Spaces:
Runtime error
Runtime error
import os | |
import copy | |
import json | |
import logging | |
import torch | |
from torch.utils.data import TensorDataset | |
from utils import get_intent_labels, get_slot_labels | |
logger = logging.getLogger(__name__) | |
class InputExample(object): | |
""" | |
A single training/test example for simple sequence classification. | |
Args: | |
guid: Unique id for the example. | |
words: list. The words of the sequence. | |
intent_label: (Optional) string. The intent label of the example. | |
slot_labels: (Optional) list. The slot labels of the example. | |
""" | |
def __init__(self, guid, words, intent_label=None, slot_labels=None): | |
self.guid = guid | |
self.words = words | |
self.intent_label = intent_label | |
self.slot_labels = slot_labels | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
class InputFeatures(object): | |
"""A single set of features of data.""" | |
def __init__(self, input_ids, attention_mask, token_type_ids, intent_label_id, slot_labels_ids): | |
self.input_ids = input_ids | |
self.attention_mask = attention_mask | |
self.token_type_ids = token_type_ids | |
self.intent_label_id = intent_label_id | |
self.slot_labels_ids = slot_labels_ids | |
def __repr__(self): | |
return str(self.to_json_string()) | |
def to_dict(self): | |
"""Serializes this instance to a Python dictionary.""" | |
output = copy.deepcopy(self.__dict__) | |
return output | |
def to_json_string(self): | |
"""Serializes this instance to a JSON string.""" | |
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" | |
class JointProcessor(object): | |
"""Processor for the JointBERT data set """ | |
def __init__(self, args): | |
self.args = args | |
self.intent_labels = get_intent_labels(args) | |
self.slot_labels = get_slot_labels(args) | |
self.input_text_file = 'seq.in' | |
self.intent_label_file = 'label' | |
self.slot_labels_file = 'seq.out' | |
def _read_file(cls, input_file, quotechar=None): | |
"""Reads a tab separated value file.""" | |
with open(input_file, "r", encoding="utf-8") as f: | |
lines = [] | |
for line in f: | |
lines.append(line.strip()) | |
return lines | |
def _create_examples(self, texts, intents, slots, set_type): | |
"""Creates examples for the training and dev sets.""" | |
examples = [] | |
for i, (text, intent, slot) in enumerate(zip(texts, intents, slots)): | |
guid = "%s-%s" % (set_type, i) | |
# 1. input_text | |
words = text.split() # Some are spaced twice | |
# 2. intent | |
intent_label = self.intent_labels.index(intent) if intent in self.intent_labels else self.intent_labels.index("UNK") | |
# 3. slot | |
slot_labels = [] | |
for s in slot.split(): | |
slot_labels.append(self.slot_labels.index(s) if s in self.slot_labels else self.slot_labels.index("UNK")) | |
assert len(words) == len(slot_labels) | |
examples.append(InputExample(guid=guid, words=words, intent_label=intent_label, slot_labels=slot_labels)) | |
return examples | |
def get_examples(self, mode): | |
""" | |
Args: | |
mode: train, dev, test | |
""" | |
data_path = os.path.join(self.args.data_dir, self.args.task, mode) | |
logger.info("LOOKING AT {}".format(data_path)) | |
return self._create_examples(texts=self._read_file(os.path.join(data_path, self.input_text_file)), | |
intents=self._read_file(os.path.join(data_path, self.intent_label_file)), | |
slots=self._read_file(os.path.join(data_path, self.slot_labels_file)), | |
set_type=mode) | |
processors = { | |
"atis": JointProcessor, | |
"snips": JointProcessor | |
} | |
def convert_examples_to_features(examples, max_seq_len, tokenizer, | |
pad_token_label_id=-100, | |
cls_token_segment_id=0, | |
pad_token_segment_id=0, | |
sequence_a_segment_id=0, | |
mask_padding_with_zero=True): | |
# Setting based on the current model type | |
cls_token = tokenizer.cls_token | |
sep_token = tokenizer.sep_token | |
unk_token = tokenizer.unk_token | |
pad_token_id = tokenizer.pad_token_id | |
features = [] | |
for (ex_index, example) in enumerate(examples): | |
if ex_index % 5000 == 0: | |
logger.info("Writing example %d of %d" % (ex_index, len(examples))) | |
# Tokenize word by word (for NER) | |
tokens = [] | |
slot_labels_ids = [] | |
for word, slot_label in zip(example.words, example.slot_labels): | |
word_tokens = tokenizer.tokenize(word) | |
if not word_tokens: | |
word_tokens = [unk_token] # For handling the bad-encoded word | |
tokens.extend(word_tokens) | |
# Use the real label id for the first token of the word, and padding ids for the remaining tokens | |
slot_labels_ids.extend([int(slot_label)] + [pad_token_label_id] * (len(word_tokens) - 1)) | |
