Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	| """ | |
| Convenience classes for an SE3 pose and a pinhole Camera with lens distortion. | |
| Based on PyTorch tensors: differentiable, batched, with GPU support. | |
| Modified from: https://github.com/cvg/glue-factory/blob/scannet1500/gluefactory/geometry/wrappers.py | |
| """ | |
| import functools | |
| import inspect | |
| import math | |
| from typing import Dict, List, NamedTuple, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from .warppers_utils import ( | |
| J_distort_points, | |
| distort_points, | |
| skew_symmetric, | |
| so3exp_map, | |
| to_homogeneous, | |
| ) | |
| def autocast(func): | |
| """Cast the inputs of a TensorWrapper method to PyTorch tensors | |
| if they are numpy arrays. Use the device and dtype of the wrapper. | |
| """ | |
| def wrap(self, *args): | |
| device = torch.device("cpu") | |
| dtype = None | |
| if isinstance(self, TensorWrapper): | |
| if self._data is not None: | |
| device = self.device | |
| dtype = self.dtype | |
| elif not inspect.isclass(self) or not issubclass(self, TensorWrapper): | |
| raise ValueError(self) | |
| cast_args = [] | |
| for arg in args: | |
| if isinstance(arg, np.ndarray): | |
| arg = torch.from_numpy(arg) | |
| arg = arg.to(device=device, dtype=dtype) | |
| cast_args.append(arg) | |
| return func(self, *cast_args) | |
| return wrap | |
| class TensorWrapper: | |
| _data = None | |
| def __init__(self, data: torch.Tensor): | |
| self._data = data | |
| def shape(self): | |
| return self._data.shape[:-1] | |
| def device(self): | |
| return self._data.device | |
| def dtype(self): | |
| return self._data.dtype | |
| def __getitem__(self, index): | |
| return self.__class__(self._data[index]) | |
| def __setitem__(self, index, item): | |
| self._data[index] = item.data | |
| def to(self, *args, **kwargs): | |
| return self.__class__(self._data.to(*args, **kwargs)) | |
| def cpu(self): | |
| return self.__class__(self._data.cpu()) | |
| def cuda(self): | |
| return self.__class__(self._data.cuda()) | |
| def pin_memory(self): | |
| return self.__class__(self._data.pin_memory()) | |
| def float(self): | |
| return self.__class__(self._data.float()) | |
| def double(self): | |
| return self.__class__(self._data.double()) | |
| def detach(self): | |
| return self.__class__(self._data.detach()) | |
| def stack(cls, objects: List, dim=0, *, out=None): | |
| data = torch.stack([obj._data for obj in objects], dim=dim, out=out) | |
| return cls(data) | |
| def __torch_function__(self, func, types, args=(), kwargs=None): | |
| if kwargs is None: | |
| kwargs = {} | |
| if func is torch.stack: | |
| return self.stack(*args, **kwargs) | |
| else: | |
| return NotImplemented | |
| class Pose(TensorWrapper): | |
| def __init__(self, data: torch.Tensor): | |
| assert data.shape[-1] == 12 | |
| super().__init__(data) | |
| def from_Rt(cls, R: torch.Tensor, t: torch.Tensor): | |
| """Pose from a rotation matrix and translation vector. | |
| Accepts numpy arrays or PyTorch tensors. | |
| Args: | |
| R: rotation matrix with shape (..., 3, 3). | |
| t: translation vector with shape (..., 3). | |
| """ | |
| assert R.shape[-2:] == (3, 3) | |
| assert t.shape[-1] == 3 | |
