svjack's picture
Update utils/tools.py
7db46ea
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
import cv2
import torch
import os
import sys
import clip
def convert_box_xywh_to_xyxy(box):
if len(box) == 4:
return [box[0], box[1], box[0] + box[2], box[1] + box[3]]
else:
result = []
for b in box:
b = convert_box_xywh_to_xyxy(b)
result.append(b)
return result
def segment_image(image, bbox):
image_array = np.array(image)
segmented_image_array = np.zeros_like(image_array)
x1, y1, x2, y2 = bbox
segmented_image_array[y1:y2, x1:x2] = image_array[y1:y2, x1:x2]
segmented_image = Image.fromarray(segmented_image_array)
black_image = Image.new("RGB", image.size, (255, 255, 255))
# transparency_mask = np.zeros_like((), dtype=np.uint8)
transparency_mask = np.zeros(
(image_array.shape[0], image_array.shape[1]), dtype=np.uint8
)
transparency_mask[y1:y2, x1:x2] = 255
transparency_mask_image = Image.fromarray(transparency_mask, mode="L")
black_image.paste(segmented_image, mask=transparency_mask_image)
return black_image
def format_results(result, filter=0):
annotations = []
n = len(result.masks.data)
for i in range(n):
annotation = {}
mask = result.masks.data[i] == 1.0
if torch.sum(mask) < filter:
continue
annotation["id"] = i
annotation["segmentation"] = mask.cpu().numpy()
annotation["bbox"] = result.boxes.data[i]
annotation["score"] = result.boxes.conf[i]
annotation["area"] = annotation["segmentation"].sum()
annotations.append(annotation)
return annotations
def filter_masks(annotations): # filter the overlap mask
annotations.sort(key=lambda x: x["area"], reverse=True)
to_remove = set()
for i in range(0, len(annotations)):
a = annotations[i]
for j in range(i + 1, len(annotations)):
b = annotations[j]
if i != j and j not in to_remove:
# check if
if b["area"] < a["area"]:
if (a["segmentation"] & b["segmentation"]).sum() / b[
"segmentation"
].sum() > 0.8:
to_remove.add(j)
return [a for i, a in enumerate(annotations) if i not in to_remove], to_remove
def get_bbox_from_mask(mask):
mask = mask.astype(np.uint8)
contours, hierarchy = cv2.findContours(
mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
x1, y1, w, h = cv2.boundingRect(contours[0])
x2, y2 = x1 + w, y1 + h
if len(contours) > 1:
for b in contours:
x_t, y_t, w_t, h_t = cv2.boundingRect(b)
# 将多个bbox合并成一个
x1 = min(x1, x_t)
y1 = min(y1, y_t)
x2 = max(x2, x_t + w_t)
y2 = max(y2, y_t + h_t)
h = y2 - y1
w = x2 - x1
return [x1, y1, x2, y2]
def fast_process(
annotations, args, mask_random_color, bbox=None, points=None, edges=False
):
if isinstance(annotations[0], dict):
annotations = [annotation["segmentation"] for annotation in annotations]
result_name = os.path.basename(args.img_path)
image = cv2.imread(args.img_path)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
original_h = image.shape[0]
original_w = image.shape[1]
if sys.platform == "darwin":
plt.switch_backend("TkAgg")
plt.figure(figsize=(original_w/100, original_h/100))
