Spaces:
Sleeping
Sleeping
import os | |
import time | |
import random | |
import h5py | |
import numpy as np | |
from PIL import Image | |
from tqdm import tqdm | |
import joblib | |
import torch | |
from torch.utils.data import Dataset | |
from torch.utils.data import DataLoader | |
from lib.utils import preprocess_image | |
from lib.utils import preprocess_image, grid_positions, upscale_positions | |
from lib.dataloaders.datasetPhotoTourism_ipr import PhotoTourismIPR | |
from lib.dataloaders.datasetPhotoTourism_real import PhotoTourism | |
from sys import exit, argv | |
import cv2 | |
import csv | |
np.random.seed(0) | |
class PhotoTourismCombined(Dataset): | |
def __init__(self, base_path, preprocessing, ipr_pref=0.5, train=True, cropSize=256): | |
self.base_path = base_path | |
self.preprocessing = preprocessing | |
self.cropSize=cropSize | |
self.ipr_pref = ipr_pref | |
# self.dataset_len = 0 | |
# self.dataset_len2 = 0 | |
print("[INFO] Building Original Dataset") | |
self.PTReal = PhotoTourism(base_path, preprocessing=preprocessing, train=train, image_size=cropSize) | |
self.PTReal.build_dataset() | |
# self.dataset_len1 = len(self.PTReal) | |
# print("size 1:",len(self.PTReal)) | |
# for _ in self.PTReal: | |
# pass | |
# print("size 2:",len(self.PTReal)) | |
self.dataset_len1 = len(self.PTReal) | |
# joblib.dump(self.PTReal.dataset, os.path.join(self.base_path, "orig_PT_2.gz"), 3) | |
print("[INFO] Building IPR Dataset") | |
self.PTipr = PhotoTourismIPR(base_path, preprocessing=preprocessing, train=train, cropSize=cropSize) | |
self.PTipr.build_dataset() | |
# self.dataset_len2 = len(self.PTipr) | |
# print("size 1:",len(self.PTipr)) | |
# for _ in self.PTipr: | |
# pass | |
# print("size 2:",len(self.PTipr)) | |
self.dataset_len2 = len(self.PTipr) | |
# joblib.dump((self.PTipr.dataset_H, self.PTipr.valid_images), os.path.join(self.base_path, "ipr_PT_2.gz"), 3) | |
def __getitem__(self, idx): | |
if random.random()<self.ipr_pref: | |
return (self.PTipr[idx%self.dataset_len1], 1) | |
return (self.PTReal[idx%self.dataset_len2], 0) | |
def __len__(self): | |
return self.dataset_len2+self.dataset_len1 | |
if __name__=="__main__": | |
pt = PhotoTourismCombined("/scratch/udit/phototourism/", 'caffe', 256) | |
dl = DataLoader(pt, batch_size=1, num_workers=2) | |
for _ in dl: | |
pass | |