403 |
+
fusion_blocks="full",
|
404 |
+
)
|
405 |
+
|
406 |
+
num_channels_latents = self.denoising_unet.in_channels
|
407 |
+
latents = self.prepare_latents(
|
408 |
+
batch_size * num_images_per_prompt,
|
409 |
+
num_channels_latents,
|
410 |
+
width,
|
411 |
+
height,
|
412 |
+
video_length,
|
413 |
+
clip_image_embeds.dtype,
|
414 |
+
device,
|
415 |
+
generator,
|
416 |
+
)
|
417 |
+
|
418 |
+
# Prepare extra step kwargs.
|
419 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
420 |
+
|
421 |
+
# Prepare ref image latents
|
422 |
+
ref_image_tensor = self.ref_image_processor.preprocess(
|
423 |
+
ref_image, height=height, width=width
|
424 |
+
) # (bs, c, width, height)
|
425 |
+
ref_image_tensor = ref_image_tensor.to(
|
426 |
+
dtype=self.vae.dtype, device=self.vae.device
|
427 |
+
)
|
428 |
+
ref_image_latents = self.vae.encode(ref_image_tensor).latent_dist.mean
|
429 |
+
ref_image_latents = ref_image_latents * 0.18215 # (b, 4, h, w)
|
430 |
+
|
431 |
+
# Prepare a list of pose condition images
|
432 |
+
pose_cond_tensor_list = []
|
433 |
+
for pose_image in pose_images:
|
434 |
+
pose_cond_tensor = self.cond_image_processor.preprocess(
|
435 |
+
pose_image, height=height, width=width
|
436 |
+
)
|
437 |
+
pose_cond_tensor = pose_cond_tensor.unsqueeze(2) # (bs, c, 1, h, w)
|
438 |
+
pose_cond_tensor_list.append(pose_cond_tensor)
|
439 |
+
pose_cond_tensor = torch.cat(pose_cond_tensor_list, dim=2) # (bs, c, t, h, w)
|
440 |
+
pose_cond_tensor = pose_cond_tensor.to(
|
441 |
+
device=device, dtype=self.pose_guider.dtype
|
442 |
+
)
|
443 |
+
pose_fea = self.pose_guider(pose_cond_tensor)
|
444 |
+
|
445 |
+
context_scheduler = get_context_scheduler(context_schedule)
|
446 |
+
|
447 |
+
# denoising loop
|
448 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
449 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
450 |
+
for i, t in enumerate(timesteps):
|
451 |
+
noise_pred = torch.zeros(
|
452 |
+
(
|
453 |
+
latents.shape[0] * (2 if do_classifier_free_guidance else 1),
|
454 |
+
*latents.shape[1:],
|
455 |
+
),
|
456 |
+
device=latents.device,
|
457 |
+
dtype=latents.dtype,
|
458 |
+
)
|
459 |
+
counter = torch.zeros(
|
460 |
+
(1, 1, latents.shape[2], 1, 1),
|
461 |
+
device=latents.device,
|
462 |
+
dtype=latents.dtype,
|
463 |
+
)
|
464 |
+
|
465 |
+
# 1. Forward reference image
|
466 |
+
if i == 0:
|
467 |
+
self.reference_unet(
|
468 |
+
ref_image_latents.repeat(
|
469 |
+
(2 if do_classifier_free_guidance else 1), 1, 1, 1
|
470 |
+
),
|
471 |
+
torch.zeros_like(t),
|
472 |
+
# t,
|
473 |
+
encoder_hidden_states=encoder_hidden_states,
|
474 |
+
return_dict=False,
|
475 |
+
)
|
476 |
+
reference_control_reader.update(reference_control_writer)
|
477 |
+
|
478 |
+
context_queue = list(
|
479 |
+
context_scheduler(
|
480 |
+
0,
|
481 |
+
num_inference_steps,
|
482 |
+
latents.shape[2],
|
483 |
+
context_frames,
|
484 |
+
context_stride,
|
485 |
+
0,
|
486 |
+
)
|
487 |
+
)
|
488 |
+
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
|
489 |
+
|
490 |
+
context_queue = list(
|
491 |
+
context_scheduler(
|
492 |
+
0,
|
493 |
+
num_inference_steps,
|
494 |
+
latents.shape[2],
|
495 |
+
context_frames,
|
496 |
+
context_stride,
|
497 |
+
context_overlap,
|
498 |
+
)
|
499 |
+
)
|
500 |
+
|
501 |
+
num_context_batches = math.ceil(len(context_queue) / context_batch_size)