# Add subplot with no margin.
plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0)
plt.margins(0, 0)
plt.gca().xaxis.set_major_locator(plt.NullLocator())
plt.gca().yaxis.set_major_locator(plt.NullLocator())
plt.imshow(image)
if args.better_quality == True:
if isinstance(annotations[0], torch.Tensor):
annotations = np.array(annotations.cpu())
for i, mask in enumerate(annotations):
mask = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_CLOSE, np.ones((3, 3), np.uint8)
)
annotations[i] = cv2.morphologyEx(
mask.astype(np.uint8), cv2.MORPH_OPEN, np.ones((8, 8), np.uint8)
)
if args.device == "cpu":
annotations = np.array(annotations)
fast_show_mask(
annotations,
plt.gca(),
random_color=mask_random_color,
bbox=bbox,
points=points,
point_label=args.point_label,
retinamask=args.retina,
target_height=original_h,
target_width=original_w,
)
else:
if isinstance(annotations[0], np.ndarray):
annotations = torch.from_numpy(annotations)
fast_show_mask_gpu(
annotations,
plt.gca(),
random_color=args.randomcolor,
bbox=bbox,
points=points,
point_label=args.point_label,
retinamask=args.retina,
target_height=original_h,
target_width=original_w,
)
if isinstance(annotations, torch.Tensor):
annotations = annotations.cpu().numpy()
if args.withContours == True:
contour_all = []
temp = np.zeros((original_h, original_w, 1))
for i, mask in enumerate(annotations):
if type(mask) == dict:
mask = mask["segmentation"]
annotation = mask.astype(np.uint8)
if args.retina == False:
annotation = cv2.resize(
annotation,
(original_w, original_h),
interpolation=cv2.INTER_NEAREST,
)
contours, hierarchy = cv2.findContours(
annotation, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
for contour in contours:
contour_all.append(contour)
cv2.drawContours(temp, contour_all, -1, (255, 255, 255), 2)
color = np.array([0 / 255, 0 / 255, 255 / 255, 0.8])
contour_mask = temp / 255 * color.reshape(1, 1, -1)
plt.imshow(contour_mask)
save_path = args.output
if not os.path.exists(save_path):
os.makedirs(save_path)
plt.axis("off")
fig = plt.gcf()
plt.draw()
try:
buf = fig.canvas.tostring_rgb()
except AttributeError:
fig.canvas.draw()
buf = fig.canvas.tostring_rgb()
cols, rows = fig.canvas.get_width_height()
img_array = np.fromstring(buf, dtype=np.uint8).reshape(rows, cols, 3)
cv2.imwrite(os.path.join(save_path, result_name), cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR))
# CPU post process
def fast_show_mask(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
point_label=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
# 将annotation 按照面积 排序
areas = np.sum(annotation, axis=(1, 2))
sorted_indices = np.argsort(areas)
annotation = annotation[sorted_indices]
index = (annotation != 0).argmax(axis=0)
if random_color == True:
color = np.random.random((msak_sum, 1, 1, 3))
else:
color = np.ones((msak_sum, 1, 1, 3)) * np.array(
[30 / 255, 144 / 255, 255 / 255]
)
transparency = np.ones((msak_sum, 1, 1, 1)) * 0.6
visual = np.concatenate([color, transparency], axis=-1)
mask_image = np.expand_dims(annotation, -1) * visual
show = np.zeros((height, weight, 4))
h_indices, w_indices = np.meshgrid(
np.arange(height), np.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
s=20,
c="m",
)
if retinamask == False:
show = cv2.resize(
show, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
ax.imshow(show)
def fast_show_mask_gpu(
annotation,
ax,
random_color=False,
bbox=None,
points=None,
point_label=None,
retinamask=True,
target_height=960,
target_width=960,
):
msak_sum = annotation.shape[0]
height = annotation.shape[1]
weight = annotation.shape[2]
areas = torch.sum(annotation, dim=(1, 2))
sorted_indices = torch.argsort(areas, descending=False)
annotation = annotation[sorted_indices]
# 找每个位置第一个非零值下标
index = (annotation != 0).to(torch.long).argmax(dim=0)
if random_color == True:
color = torch.rand((msak_sum, 1, 1, 3)).to(annotation.device)
else:
color = torch.ones((msak_sum, 1, 1, 3)).to(annotation.device) * torch.tensor(
[30 / 255, 144 / 255, 255 / 255]
).to(annotation.device)
transparency = torch.ones((msak_sum, 1, 1, 1)).to(annotation.device) * 0.6
visual = torch.cat([color, transparency], dim=-1)
mask_image = torch.unsqueeze(annotation, -1) * visual
# 按index取数,index指每个位置选哪个batch的数,把mask_image转成一个batch的形式
show = torch.zeros((height, weight, 4)).to(annotation.device)
h_indices, w_indices = torch.meshgrid(
torch.arange(height), torch.arange(weight), indexing="ij"
)
indices = (index[h_indices, w_indices], h_indices, w_indices, slice(None))
# 使用向量化索引更新show的值
show[h_indices, w_indices, :] = mask_image[indices]
show_cpu = show.cpu().numpy()
if bbox is not None:
x1, y1, x2, y2 = bbox
ax.add_patch(
plt.Rectangle(
