Qwen-Image-Edit-Inpaint / quant_app.py
svjack's picture
Upload folder using huggingface_hub
1b4e855 verified
import gradio as gr
import numpy as np
import spaces
import torch
import random
import os
import json
from PIL import Image
# 新的导入
from diffusers import QwenImageEditPipeline, FlowMatchEulerDiscreteScheduler
from diffusers.utils import load_image
from transformers import BitsAndBytesConfig as TransformersBitsAndBytesConfig
from transformers import Qwen2_5_VLForConditionalGeneration
from diffusers import BitsAndBytesConfig as DiffusersBitsAndBytesConfig
from diffusers import QwenImageTransformer2DModel
import math
from qwenimage.pipeline_qwenimage_edit_inpaint import QwenImageEditInpaintPipeline
#from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
#from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA
from huggingface_hub import InferenceClient
# 配置常量
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
MODEL_ID = "Qwen/Qwen-Image-Edit"
LORA_WEIGHTS = "lightx2v/Qwen-Image-Lightning"
LORA_WEIGHT_NAME = "Qwen-Image-Lightning-8steps-V1.1.safetensors"
# 初始化模型管道
def initialize_pipeline():
"""初始化量化后的Qwen-Image-Edit管道"""
torch_dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Transformer量化配置
transformer_quant_config = DiffusersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
llm_int8_skip_modules=["transformer_blocks.0.img_mod"]
)
# Text Encoder量化配置
text_encoder_quant_config = TransformersBitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True
)
# 加载量化后的组件
transformer = QwenImageTransformer2DModel.from_pretrained(
MODEL_ID,
subfolder="transformer",
quantization_config=transformer_quant_config,
torch_dtype=torch_dtype,
).to("cpu")
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
subfolder="text_encoder",
quantization_config=text_encoder_quant_config,
torch_dtype=torch_dtype,
).to("cpu")
# 创建管道
pipe = QwenImageEditInpaintPipeline.from_pretrained(
MODEL_ID,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch_dtype
)
print("init QwenImageEditPipeline end !")
# 加载LoRA权重加速推理
pipe.load_lora_weights(LORA_WEIGHTS, weight_name=LORA_WEIGHT_NAME)
#pipe.fuse_lora()
print("load lora end !")
# 启用CPU卸载节省显存
pipe.enable_model_cpu_offload()
# 配置调度器
scheduler_config = {
"base_image_seq_len": 256,
"base_shift": math.log(3),
"invert_sigmas": False,
"max_image_seq_len": 8192,
"max_shift": math.log(3),
"num_train_timesteps": 1000,
"shift": 1.0,
"shift_terminal": None,
"stochastic_sampling": False,
"time_shift_type": "exponential",
"use_beta_sigmas": False,
"use_dynamic_shifting": True,
"use_exponential_sigmas": False,
"use_karras_sigmas": False,
}
scheduler = FlowMatchEulerDiscreteScheduler.from_config(scheduler_config)
pipe.scheduler = scheduler
return pipe
# --- Prompt Enhancement using Hugging Face InferenceClient ---
def polish_prompt_hf(original_prompt, system_prompt):
"""
Rewrites the prompt using a Hugging Face InferenceClient.
"""
# Ensure HF_TOKEN is set
api_key = os.environ.get("HF_TOKEN")
if not api_key:
print("Warning: HF_TOKEN not set. Falling back to original prompt.")
return original_prompt
try:
# Initialize the client
client = InferenceClient(
provider="cerebras",
api_key=api_key,
)
# Format the messages for the chat completions API
messages = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": original_prompt}
]
# Call the API
completion = client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Instruct-2507",
messages=messages,
)
# Parse the response
result = completion.choices[0].message.content
# Try to extract JSON if present
if '{"Rewritten"' in result:
try:
# Clean up the response
result = result.replace('```json', '').replace('```', '')
result_json = json.loads(result)
polished_prompt = result_json.get('Rewritten', result)
except:
polished_prompt = result
else:
polished_prompt = result
polished_prompt = polished_prompt.strip().replace("\n", " ")
return polished_prompt
except Exception as e:
print(f"Error during API call to Hugging Face: {e}")
# Fallback to original prompt if enhancement fails
return original_prompt
def polish_prompt(prompt, img):
"""
Main function to polish prompts for image editing using HF inference.
"""
SYSTEM_PROMPT = '''
# Edit Instruction Rewriter
You are a professional edit instruction rewriter. Your task is to generate a precise, concise, and visually achievable professional-level edit instruction based on the user-provided instruction and the image to be edited.
Please strictly follow the rewriting rules below:
## 1. General Principles
• Keep the rewritten prompt concise. Avoid overly long sentences and reduce unnecessary descriptive language.
• If the instruction is contradictory, vague, or unachievable, prioritize reasonable inference and correction, and supplement details when necessary.
• Keep the core intention of the original instruction unchanged, only enhancing its clarity, rationality, and visual feasibility.
• All added objects or modifications must align with the logic and style of the edited input image's overall scene.
## 2. Task Type Handling Rules
### 1. Add, Delete, Replace Tasks
• If the instruction is clear (already includes task type, target entity, position, quantity, attributes), preserve the original intent and only refine the grammar.
• If the description is vague, supplement with minimal but sufficient details (category, color, size, orientation, position, etc.). For example:
> Original: "Add an animal"
> Rewritten: "Add a light-gray cat in the bottom-right corner, sitting and facing the camera"
• Remove meaningless instructions: e.g., "Add 0 objects" should be ignored or flagged as invalid.
• For replacement tasks, specify "Replace Y with X" and briefly describe the key visual features of X.