| assert R.shape[:-2] == t.shape[:-1] | |
| data = torch.cat([R.flatten(start_dim=-2), t], -1) | |
| return cls(data) | |
| def from_aa(cls, aa: torch.Tensor, t: torch.Tensor): | |
| """Pose from an axis-angle rotation vector and translation vector. | |
| Accepts numpy arrays or PyTorch tensors. | |
| Args: | |
| aa: axis-angle rotation vector with shape (..., 3). | |
| t: translation vector with shape (..., 3). | |
| """ | |
| assert aa.shape[-1] == 3 | |
| assert t.shape[-1] == 3 | |
| assert aa.shape[:-1] == t.shape[:-1] | |
| return cls.from_Rt(so3exp_map(aa), t) | |
| def from_4x4mat(cls, T: torch.Tensor): | |
| """Pose from an SE(3) transformation matrix. | |
| Args: | |
| T: transformation matrix with shape (..., 4, 4). | |
| """ | |
| assert T.shape[-2:] == (4, 4) | |
| R, t = T[..., :3, :3], T[..., :3, 3] | |
| return cls.from_Rt(R, t) | |
| def from_colmap(cls, image: NamedTuple): | |
| """Pose from a COLMAP Image.""" | |
| return cls.from_Rt(image.qvec2rotmat(), image.tvec) | |
| def R(self) -> torch.Tensor: | |
| """Underlying rotation matrix with shape (..., 3, 3).""" | |
| rvec = self._data[..., :9] | |
| return rvec.reshape(rvec.shape[:-1] + (3, 3)) | |
| def t(self) -> torch.Tensor: | |
| """Underlying translation vector with shape (..., 3).""" | |
| return self._data[..., -3:] | |
| def inv(self) -> "Pose": | |
| """Invert an SE(3) pose.""" | |
| R = self.R.transpose(-1, -2) | |
| t = -(R @ self.t.unsqueeze(-1)).squeeze(-1) | |
| return self.__class__.from_Rt(R, t) | |
| def compose(self, other: "Pose") -> "Pose": | |
| """Chain two SE(3) poses: T_B2C.compose(T_A2B) -> T_A2C.""" | |
| R = self.R @ other.R | |
| t = self.t + (self.R @ other.t.unsqueeze(-1)).squeeze(-1) | |
| return self.__class__.from_Rt(R, t) | |
| def transform(self, p3d: torch.Tensor) -> torch.Tensor: | |
| """Transform a set of 3D points. | |
| Args: | |
| p3d: 3D points, numpy array or PyTorch tensor with shape (..., 3). | |
| """ | |
| assert p3d.shape[-1] == 3 | |
| # assert p3d.shape[:-2] == self.shape # allow broadcasting | |
| return p3d @ self.R.transpose(-1, -2) + self.t.unsqueeze(-2) | |
| def __mul__(self, p3D: torch.Tensor) -> torch.Tensor: | |
| """Transform a set of 3D points: T_A2B * p3D_A -> p3D_B.""" | |
| return self.transform(p3D) | |
| def __matmul__( | |
| self, other: Union["Pose", torch.Tensor] | |
| ) -> Union["Pose", torch.Tensor]: | |
| """Transform a set of 3D points: T_A2B * p3D_A -> p3D_B. | |
| or chain two SE(3) poses: T_B2C @ T_A2B -> T_A2C.""" | |
| if isinstance(other, self.__class__): | |
| return self.compose(other) | |
| else: | |
| return self.transform(other) | |
| def J_transform(self, p3d_out: torch.Tensor): | |
| # [[1,0,0,0,-pz,py], | |
| # [0,1,0,pz,0,-px], | |
| # [0,0,1,-py,px,0]] | |
| J_t = torch.diag_embed(torch.ones_like(p3d_out)) | |
| J_rot = -skew_symmetric(p3d_out) | |
| J = torch.cat([J_t, J_rot], dim=-1) | |
| return J # N x 3 x 6 | |
| def numpy(self) -> Tuple[np.ndarray]: | |
| return self.R.numpy(), self.t.numpy() | |
| def magnitude(self) -> Tuple[torch.Tensor]: | |
| """Magnitude of the SE(3) transformation. | |
| Returns: | |
| dr: rotation anngle in degrees. | |
| dt: translation distance in meters. | |