# Account for [CLS] and [SEP] | |
special_tokens_count = 2 | |
if len(tokens) > max_seq_len - special_tokens_count: | |
tokens = tokens[:(max_seq_len - special_tokens_count)] | |
slot_labels_ids = slot_labels_ids[:(max_seq_len - special_tokens_count)] | |
# Add [SEP] token | |
tokens += [sep_token] | |
slot_labels_ids += [pad_token_label_id] | |
token_type_ids = [sequence_a_segment_id] * len(tokens) | |
# Add [CLS] token | |
tokens = [cls_token] + tokens | |
slot_labels_ids = [pad_token_label_id] + slot_labels_ids | |
token_type_ids = [cls_token_segment_id] + token_type_ids | |
input_ids = tokenizer.convert_tokens_to_ids(tokens) | |
# The mask has 1 for real tokens and 0 for padding tokens. Only real | |
# tokens are attended to. | |
attention_mask = [1 if mask_padding_with_zero else 0] * len(input_ids) | |
# Zero-pad up to the sequence length. | |
padding_length = max_seq_len - len(input_ids) | |
input_ids = input_ids + ([pad_token_id] * padding_length) | |
attention_mask = attention_mask + ([0 if mask_padding_with_zero else 1] * padding_length) | |
token_type_ids = token_type_ids + ([pad_token_segment_id] * padding_length) | |
slot_labels_ids = slot_labels_ids + ([pad_token_label_id] * padding_length) | |
assert len(input_ids) == max_seq_len, "Error with input length {} vs {}".format(len(input_ids), max_seq_len) | |
assert len(attention_mask) == max_seq_len, "Error with attention mask length {} vs {}".format(len(attention_mask), max_seq_len) | |
assert len(token_type_ids) == max_seq_len, "Error with token type length {} vs {}".format(len(token_type_ids), max_seq_len) | |
assert len(slot_labels_ids) == max_seq_len, "Error with slot labels length {} vs {}".format(len(slot_labels_ids), max_seq_len) | |
intent_label_id = int(example.intent_label) | |
if ex_index < 5: | |
logger.info("*** Example ***") | |
logger.info("guid: %s" % example.guid) | |
logger.info("tokens: %s" % " ".join([str(x) for x in tokens])) | |
logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) | |
logger.info("attention_mask: %s" % " ".join([str(x) for x in attention_mask])) | |
logger.info("token_type_ids: %s" % " ".join([str(x) for x in token_type_ids])) | |
logger.info("intent_label: %s (id = %d)" % (example.intent_label, intent_label_id)) | |
logger.info("slot_labels: %s" % " ".join([str(x) for x in slot_labels_ids])) | |
features.append( | |
InputFeatures(input_ids=input_ids, | |
attention_mask=attention_mask, | |
token_type_ids=token_type_ids, | |
intent_label_id=intent_label_id, | |
slot_labels_ids=slot_labels_ids | |
)) | |
return features | |
def load_and_cache_examples(args, tokenizer, mode): | |
processor = processors[args.task](args) | |
# Load data features from cache or dataset file | |
cached_features_file = os.path.join( | |
args.data_dir, | |
'cached_{}_{}_{}_{}'.format( | |
mode, | |
args.task, | |
list(filter(None, args.model_name_or_path.split("/"))).pop(), | |
args.max_seq_len | |
) | |
) | |
if os.path.exists(cached_features_file): | |
logger.info("Loading features from cached file %s", cached_features_file) | |
features = torch.load(cached_features_file) | |
else: | |
# Load data features from dataset file | |
logger.info("Creating features from dataset file at %s", args.data_dir) | |
if mode == "train": | |
examples = processor.get_examples("train") | |
elif mode == "dev": | |
examples = processor.get_examples("dev") | |
elif mode == "test": | |
examples = processor.get_examples("test") | |
else: | |
raise Exception("For mode, Only train, dev, test is available") | |
# Use cross entropy ignore index as padding label id so that only real label ids contribute to the loss later | |
pad_token_label_id = args.ignore_index | |
features = convert_examples_to_features(examples, args.max_seq_len, tokenizer, | |
pad_token_label_id=pad_token_label_id) | |
logger.info("Saving features into cached file %s", cached_features_file) | |
torch.save(features, cached_features_file) | |
# Convert to Tensors and build dataset | |
all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long) | |
all_attention_mask = torch.tensor([f.attention_mask for f in features], dtype=torch.long) | |
all_token_type_ids = torch.tensor([f.token_type_ids for f in features], dtype=torch.long) | |
all_intent_label_ids = torch.tensor([f.intent_label_id for f in features], dtype=torch.long) | |
all_slot_labels_ids = torch.tensor([f.slot_labels_ids for f in features], dtype=torch.long) | |
dataset = TensorDataset(all_input_ids, all_attention_mask, | |
all_token_type_ids, all_intent_label_ids, all_slot_labels_ids) | |
return dataset | |