|
502 |
+
global_context = []
|
503 |
+
for i in range(num_context_batches):
|
504 |
+
global_context.append(
|
505 |
+
context_queue[
|
506 |
+
i * context_batch_size : (i + 1) * context_batch_size
|
507 |
+
]
|
508 |
+
)
|
509 |
+
|
510 |
+
for context in global_context:
|
511 |
+
# 3.1 expand the latents if we are doing classifier free guidance
|
512 |
+
latent_model_input = (
|
513 |
+
torch.cat([latents[:, :, c] for c in context])
|
514 |
+
.to(device)
|
515 |
+
.repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
516 |
+
)
|
517 |
+
latent_model_input = self.scheduler.scale_model_input(
|
518 |
+
latent_model_input, t
|
519 |
+
)
|
520 |
+
b, c, f, h, w = latent_model_input.shape
|
521 |
+
latent_pose_input = torch.cat(
|
522 |
+
[pose_fea[:, :, c] for c in context]
|
523 |
+
).repeat(2 if do_classifier_free_guidance else 1, 1, 1, 1, 1)
|
524 |
+
|
525 |
+
pred = self.denoising_unet(
|
526 |
+
latent_model_input,
|
527 |
+
t,
|
528 |
+
encoder_hidden_states=encoder_hidden_states[:b],
|
529 |
+
pose_cond_fea=latent_pose_input,
|
530 |
+
return_dict=False,
|
531 |
+
)[0]
|
532 |
+
|
533 |
+
for j, c in enumerate(context):
|
534 |
+
noise_pred[:, :, c] = noise_pred[:, :, c] + pred
|
535 |
+
counter[:, :, c] = counter[:, :, c] + 1
|
536 |
+
|
537 |
+
# perform guidance
|
538 |
+
if do_classifier_free_guidance:
|
539 |
+
noise_pred_uncond, noise_pred_text = (noise_pred / counter).chunk(2)
|
540 |
+
noise_pred = noise_pred_uncond + guidance_scale * (
|
541 |
+
noise_pred_text - noise_pred_uncond
|
542 |
+
)
|
543 |
+
|
544 |
+
latents = self.scheduler.step(
|
545 |
+
noise_pred, t, latents, **extra_step_kwargs
|
546 |
+
).prev_sample
|
547 |
+
|
548 |
+
if i == len(timesteps) - 1 or (
|
549 |
+
(i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
550 |
+
):
|
551 |
+
progress_bar.update()
|
552 |
+
if callback is not None and i % callback_steps == 0:
|
553 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
554 |
+
callback(step_idx, t, latents)
|
555 |
+
|
556 |
+
reference_control_reader.clear()
|
557 |
+
reference_control_writer.clear()
|
558 |
+
|
559 |
+
if interpolation_factor > 0:
|
560 |
+
latents = self.interpolate_latents(latents, interpolation_factor, device)
|
561 |
+
# Post-processing
|
562 |
+
images = self.decode_latents(latents) # (b, c, f, h, w)
|
563 |
+
|
564 |
+
# Convert to tensor
|
565 |
+
if output_type == "tensor":
|
566 |
+
images = torch.from_numpy(images)
|
567 |
+
|
568 |
+
if not return_dict:
|
569 |
+
return images
|
570 |
+
|
571 |
+
return Pose2VideoPipelineOutput(videos=images)
|
pipelines/utils.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
|
3 |
+
tensor_interpolation = None
|
4 |
+
|
5 |
+
|
6 |
+
def get_tensor_interpolation_method():
|
7 |
+
return tensor_interpolation
|
8 |
+
|
9 |
+
|
10 |
+
def set_tensor_interpolation_method(is_slerp):
|
11 |
+
global tensor_interpolation
|
12 |
+
tensor_interpolation = slerp if is_slerp else linear
|
13 |
+
|
14 |
+
|
15 |
+
def linear(v1, v2, t):
|
16 |
+
return (1.0 - t) * v1 + t * v2
|
17 |
+
|
18 |
+
|
19 |
+
def slerp(
|
20 |
+
v0: torch.Tensor, v1: torch.Tensor, t: float, DOT_THRESHOLD: float = 0.9995
|
21 |
+
) -> torch.Tensor:
|
22 |
+
u0 = v0 / v0.norm()
|
23 |
+
u1 = v1 / v1.norm()
|
24 |
+
dot = (u0 * u1).sum()
|
25 |
+
if dot.abs() > DOT_THRESHOLD:
