Spaces:
Sleeping
Sleeping
import os | |
import contextlib | |
import joblib | |
from typing import Union | |
from loguru import _Logger, logger | |
from itertools import chain | |
import torch | |
from yacs.config import CfgNode as CN | |
from pytorch_lightning.utilities import rank_zero_only | |
def lower_config(yacs_cfg): | |
if not isinstance(yacs_cfg, CN): | |
return yacs_cfg | |
return {k.lower(): lower_config(v) for k, v in yacs_cfg.items()} | |
def upper_config(dict_cfg): | |
if not isinstance(dict_cfg, dict): | |
return dict_cfg | |
return {k.upper(): upper_config(v) for k, v in dict_cfg.items()} | |
def log_on(condition, message, level): | |
if condition: | |
assert level in ['INFO', 'DEBUG', 'WARNING', 'ERROR', 'CRITICAL'] | |
logger.log(level, message) | |
def get_rank_zero_only_logger(logger: _Logger): | |
if rank_zero_only.rank == 0: | |
return logger | |
else: | |
for _level in logger._core.levels.keys(): | |
level = _level.lower() | |
setattr(logger, level, | |
lambda x: None) | |
logger._log = lambda x: None | |
return logger | |
def setup_gpus(gpus: Union[str, int]) -> int: | |
""" A temporary fix for pytorch-lighting 1.3.x """ | |
gpus = str(gpus) | |
gpu_ids = [] | |
if ',' not in gpus: | |
n_gpus = int(gpus) | |
return n_gpus if n_gpus != -1 else torch.cuda.device_count() | |
else: | |
gpu_ids = [i.strip() for i in gpus.split(',') if i != ''] | |
# setup environment variables | |
visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') | |
if visible_devices is None: | |
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID" | |
os.environ["CUDA_VISIBLE_DEVICES"] = ','.join(str(i) for i in gpu_ids) | |
visible_devices = os.getenv('CUDA_VISIBLE_DEVICES') | |
logger.warning(f'[Temporary Fix] manually set CUDA_VISIBLE_DEVICES when specifying gpus to use: {visible_devices}') | |
else: | |
logger.warning('[Temporary Fix] CUDA_VISIBLE_DEVICES already set by user or the main process.') | |
return len(gpu_ids) | |
def flattenList(x): | |
return list(chain(*x)) | |
def tqdm_joblib(tqdm_object): | |
"""Context manager to patch joblib to report into tqdm progress bar given as argument | |
Usage: | |
with tqdm_joblib(tqdm(desc="My calculation", total=10)) as progress_bar: | |
Parallel(n_jobs=16)(delayed(sqrt)(i**2) for i in range(10)) | |
When iterating over a generator, directly use of tqdm is also a solutin (but monitor the task queuing, instead of finishing) | |
ret_vals = Parallel(n_jobs=args.world_size)( | |
delayed(lambda x: _compute_cov_score(pid, *x))(param) | |
for param in tqdm(combinations(image_ids, 2), | |
desc=f'Computing cov_score of [{pid}]', | |
total=len(image_ids)*(len(image_ids)-1)/2)) | |
Src: https://stackoverflow.com/a/58936697 | |
""" | |
class TqdmBatchCompletionCallback(joblib.parallel.BatchCompletionCallBack): | |
def __init__(self, *args, **kwargs): | |
super().__init__(*args, **kwargs) | |
def __call__(self, *args, **kwargs): | |
tqdm_object.update(n=self.batch_size) | |
return super().__call__(*args, **kwargs) | |
old_batch_callback = joblib.parallel.BatchCompletionCallBack | |
joblib.parallel.BatchCompletionCallBack = TqdmBatchCompletionCallback | |
try: | |
yield tqdm_object | |
finally: | |
joblib.parallel.BatchCompletionCallBack = old_batch_callback | |
tqdm_object.close() | |
def detect_NaN(feat_0, feat_1): | |
logger.info(f'NaN detected in feature') | |
logger.info(f"#NaN in feat_0: {torch.isnan(feat_0).int().sum()}, #NaN in feat_1: {torch.isnan(feat_1).int().sum()}") | |
feat_0[torch.isnan(feat_0)] = 0 | |
feat_1[torch.isnan(feat_1)] = 0 | |