Spaces:
Runtime error
Runtime error
from predict import * | |
from transformers import BloomTokenizerFast, BloomForCausalLM | |
import os | |
import gradio as gr | |
model_path = "svjack/bloom-daliy-dialogue-english" | |
tokenizer = BloomTokenizerFast.from_pretrained(model_path) | |
model = BloomForCausalLM.from_pretrained(model_path) | |
obj = Obj(model, tokenizer) | |
example_sample = [ | |
["This dog is fierce,", 128], | |
["Do you like this film?", 64], | |
] | |
def demo_func(prefix, max_length): | |
max_length = max(int(max_length), 32) | |
l = obj.predict(prefix, max_length=max_length)[0].split("\n-----\n") | |
l_ = [] | |
for ele in l: | |
if ele not in l_: | |
l_.append(ele) | |
l = l_ | |
assert type(l) == type([]) | |
return { | |
"Dialogue Context": l | |
} | |
demo = gr.Interface( | |
fn=demo_func, | |
inputs=[gr.Text(label = "Prefix"), | |
gr.Number(label = "Max Length", value = 128) | |
], | |
outputs="json", | |
title=f"Bloom English Daliy Dialogue Generator π¦ πΈ demonstration", | |
examples=example_sample if example_sample else None, | |
cache_examples = False | |
) | |
demo.launch(server_name=None, server_port=None) | |