Spaces:
Runtime error
Runtime error
| import os | |
| import random | |
| import logging | |
| import torch | |
| import numpy as np | |
| from seqeval.metrics import precision_score, recall_score, f1_score | |
| from transformers import BertConfig, DistilBertConfig, AlbertConfig | |
| from transformers import BertTokenizer, DistilBertTokenizer, AlbertTokenizer | |
| from model import JointBERT, JointDistilBERT, JointAlbert | |
| MODEL_CLASSES = { | |
| 'bert': (BertConfig, JointBERT, BertTokenizer), | |
| 'distilbert': (DistilBertConfig, JointDistilBERT, DistilBertTokenizer), | |
| 'albert': (AlbertConfig, JointAlbert, AlbertTokenizer) | |
| } | |
| MODEL_PATH_MAP = { | |
| 'bert': 'bert-base-uncased', | |
| 'distilbert': 'distilbert-base-uncased', | |
| 'albert': 'albert-xxlarge-v1' | |
| } | |
| def get_intent_labels(args): | |
| return [label.strip() for label in open(os.path.join(args.data_dir, args.task, args.intent_label_file), 'r', encoding='utf-8')] | |
| def get_slot_labels(args): | |
| return [label.strip() for label in open(os.path.join(args.data_dir, args.task, args.slot_label_file), 'r', encoding='utf-8')] | |
| def load_tokenizer(args): | |
| return MODEL_CLASSES[args.model_type][2].from_pretrained(args.model_name_or_path) | |
| def init_logger(): | |
| logging.basicConfig(format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', | |
| datefmt='%m/%d/%Y %H:%M:%S', | |
| level=logging.INFO) | |
| def set_seed(args): | |
| random.seed(args.seed) | |
| np.random.seed(args.seed) | |
| torch.manual_seed(args.seed) | |
| if not args.no_cuda and torch.cuda.is_available(): | |
| torch.cuda.manual_seed_all(args.seed) | |
| def compute_metrics(intent_preds, intent_labels, slot_preds, slot_labels): | |
| assert len(intent_preds) == len(intent_labels) == len(slot_preds) == len(slot_labels) | |
| results = {} | |
| intent_result = get_intent_acc(intent_preds, intent_labels) | |
| slot_result = get_slot_metrics(slot_preds, slot_labels) | |
| sementic_result = get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels) | |
| results.update(intent_result) | |
| results.update(slot_result) | |
| results.update(sementic_result) | |
| return results | |
| def get_slot_metrics(preds, labels): | |
| assert len(preds) == len(labels) | |
| return { | |
| "slot_precision": precision_score(labels, preds), | |
| "slot_recall": recall_score(labels, preds), | |
| "slot_f1": f1_score(labels, preds) | |
| } | |
| def get_intent_acc(preds, labels): | |
| acc = (preds == labels).mean() | |
| return { | |
| "intent_acc": acc | |
| } | |
| def read_prediction_text(args): | |
| return [text.strip() for text in open(os.path.join(args.pred_dir, args.pred_input_file), 'r', encoding='utf-8')] | |
| def get_sentence_frame_acc(intent_preds, intent_labels, slot_preds, slot_labels): | |
| """For the cases that intent and all the slots are correct (in one sentence)""" | |
| # Get the intent comparison result | |
| intent_result = (intent_preds == intent_labels) | |
| # Get the slot comparision result | |
| slot_result = [] | |
| for preds, labels in zip(slot_preds, slot_labels): | |
| assert len(preds) == len(labels) | |
| one_sent_result = True | |
| for p, l in zip(preds, labels): | |
| if p != l: | |
| one_sent_result = False | |
| break | |
| slot_result.append(one_sent_result) | |
| slot_result = np.array(slot_result) | |
| sementic_acc = np.multiply(intent_result, slot_result).mean() | |
| return { | |
| "sementic_frame_acc": sementic_acc | |
| } | |