Spaces:
Running
Running
import kornia | |
import torch | |
from .utils import Extractor | |
class DISK(Extractor): | |
default_conf = { | |
"weights": "depth", | |
"max_num_keypoints": None, | |
"desc_dim": 128, | |
"nms_window_size": 5, | |
"detection_threshold": 0.0, | |
"pad_if_not_divisible": True, | |
} | |
preprocess_conf = { | |
"resize": 1024, | |
"grayscale": False, | |
} | |
required_data_keys = ["image"] | |
def __init__(self, **conf) -> None: | |
super().__init__(**conf) # Update with default configuration. | |
self.model = kornia.feature.DISK.from_pretrained(self.conf.weights) | |
def forward(self, data: dict) -> dict: | |
"""Compute keypoints, scores, descriptors for image""" | |
for key in self.required_data_keys: | |
assert key in data, f"Missing key {key} in data" | |
image = data["image"] | |
if image.shape[1] == 1: | |
image = kornia.color.grayscale_to_rgb(image) | |
features = self.model( | |
image, | |
n=self.conf.max_num_keypoints, | |
window_size=self.conf.nms_window_size, | |
score_threshold=self.conf.detection_threshold, | |
pad_if_not_divisible=self.conf.pad_if_not_divisible, | |
) | |
keypoints = [f.keypoints for f in features] | |
scores = [f.detection_scores for f in features] | |
descriptors = [f.descriptors for f in features] | |
del features | |
keypoints = torch.stack(keypoints, 0) | |
scores = torch.stack(scores, 0) | |
descriptors = torch.stack(descriptors, 0) | |
return { | |
"keypoints": keypoints.to(image).contiguous(), | |
"keypoint_scores": scores.to(image).contiguous(), | |
"descriptors": descriptors.to(image).contiguous(), | |
} | |