Spaces:
Sleeping
Sleeping
import string | |
import h5py | |
import torch | |
from ..datasets.base_dataset import collate | |
from ..settings import DATA_PATH | |
from ..utils.tensor import batch_to_device | |
from .base_model import BaseModel | |
from .utils.misc import pad_to_length | |
def pad_local_features(pred: dict, seq_l: int): | |
pred["keypoints"] = pad_to_length( | |
pred["keypoints"], | |
seq_l, | |
-2, | |
mode="random_c", | |
) | |
if "keypoint_scores" in pred.keys(): | |
pred["keypoint_scores"] = pad_to_length( | |
pred["keypoint_scores"], seq_l, -1, mode="zeros" | |
) | |
if "descriptors" in pred.keys(): | |
pred["descriptors"] = pad_to_length( | |
pred["descriptors"], seq_l, -2, mode="random" | |
) | |
if "scales" in pred.keys(): | |
pred["scales"] = pad_to_length(pred["scales"], seq_l, -1, mode="zeros") | |
if "oris" in pred.keys(): | |
pred["oris"] = pad_to_length(pred["oris"], seq_l, -1, mode="zeros") | |
if "depth_keypoints" in pred.keys(): | |
pred["depth_keypoints"] = pad_to_length( | |
pred["depth_keypoints"], seq_l, -1, mode="zeros" | |
) | |
if "valid_depth_keypoints" in pred.keys(): | |
pred["valid_depth_keypoints"] = pad_to_length( | |
pred["valid_depth_keypoints"], seq_l, -1, mode="zeros" | |
) | |
return pred | |
def pad_line_features(pred, seq_l: int = None): | |
raise NotImplementedError | |
def recursive_load(grp, pkeys): | |
return { | |
k: torch.from_numpy(grp[k].__array__()) | |
if isinstance(grp[k], h5py.Dataset) | |
else recursive_load(grp[k], list(grp.keys())) | |
for k in pkeys | |
} | |
class CacheLoader(BaseModel): | |
default_conf = { | |
"path": "???", # can be a format string like exports/{scene}/ | |
"data_keys": None, # load all keys | |
"device": None, # load to same device as data | |
"trainable": False, | |
"add_data_path": True, | |
"collate": True, | |
"scale": ["keypoints", "lines", "orig_lines"], | |
"padding_fn": None, | |
"padding_length": None, # required for batching! | |
"numeric_type": "float32", # [None, "float16", "float32", "float64"] | |
} | |
required_data_keys = ["name"] # we need an identifier | |
def _init(self, conf): | |
self.hfiles = {} | |
self.padding_fn = conf.padding_fn | |
if self.padding_fn is not None: | |
self.padding_fn = eval(self.padding_fn) | |
self.numeric_dtype = { | |
None: None, | |
"float16": torch.float16, | |
"float32": torch.float32, | |
"float64": torch.float64, | |
}[conf.numeric_type] | |
def _forward(self, data): | |
preds = [] | |
device = self.conf.device | |
if not device: | |
devices = set( | |
[v.device for v in data.values() if isinstance(v, torch.Tensor)] | |
) | |
if len(devices) == 0: | |
device = "cpu" | |
else: | |
assert len(devices) == 1 | |
device = devices.pop() | |
var_names = [x[1] for x in string.Formatter().parse(self.conf.path) if x[1]] | |
for i, name in enumerate(data["name"]): | |
fpath = self.conf.path.format(**{k: data[k][i] for k in var_names}) | |
if self.conf.add_data_path: | |
fpath = DATA_PATH / fpath | |
hfile = h5py.File(str(fpath), "r") | |
grp = hfile[name] | |
pkeys = ( | |
self.conf.data_keys if self.conf.data_keys is not None else grp.keys() | |
) | |
pred = recursive_load(grp, pkeys) | |
if self.numeric_dtype is not None: | |
pred = { | |
k: v | |
if not isinstance(v, torch.Tensor) or not torch.is_floating_point(v) | |
else v.to(dtype=self.numeric_dtype) | |
for k, v in pred.items() | |
} | |
pred = batch_to_device(pred, device) | |
for k, v in pred.items(): | |
for pattern in self.conf.scale: | |
if k.startswith(pattern): | |
view_idx = k.replace(pattern, "") | |
scales = ( | |
data["scales"] | |
if len(view_idx) == 0 | |
else data[f"view{view_idx}"]["scales"] | |
) | |
pred[k] = pred[k] * scales[i] | |
# use this function to fix number of keypoints etc. | |
if self.padding_fn is not None: | |
pred = self.padding_fn(pred, self.conf.padding_length) | |
preds.append(pred) | |
hfile.close() | |
if self.conf.collate: | |
return batch_to_device(collate(preds), device) | |
else: | |
assert len(preds) == 1 | |
return batch_to_device(preds[0], device) | |
def loss(self, pred, data): | |
raise NotImplementedError | |