Spaces:
Runtime error
Runtime error
import os | |
import logging | |
from tqdm import tqdm, trange | |
import numpy as np | |
import torch | |
from torch.utils.data import DataLoader, RandomSampler, SequentialSampler | |
from transformers import BertConfig, AdamW, get_linear_schedule_with_warmup | |
from utils import MODEL_CLASSES, compute_metrics, get_intent_labels, get_slot_labels | |
logger = logging.getLogger(__name__) | |
class Trainer(object): | |
def __init__(self, args, train_dataset=None, dev_dataset=None, test_dataset=None): | |
self.args = args | |
self.train_dataset = train_dataset | |
self.dev_dataset = dev_dataset | |
self.test_dataset = test_dataset | |
self.intent_label_lst = get_intent_labels(args) | |
self.slot_label_lst = get_slot_labels(args) | |
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later | |
self.pad_token_label_id = args.ignore_index | |
self.config_class, self.model_class, _ = MODEL_CLASSES[args.model_type] | |
self.config = self.config_class.from_pretrained(args.model_name_or_path, finetuning_task=args.task) | |
self.model = self.model_class.from_pretrained(args.model_name_or_path, | |
config=self.config, | |
args=args, | |
intent_label_lst=self.intent_label_lst, | |
slot_label_lst=self.slot_label_lst) | |
# GPU or CPU | |
self.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu" | |
self.model.to(self.device) | |
def train(self): | |
train_sampler = RandomSampler(self.train_dataset) | |
train_dataloader = DataLoader(self.train_dataset, sampler=train_sampler, batch_size=self.args.train_batch_size) | |
if self.args.max_steps > 0: | |
t_total = self.args.max_steps | |
self.args.num_train_epochs = self.args.max_steps // (len(train_dataloader) // self.args.gradient_accumulation_steps) + 1 | |
else: | |
t_total = len(train_dataloader) // self.args.gradient_accumulation_steps * self.args.num_train_epochs | |
# Prepare optimizer and schedule (linear warmup and decay) | |
no_decay = ['bias', 'LayerNorm.weight'] | |
optimizer_grouped_parameters = [ | |
{'params': [p for n, p in self.model.named_parameters() if not any(nd in n for nd in no_decay)], | |
'weight_decay': self.args.weight_decay}, | |
{'params': [p for n, p in self.model.named_parameters() if any(nd in n for nd in no_decay)], 'weight_decay': 0.0} | |
] | |
optimizer = AdamW(optimizer_grouped_parameters, lr=self.args.learning_rate, eps=self.args.adam_epsilon) | |
scheduler = get_linear_schedule_with_warmup(optimizer, num_warmup_steps=self.args.warmup_steps, num_training_steps=t_total) | |
# Train! | |
logger.info("***** Running training *****") | |
logger.info(" Num examples = %d", len(self.train_dataset)) | |
logger.info(" Num Epochs = %d", self.args.num_train_epochs) | |
logger.info(" Total train batch size = %d", self.args.train_batch_size) | |
logger.info(" Gradient Accumulation steps = %d", self.args.gradient_accumulation_steps) | |
logger.info(" Total optimization steps = %d", t_total) | |
logger.info(" Logging steps = %d", self.args.logging_steps) | |
logger.info(" Save steps = %d", self.args.save_steps) | |
global_step = 0 | |
tr_loss = 0.0 | |
self.model.zero_grad() | |
train_iterator = trange(int(self.args.num_train_epochs), desc="Epoch") | |
for _ in train_iterator: | |
epoch_iterator = tqdm(train_dataloader, desc="Iteration") | |
for step, batch in enumerate(epoch_iterator): | |
self.model.train() | |
batch = tuple(t.to(self.device) for t in batch) # GPU or CPU | |
inputs = {'input_ids': batch[0], | |
'attention_mask': batch[1], | |
'intent_label_ids': batch[3], | |
'slot_labels_ids': batch[4]} | |
if self.args.model_type != 'distilbert': | |
inputs['token_type_ids'] = batch[2] | |
outputs = self.model(**inputs) | |
loss = outputs[0] | |
if self.args.gradient_accumulation_steps > 1: | |
loss = loss / self.args.gradient_accumulation_steps | |
loss.backward() | |
tr_loss += loss.item() | |
if (step + 1) % self.args.gradient_accumulation_steps == 0: | |
torch.nn.utils.clip_grad_norm_(self.model.parameters(), self.args.max_grad_norm) | |
optimizer.step() | |
scheduler.step() # Update learning rate schedule | |
self.model.zero_grad() | |
global_step += 1 | |
if self.args.logging_steps > 0 and global_step % self.args.logging_steps == 0: | |
self.evaluate("dev") | |
if self.args.save_steps > 0 and global_step % self.args.save_steps == 0: | |
self.save_model() | |
if 0 < self.args.max_steps < global_step: | |
epoch_iterator.close() | |
break | |
if 0 < self.args.max_steps < global_step: | |