(x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor="b", linewidth=1
)
)
# draw point
if points is not None:
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 1],
[point[1] for i, point in enumerate(points) if point_label[i] == 1],
s=20,
c="y",
)
plt.scatter(
[point[0] for i, point in enumerate(points) if point_label[i] == 0],
[point[1] for i, point in enumerate(points) if point_label[i] == 0],
s=20,
c="m",
)
if retinamask == False:
show_cpu = cv2.resize(
show_cpu, (target_width, target_height), interpolation=cv2.INTER_NEAREST
)
ax.imshow(show_cpu)
# clip
@torch.no_grad()
def retriev(
model, preprocess, elements: [Image.Image], search_text: str, device
):
preprocessed_images = [preprocess(image).to(device) for image in elements]
tokenized_text = clip.tokenize([search_text]).to(device)
stacked_images = torch.stack(preprocessed_images)
image_features = model.encode_image(stacked_images)
text_features = model.encode_text(tokenized_text)
image_features /= image_features.norm(dim=-1, keepdim=True)
text_features /= text_features.norm(dim=-1, keepdim=True)
probs = 100.0 * image_features @ text_features.T
return probs[:, 0].softmax(dim=0)
def crop_image(annotations, image_like):
if isinstance(image_like, str):
image = Image.open(image_like)
else:
image = image_like
ori_w, ori_h = image.size
mask_h, mask_w = annotations[0]["segmentation"].shape
if ori_w != mask_w or ori_h != mask_h:
image = image.resize((mask_w, mask_h))
cropped_boxes = []
cropped_images = []
not_crop = []
origin_id = []
for _, mask in enumerate(annotations):
if np.sum(mask["segmentation"]) <= 100:
continue
origin_id.append(_)
bbox = get_bbox_from_mask(mask["segmentation"]) # mask 的 bbox
cropped_boxes.append(segment_image(image, bbox)) # 保存裁剪的图片
# cropped_boxes.append(segment_image(image,mask["segmentation"]))
cropped_images.append(bbox) # 保存裁剪的图片的bbox
return cropped_boxes, cropped_images, not_crop, origin_id, annotations
def box_prompt(masks, bbox, target_height, target_width):
h = masks.shape[1]
w = masks.shape[2]
if h != target_height or w != target_width:
bbox = [
int(bbox[0] * w / target_width),
int(bbox[1] * h / target_height),
int(bbox[2] * w / target_width),
int(bbox[3] * h / target_height),
]
bbox[0] = round(bbox[0]) if round(bbox[0]) > 0 else 0
bbox[1] = round(bbox[1]) if round(bbox[1]) > 0 else 0
bbox[2] = round(bbox[2]) if round(bbox[2]) < w else w
bbox[3] = round(bbox[3]) if round(bbox[3]) < h else h
# IoUs = torch.zeros(len(masks), dtype=torch.float32)
bbox_area = (bbox[3] - bbox[1]) * (bbox[2] - bbox[0])
masks_area = torch.sum(masks[:, bbox[1] : bbox[3], bbox[0] : bbox[2]], dim=(1, 2))
orig_masks_area = torch.sum(masks, dim=(1, 2))
union = bbox_area + orig_masks_area - masks_area
IoUs = masks_area / union
max_iou_index = torch.argmax(IoUs)
return masks[max_iou_index].cpu().numpy(), max_iou_index
def point_prompt(masks, points, point_label, target_height, target_width): # numpy 处理
h = masks[0]["segmentation"].shape[0]
w = masks[0]["segmentation"].shape[1]
if h != target_height or w != target_width:
points = [
[int(point[0] * w / target_width), int(point[1] * h / target_height)]
for point in points
]
onemask = np.zeros((h, w))
masks = sorted(masks, key=lambda x: x['area'], reverse=True)
for i, annotation in enumerate(masks):
if type(annotation) == dict:
mask = annotation['segmentation']
else:
mask = annotation
for i, point in enumerate(points):
if mask[point[1], point[0]] == 1 and point_label[i] == 1:
onemask[mask] = 1
if mask[point[1], point[0]] == 1 and point_label[i] == 0:
onemask[mask] = 0
onemask = onemask >= 1
return onemask, 0
def text_prompt(annotations, text, img_path, device, wider=False, threshold=0.9):
cropped_boxes, cropped_images, not_crop, origin_id, annotations_ = crop_image(
annotations, img_path
)
import os
clip_model_path = "CLIP_ViT_B_32.pt"
assert os.path.exists(clip_model_path)
clip_model, preprocess = clip.load(clip_model_path, device=device)
#clip_model, preprocess = clip.load("./weights/CLIP_ViT_B_32.pt", device=device)
scores = retriev(
clip_model, preprocess, cropped_boxes, text, device=device
)
max_idx = scores.argsort()
max_idx = max_idx[-1]
max_idx = origin_id[int(max_idx)]
# find the biggest mask which contains the mask with max score
if wider:
mask0 = annotations_[max_idx]["segmentation"]
area0 = np.sum(mask0)
areas = [(i, np.sum(mask["segmentation"])) for i, mask in enumerate(annotations_) if i in origin_id]
areas = sorted(areas, key=lambda area: area[1], reverse=True)
indices = [area[0] for area in areas]
for index in indices:
if index == max_idx or np.sum(annotations_[index]["segmentation"] & mask0) / area0 > threshold:
max_idx = index
break
return annotations_[max_idx]["segmentation"], max_idx