| """ | |
| trace = torch.diagonal(self.R, dim1=-1, dim2=-2).sum(-1) | |
| cos = torch.clamp((trace - 1) / 2, -1, 1) | |
| dr = torch.acos(cos).abs() / math.pi * 180 | |
| dt = torch.norm(self.t, dim=-1) | |
| return dr, dt | |
| def __repr__(self): | |
| return f"Pose: {self.shape} {self.dtype} {self.device}" | |
| class Camera(TensorWrapper): | |
| eps = 1e-4 | |
| def __init__(self, data: torch.Tensor): | |
| assert data.shape[-1] in {6, 8, 10} | |
| super().__init__(data) | |
| def from_colmap(cls, camera: Union[Dict, NamedTuple]): | |
| """Camera from a COLMAP Camera tuple or dictionary. | |
| We use the corner-convetion from COLMAP (center of top left pixel is (0.5, 0.5)) | |
| """ | |
| if isinstance(camera, tuple): | |
| camera = camera._asdict() | |
| model = camera["model"] | |
| params = camera["params"] | |
| if model in ["OPENCV", "PINHOLE", "RADIAL"]: | |
| (fx, fy, cx, cy), params = np.split(params, [4]) | |
| elif model in ["SIMPLE_PINHOLE", "SIMPLE_RADIAL"]: | |
| (f, cx, cy), params = np.split(params, [3]) | |
| fx = fy = f | |
| if model == "SIMPLE_RADIAL": | |
| params = np.r_[params, 0.0] | |
| else: | |
| raise NotImplementedError(model) | |
| data = np.r_[camera["width"], camera["height"], fx, fy, cx, cy, params] | |
| return cls(data) | |
| def from_calibration_matrix(cls, K: torch.Tensor): | |
| cx, cy = K[..., 0, 2], K[..., 1, 2] | |
| fx, fy = K[..., 0, 0], K[..., 1, 1] | |
| data = torch.stack([2 * cx, 2 * cy, fx, fy, cx, cy], -1) | |
| return cls(data) | |
| def calibration_matrix(self): | |
| K = torch.zeros( | |
| *self._data.shape[:-1], | |
| 3, | |
| 3, | |
| device=self._data.device, | |
| dtype=self._data.dtype, | |
| ) | |
| K[..., 0, 2] = self._data[..., 4] | |
| K[..., 1, 2] = self._data[..., 5] | |
| K[..., 0, 0] = self._data[..., 2] | |
| K[..., 1, 1] = self._data[..., 3] | |
| K[..., 2, 2] = 1.0 | |
| return K | |
| def size(self) -> torch.Tensor: | |
| """Size (width height) of the images, with shape (..., 2).""" | |
| return self._data[..., :2] | |
| def f(self) -> torch.Tensor: | |
| """Focal lengths (fx, fy) with shape (..., 2).""" | |
| return self._data[..., 2:4] | |
| def c(self) -> torch.Tensor: | |
| """Principal points (cx, cy) with shape (..., 2).""" | |
| return self._data[..., 4:6] | |
| def dist(self) -> torch.Tensor: | |
| """Distortion parameters, with shape (..., {0, 2, 4}).""" | |
| return self._data[..., 6:] | |
| def scale(self, scales: torch.Tensor): | |
| """Update the camera parameters after resizing an image.""" | |
| s = scales | |
| data = torch.cat([self.size * s, self.f * s, self.c * s, self.dist], -1) | |
| return self.__class__(data) | |
| def crop(self, left_top: Tuple[float], size: Tuple[int]): | |
| """Update the camera parameters after cropping an image.""" | |
| left_top = self._data.new_tensor(left_top) | |
| size = self._data.new_tensor(size) | |
| data = torch.cat([size, self.f, self.c - left_top, self.dist], -1) | |
| return self.__class__(data) | |
| def in_image(self, p2d: torch.Tensor): | |
| """Check if 2D points are within the image boundaries.""" | |
| assert p2d.shape[-1] == 2 | |
| # assert p2d.shape[:-2] == self.shape # allow broadcasting | |
| size = self.size.unsqueeze(-2) | |