train_iterator.close() | |
break | |
return global_step, tr_loss / global_step | |
def evaluate(self, mode): | |
if mode == 'test': | |
dataset = self.test_dataset | |
elif mode == 'dev': | |
dataset = self.dev_dataset | |
else: | |
raise Exception("Only dev and test dataset available") | |
eval_sampler = SequentialSampler(dataset) | |
eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=self.args.eval_batch_size) | |
# Eval! | |
logger.info("***** Running evaluation on %s dataset *****", mode) | |
logger.info(" Num examples = %d", len(dataset)) | |
logger.info(" Batch size = %d", self.args.eval_batch_size) | |
eval_loss = 0.0 | |
nb_eval_steps = 0 | |
intent_preds = None | |
slot_preds = None | |
out_intent_label_ids = None | |
out_slot_labels_ids = None | |
self.model.eval() | |
for batch in tqdm(eval_dataloader, desc="Evaluating"): | |
batch = tuple(t.to(self.device) for t in batch) | |
with torch.no_grad(): | |
inputs = {'input_ids': batch[0], | |
'attention_mask': batch[1], | |
'intent_label_ids': batch[3], | |
'slot_labels_ids': batch[4]} | |
if self.args.model_type != 'distilbert': | |
inputs['token_type_ids'] = batch[2] | |
outputs = self.model(**inputs) | |
tmp_eval_loss, (intent_logits, slot_logits) = outputs[:2] | |
eval_loss += tmp_eval_loss.mean().item() | |
nb_eval_steps += 1 | |
# Intent prediction | |
if intent_preds is None: | |
intent_preds = intent_logits.detach().cpu().numpy() | |
out_intent_label_ids = inputs['intent_label_ids'].detach().cpu().numpy() | |
else: | |
intent_preds = np.append(intent_preds, intent_logits.detach().cpu().numpy(), axis=0) | |
out_intent_label_ids = np.append( | |
out_intent_label_ids, inputs['intent_label_ids'].detach().cpu().numpy(), axis=0) | |
# Slot prediction | |
if slot_preds is None: | |
if self.args.use_crf: | |
# decode() in `torchcrf` returns list with best index directly | |
slot_preds = np.array(self.model.crf.decode(slot_logits)) | |
else: | |
slot_preds = slot_logits.detach().cpu().numpy() | |
out_slot_labels_ids = inputs["slot_labels_ids"].detach().cpu().numpy() | |
else: | |
if self.args.use_crf: | |
slot_preds = np.append(slot_preds, np.array(self.model.crf.decode(slot_logits)), axis=0) | |
else: | |
slot_preds = np.append(slot_preds, slot_logits.detach().cpu().numpy(), axis=0) | |
out_slot_labels_ids = np.append(out_slot_labels_ids, inputs["slot_labels_ids"].detach().cpu().numpy(), axis=0) | |
eval_loss = eval_loss / nb_eval_steps | |
results = { | |
"loss": eval_loss | |
} | |
# Intent result | |
intent_preds = np.argmax(intent_preds, axis=1) | |
# Slot result | |
if not self.args.use_crf: | |
slot_preds = np.argmax(slot_preds, axis=2) | |
slot_label_map = {i: label for i, label in enumerate(self.slot_label_lst)} | |
out_slot_label_list = [[] for _ in range(out_slot_labels_ids.shape[0])] | |
slot_preds_list = [[] for _ in range(out_slot_labels_ids.shape[0])] | |
for i in range(out_slot_labels_ids.shape[0]): | |
for j in range(out_slot_labels_ids.shape[1]): | |
if out_slot_labels_ids[i, j] != self.pad_token_label_id: | |
out_slot_label_list[i].append(slot_label_map[out_slot_labels_ids[i][j]]) | |
slot_preds_list[i].append(slot_label_map[slot_preds[i][j]]) | |
total_result = compute_metrics(intent_preds, out_intent_label_ids, slot_preds_list, out_slot_label_list) | |
results.update(total_result) | |
logger.info("***** Eval results *****") | |
for key in sorted(results.keys()): | |
logger.info(" %s = %s", key, str(results[key])) | |
return results | |
def save_model(self): | |
# Save model checkpoint (Overwrite) | |
if not os.path.exists(self.args.model_dir): | |
os.makedirs(self.args.model_dir) | |
model_to_save = self.model.module if hasattr(self.model, 'module') else self.model | |
model_to_save.save_pretrained(self.args.model_dir) | |
# Save training arguments together with the trained model | |
torch.save(self.args, os.path.join(self.args.model_dir, 'training_args.bin')) | |
logger.info("Saving model checkpoint to %s", self.args.model_dir) | |
def load_model(self): | |
# Check whether model exists | |
if not os.path.exists(self.args.model_dir): | |
raise Exception("Model doesn't exists! Train first!") | |
try: | |
self.model = self.model_class.from_pretrained(self.args.model_dir, | |
args=self.args, | |
intent_label_lst=self.intent_label_lst, | |
slot_label_lst=self.slot_label_lst) | |
self.model.to(self.device) | |
logger.info("***** Model Loaded *****") | |
except: | |
raise Exception("Some model files might be missing...") | |