|
26 |
+
# logger.info(f'warning: v0 and v1 close to parallel, using linear interpolation instead.')
|
27 |
+
return (1.0 - t) * v0 + t * v1
|
28 |
+
omega = dot.acos()
|
29 |
+
return (((1.0 - t) * omega).sin() * v0 + (t * omega).sin() * v1) / omega.sin()
|
utils/util.py
ADDED
@@ -0,0 +1,133 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
import os
|
3 |
+
import os.path as osp
|
4 |
+
import shutil
|
5 |
+
import sys
|
6 |
+
from pathlib import Path
|
7 |
+
|
8 |
+
import av
|
9 |
+
import numpy as np
|
10 |
+
import torch
|
11 |
+
import torchvision
|
12 |
+
from einops import rearrange
|
13 |
+
from PIL import Image
|
14 |
+
|
15 |
+
|
16 |
+
def seed_everything(seed):
|
17 |
+
import random
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
torch.manual_seed(seed)
|
22 |
+
torch.cuda.manual_seed_all(seed)
|
23 |
+
np.random.seed(seed % (2**32))
|
24 |
+
random.seed(seed)
|
25 |
+
|
26 |
+
|
27 |
+
def import_filename(filename):
|
28 |
+
spec = importlib.util.spec_from_file_location("mymodule", filename)
|
29 |
+
module = importlib.util.module_from_spec(spec)
|
30 |
+
sys.modules[spec.name] = module
|
31 |
+
spec.loader.exec_module(module)
|
32 |
+
return module
|
33 |
+
|
34 |
+
|
35 |
+
def delete_additional_ckpt(base_path, num_keep):
|
36 |
+
dirs = []
|
37 |
+
for d in os.listdir(base_path):
|
38 |
+
if d.startswith("checkpoint-"):
|
39 |
+
dirs.append(d)
|
40 |
+
num_tot = len(dirs)
|
41 |
+
if num_tot <= num_keep:
|
42 |
+
return
|
43 |
+
# ensure ckpt is sorted and delete the ealier!
|
44 |
+
del_dirs = sorted(dirs, key=lambda x: int(x.split("-")[-1]))[: num_tot - num_keep]
|
45 |
+
for d in del_dirs:
|
46 |
+
path_to_dir = osp.join(base_path, d)
|
47 |
+
if osp.exists(path_to_dir):
|
48 |
+
shutil.rmtree(path_to_dir)
|
49 |
+
|
50 |
+
|
51 |
+
def save_videos_from_pil(pil_images, path, fps=8):
|
52 |
+
import av
|
53 |
+
|
54 |
+
save_fmt = Path(path).suffix
|
55 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
56 |
+
width, height = pil_images[0].size
|
57 |
+
|
58 |
+
if save_fmt == ".mp4":
|
59 |
+
codec = "libx264"
|
60 |
+
container = av.open(path, "w")
|
61 |
+
stream = container.add_stream(codec, rate=fps)
|
62 |
+
|
63 |
+
stream.width = width
|
64 |
+
stream.height = height
|
65 |
+
stream.pix_fmt = 'yuv420p'
|
66 |
+
stream.bit_rate = 10000000
|
67 |
+
stream.options["crf"] = "18"
|
68 |
+
|
69 |
+
|
70 |
+
|
71 |
+
for pil_image in pil_images:
|
72 |
+
# pil_image = Image.fromarray(image_arr).convert("RGB")
|
73 |
+
av_frame = av.VideoFrame.from_image(pil_image)
|
74 |
+
container.mux(stream.encode(av_frame))
|
75 |
+
container.mux(stream.encode())
|
76 |
+
container.close()
|
77 |
+
|
78 |
+
elif save_fmt == ".gif":
|
79 |
+
pil_images[0].save(
|
80 |
+
fp=path,
|
81 |
+
format="GIF",
|
82 |
+
append_images=pil_images[1:],
|
83 |
+
save_all=True,
|
84 |
+
duration=(1 / fps * 1000),
|
85 |
+
loop=0,
|
86 |
+
)
|
87 |
+
else:
|
88 |
+
raise ValueError("Unsupported file type. Use .mp4 or .gif.")
|
89 |
+
|
90 |
+
|
91 |
+
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=6, fps=8):
|
92 |
+
videos = rearrange(videos, "b c t h w -> t b c h w")
|
93 |
+
height, width = videos.shape[-2:]
|
94 |
+
outputs = []
|
95 |
+
|
96 |
+
for x in videos:
|
97 |
+
x = torchvision.utils.make_grid(x, nrow=n_rows) # (c h w)
|
98 |
+
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) # (h w c)
|
99 |
+
if rescale:
|
100 |
+
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
|
101 |
+
x = (x * 255).numpy().astype(np.uint8)
|
102 |
+
x = Image.fromarray(x)
|
103 |
+
|
104 |
+
outputs.append(x)
|
105 |
+
|
106 |
+
os.makedirs(os.path.dirname(path), exist_ok=True)
|
107 |
+
|
108 |
+
save_videos_from_pil(outputs, path, fps)
|
109 |
+
|
110 |
+
|
111 |
+
def read_frames(video_path):
|
112 |
+
container = av.open(video_path)
|
113 |
+
|
114 |
+
video_stream = next(s for s in container.streams if s.type == "video")
|
115 |
+
frames = []
|
116 |
+
for packet in container.demux(video_stream):
|
117 |
+
for frame in packet.decode():
|
118 |
+
image = Image.frombytes(
|
119 |
+
"RGB",
|
120 |
+
(frame.width, frame.height),
|
121 |
+
frame.to_rgb().to_ndarray(),
|
122 |
+
)
|
123 |
+
frames.append(image)
|
124 |
+
|
125 |
+
return frames
|
126 |
+
|
127 |
+
|
128 |
+
def get_fps(video_path):
|
129 |
+
container = av.open(video_path)
|
130 |
+
video_stream = next(s for s in container.streams if s.type == "video")
|
131 |
+
fps = video_stream.average_rate
|
132 |
+
container.close()
|
133 |
+
return fps
|