| valid = torch.all((p2d >= 0) & (p2d <= (size - 1)), -1) | |
| return valid | |
| def project(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: | |
| """Project 3D points into the camera plane and check for visibility.""" | |
| z = p3d[..., -1] | |
| valid = z > self.eps | |
| z = z.clamp(min=self.eps) | |
| p2d = p3d[..., :-1] / z.unsqueeze(-1) | |
| return p2d, valid | |
| def J_project(self, p3d: torch.Tensor): | |
| x, y, z = p3d[..., 0], p3d[..., 1], p3d[..., 2] | |
| zero = torch.zeros_like(z) | |
| z = z.clamp(min=self.eps) | |
| J = torch.stack([1 / z, zero, -x / z**2, zero, 1 / z, -y / z**2], dim=-1) | |
| J = J.reshape(p3d.shape[:-1] + (2, 3)) | |
| return J # N x 2 x 3 | |
| def distort(self, pts: torch.Tensor) -> Tuple[torch.Tensor]: | |
| """Distort normalized 2D coordinates | |
| and check for validity of the distortion model. | |
| """ | |
| assert pts.shape[-1] == 2 | |
| # assert pts.shape[:-2] == self.shape # allow broadcasting | |
| return distort_points(pts, self.dist) | |
| def J_distort(self, pts: torch.Tensor): | |
| return J_distort_points(pts, self.dist) # N x 2 x 2 | |
| def denormalize(self, p2d: torch.Tensor) -> torch.Tensor: | |
| """Convert normalized 2D coordinates into pixel coordinates.""" | |
| return p2d * self.f.unsqueeze(-2) + self.c.unsqueeze(-2) | |
| def normalize(self, p2d: torch.Tensor) -> torch.Tensor: | |
| """Convert normalized 2D coordinates into pixel coordinates.""" | |
| return (p2d - self.c.unsqueeze(-2)) / self.f.unsqueeze(-2) | |
| def J_denormalize(self): | |
| return torch.diag_embed(self.f).unsqueeze(-3) # 1 x 2 x 2 | |
| def cam2image(self, p3d: torch.Tensor) -> Tuple[torch.Tensor]: | |
| """Transform 3D points into 2D pixel coordinates.""" | |
| p2d, visible = self.project(p3d) | |
| p2d, mask = self.distort(p2d) | |
| p2d = self.denormalize(p2d) | |
| valid = visible & mask & self.in_image(p2d) | |
| return p2d, valid | |
| def J_world2image(self, p3d: torch.Tensor): | |
| p2d_dist, valid = self.project(p3d) | |
| J = self.J_denormalize() @ self.J_distort(p2d_dist) @ self.J_project(p3d) | |
| return J, valid | |
| def image2cam(self, p2d: torch.Tensor) -> torch.Tensor: | |
| """Convert 2D pixel corrdinates to 3D points with z=1""" | |
| assert self._data.shape | |
| p2d = self.normalize(p2d) | |
| # iterative undistortion | |
| return to_homogeneous(p2d) | |
| def to_cameradict(self, camera_model: Optional[str] = None) -> List[Dict]: | |
| data = self._data.clone() | |
| if data.dim() == 1: | |
| data = data.unsqueeze(0) | |
| assert data.dim() == 2 | |
| b, d = data.shape | |
| if camera_model is None: | |
| camera_model = {6: "PINHOLE", 8: "RADIAL", 10: "OPENCV"}[d] | |
| cameras = [] | |
| for i in range(b): | |
| if camera_model.startswith("SIMPLE_"): | |
| params = [x.item() for x in data[i, 3 : min(d, 7)]] | |
| else: | |
| params = [x.item() for x in data[i, 2:]] | |
| cameras.append( | |
| { | |
| "model": camera_model, | |
| "width": int(data[i, 0].item()), | |
| "height": int(data[i, 1].item()), | |
| "params": params, | |
| } | |
| ) | |
| return cameras if self._data.dim() == 2 else cameras[0] | |
| def __repr__(self): | |
| return f"Camera {self.shape} {self.dtype} {self.device}" | 
 
			
