Spaces:
Sleeping
Sleeping
import os | |
import random | |
from PIL import Image | |
import h5py | |
import numpy as np | |
import torch | |
from torch.utils.data import Dataset, DataLoader, ConcatDataset | |
from dkm.utils import get_depth_tuple_transform_ops, get_tuple_transform_ops | |
import torchvision.transforms.functional as tvf | |
from dkm.utils.transforms import GeometricSequential | |
import kornia.augmentation as K | |
class MegadepthScene: | |
def __init__( | |
self, | |
data_root, | |
scene_info, | |
ht=384, | |
wt=512, | |
min_overlap=0.0, | |
shake_t=0, | |
rot_prob=0.0, | |
normalize=True, | |
) -> None: | |
self.data_root = data_root | |
self.image_paths = scene_info["image_paths"] | |
self.depth_paths = scene_info["depth_paths"] | |
self.intrinsics = scene_info["intrinsics"] | |
self.poses = scene_info["poses"] | |
self.pairs = scene_info["pairs"] | |
self.overlaps = scene_info["overlaps"] | |
threshold = self.overlaps > min_overlap | |
self.pairs = self.pairs[threshold] | |
self.overlaps = self.overlaps[threshold] | |
if len(self.pairs) > 100000: | |
pairinds = np.random.choice( | |
np.arange(0, len(self.pairs)), 100000, replace=False | |
) | |
self.pairs = self.pairs[pairinds] | |
self.overlaps = self.overlaps[pairinds] | |
# counts, bins = np.histogram(self.overlaps,20) | |
# print(counts) | |
self.im_transform_ops = get_tuple_transform_ops( | |
resize=(ht, wt), normalize=normalize | |
) | |
self.depth_transform_ops = get_depth_tuple_transform_ops( | |
resize=(ht, wt), normalize=False | |
) | |
self.wt, self.ht = wt, ht | |
self.shake_t = shake_t | |
self.H_generator = GeometricSequential(K.RandomAffine(degrees=90, p=rot_prob)) | |
def load_im(self, im_ref, crop=None): | |
im = Image.open(im_ref) | |
return im | |
def load_depth(self, depth_ref, crop=None): | |
depth = np.array(h5py.File(depth_ref, "r")["depth"]) | |
return torch.from_numpy(depth) | |
def __len__(self): | |
return len(self.pairs) | |
def scale_intrinsic(self, K, wi, hi): | |
sx, sy = self.wt / wi, self.ht / hi | |
sK = torch.tensor([[sx, 0, 0], [0, sy, 0], [0, 0, 1]]) | |
return sK @ K | |
def rand_shake(self, *things): | |
t = np.random.choice(range(-self.shake_t, self.shake_t + 1), size=2) | |
return [ | |
tvf.affine(thing, angle=0.0, translate=list(t), scale=1.0, shear=[0.0, 0.0]) | |
for thing in things | |
], t | |
def __getitem__(self, pair_idx): | |
# read intrinsics of original size | |
idx1, idx2 = self.pairs[pair_idx] | |
K1 = torch.tensor(self.intrinsics[idx1].copy(), dtype=torch.float).reshape(3, 3) | |
K2 = torch.tensor(self.intrinsics[idx2].copy(), dtype=torch.float).reshape(3, 3) | |
# read and compute relative poses | |
T1 = self.poses[idx1] | |
T2 = self.poses[idx2] | |
T_1to2 = torch.tensor(np.matmul(T2, np.linalg.inv(T1)), dtype=torch.float)[ | |
:4, :4 | |
] # (4, 4) | |
# Load positive pair data | |
im1, im2 = self.image_paths[idx1], self.image_paths[idx2] | |
depth1, depth2 = self.depth_paths[idx1], self.depth_paths[idx2] | |
im_src_ref = os.path.join(self.data_root, im1) | |
im_pos_ref = os.path.join(self.data_root, im2) | |
depth_src_ref = os.path.join(self.data_root, depth1) | |
depth_pos_ref = os.path.join(self.data_root, depth2) | |
# return torch.randn((1000,1000)) | |
im_src = self.load_im(im_src_ref) | |
im_pos = self.load_im(im_pos_ref) | |
depth_src = self.load_depth(depth_src_ref) | |
depth_pos = self.load_depth(depth_pos_ref) | |
# Recompute camera intrinsic matrix due to the resize | |
K1 = self.scale_intrinsic(K1, im_src.width, im_src.height) | |
K2 = self.scale_intrinsic(K2, im_pos.width, im_pos.height) | |
# Process images | |
im_src, im_pos = self.im_transform_ops((im_src, im_pos)) | |
depth_src, depth_pos = self.depth_transform_ops( | |
(depth_src[None, None], depth_pos[None, None]) | |
) | |
[im_src, im_pos, depth_src, depth_pos], t = self.rand_shake( | |
im_src, im_pos, depth_src, depth_pos | |
) | |
im_src, Hq = self.H_generator(im_src[None]) | |
depth_src = self.H_generator.apply_transform(depth_src, Hq) | |
K1[:2, 2] += t | |
K2[:2, 2] += t | |
K1 = Hq[0] @ K1 | |
data_dict = { | |
"query": im_src[0], | |
"query_identifier": self.image_paths[idx1].split("/")[-1].split(".jpg")[0], | |
"support": im_pos, | |
"support_identifier": self.image_paths[idx2] | |
.split("/")[-1] | |
.split(".jpg")[0], | |
"query_depth": depth_src[0, 0], | |
"support_depth": depth_pos[0, 0], | |
"K1": K1, | |
"K2": K2, | |
"T_1to2": T_1to2, | |
} | |
return data_dict | |
class MegadepthBuilder: | |
def __init__(self, data_root="data/megadepth") -> None: | |
self.data_root = data_root | |
self.scene_info_root = os.path.join(data_root, "prep_scene_info") | |
self.all_scenes = os.listdir(self.scene_info_root) | |
self.test_scenes = ["0017.npy", "0004.npy", "0048.npy", "0013.npy"] | |
self.test_scenes_loftr = ["0015.npy", "0022.npy"] | |
def build_scenes(self, split="train", min_overlap=0.0, **kwargs): | |
if split == "train": | |
scene_names = set(self.all_scenes) - set(self.test_scenes) | |
elif split == "train_loftr": | |
scene_names = set(self.all_scenes) - set(self.test_scenes_loftr) | |
elif split == "test": | |
scene_names = self.test_scenes | |
elif split == "test_loftr": | |
scene_names = self.test_scenes_loftr | |
else: | |
raise ValueError(f"Split {split} not available") | |
scenes = [] | |
for scene_name in scene_names: | |
scene_info = np.load( | |
os.path.join(self.scene_info_root, scene_name), allow_pickle=True | |
).item() | |
scenes.append( | |
MegadepthScene( | |
self.data_root, scene_info, min_overlap=min_overlap, **kwargs | |
) | |
) | |
return scenes | |
def weight_scenes(self, concat_dataset, alpha=0.5): | |
ns = [] | |
for d in concat_dataset.datasets: | |
ns.append(len(d)) | |
ws = torch.cat([torch.ones(n) / n**alpha for n in ns]) | |
return ws | |
if __name__ == "__main__": | |
mega_test = ConcatDataset(MegadepthBuilder().build_scenes(split="train")) | |
mega_test[0] | |