### 2. Text Editing Tasks
• All text content must be enclosed in English double quotes " ". Do not translate or alter the original language of the text, and do not change the capitalization.
• For text replacement tasks, always use the fixed template:
◦ Replace "xx" to "yy".
◦ Replace the xx bounding box to "yy".
• If the user does not specify text content, infer and add concise text based on the instruction and the input image's context. For example:
> Original: "Add a line of text" (poster)
> Rewritten: "Add text "LIMITED EDITION" at the top center with slight shadow"
• Specify text position, color, and layout in a concise way.
### 3. Human Editing Tasks
• Maintain the person's core visual consistency (ethnicity, gender, age, hairstyle, expression, outfit, etc.).
• If modifying appearance (e.g., clothes, hairstyle), ensure the new element is consistent with the original style.
• For expression changes, they must be natural and subtle, never exaggerated.
• If deletion is not specifically emphasized, the most important subject in the original image (e.g., a person, an animal) should be preserved.
◦ For background change tasks, emphasize maintaining subject consistency at first.
• Example:
> Original: "Change the person's hat"
> Rewritten: "Replace the man's hat with a dark brown beret; keep smile, short hair, and gray jacket unchanged"
### 4. Style Transformation or Enhancement Tasks
• If a style is specified, describe it concisely with key visual traits. For example:
> Original: "Disco style"
> Rewritten: "1970s disco: flashing lights, disco ball, mirrored walls, colorful tones"
• If the instruction says "use reference style" or "keep current style," analyze the input image, extract main features (color, composition, texture, lighting, art style), and integrate them concisely.
• For coloring tasks, including restoring old photos, always use the fixed template: "Restore old photograph, remove scratches, reduce noise, enhance details, high resolution, realistic, natural skin tones, clear facial features, no distortion, vintage photo restoration"
• If there are other changes, place the style description at the end.
## 3. Rationality and Logic Checks
• Resolve contradictory instructions: e.g., "Remove all trees but keep all trees" should be logically corrected.
• Add missing key information: if position is unspecified, choose a reasonable area based on composition (near subject, empty space, center/edges).
# Output Format
Return only the rewritten instruction text directly, without JSON formatting or any other wrapper.
'''
# Note: We're not actually using the image in the HF version,
# but keeping the interface consistent
full_prompt = f"{SYSTEM_PROMPT}\n\nUser Input: {prompt}\n\nRewritten Prompt:"
return polish_prompt_hf(full_prompt, SYSTEM_PROMPT)
# --- Helper functions for reuse feature ---
def clear_result():
"""Clears the result image."""
return gr.update(value=None)
def use_output_as_input(output_image):
"""Sets the generated output as the new input image."""
if output_image is not None:
return gr.update(value=output_image[1])
return gr.update()
# Initialize Qwen Image Edit pipeline
pipe = initialize_pipeline()
@spaces.GPU(duration=120)
def infer(edit_images,
prompt,
negative_prompt="",
seed=42,
randomize_seed=False,
strength=1.0,
num_inference_steps=8,
true_cfg_scale=1.0,
rewrite_prompt=True,
progress=gr.Progress(track_tqdm=True)):
image = edit_images["background"]
mask = edit_images["layers"][0]
if randomize_seed:
seed = random.randint(0, MAX_SEED)
if rewrite_prompt:
prompt = polish_prompt(prompt, image)
print(f"Rewritten Prompt: {prompt}")
# Generate image using Qwen pipeline
result_image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
image=image,
mask_image=mask,
strength=strength,
num_inference_steps=num_inference_steps,
true_cfg_scale=true_cfg_scale,
generator=torch.Generator(device="cuda").manual_seed(seed)
).images[0]
return [image,result_image], seed
examples = [
"change the hat to red",
"make the background a beautiful sunset",
"replace the object with a flower vase",
]
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
#logo-title {
text-align: center;
}
#logo-title img {
width: 400px;
}
#edit_text{margin-top: -62px !important}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.HTML("""
<div id="logo-title">
<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_edit_logo.png" alt="Qwen-Image Edit Logo" width="400" style="display: block; margin: 0 auto;">
<h2 style="font-style: italic;color: #5b47d1;margin-top: -27px !important;margin-left: 133px;">Inapint</h2>
</div>
""")
gr.Markdown("""
Inpaint images with Qwen Image Edit. [Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series.
This demo uses the [Qwen-Image-Lightning](https://huggingface.co/lightx2v/Qwen-Image-Lightning) LoRA with FA3 for accelerated 8-step inference.
Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.
""")
with gr.Row():
with gr.Column():
edit_image = gr.ImageEditor(
label='Upload and draw mask for inpainting',
type='pil',
sources=["upload", "webcam"],
image_mode='RGB',
layers=False,
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
height=600
)
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt (e.g., 'change the hat to red')",
container=False,
)
negative_prompt = gr.Text(
label="Negative Prompt",
show_label=True,
max_lines=1,
placeholder="Enter what you don't want (optional)",
container=False,
value="",
visible=False
)
run_button = gr.Button("Run")
with gr.Column():
result = gr.ImageSlider(label="Result", show_label=False, interactive=False)
use_as_input_button = gr.Button("🔄 Use as Input Image", visible=False, variant="secondary")
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
strength = gr.Slider(
label="Strength",
minimum=0.0,
maximum=1.0,
step=0.1,
value=1.0,
info="Controls how much the inpainted region should change"
)
true_cfg_scale = gr.Slider(
label="True CFG Scale",
minimum=1.0,
maximum=10.0,
step=0.5,
value=1.0,
info="Classifier-free guidance scale"
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=8,
)
rewrite_prompt = gr.Checkbox(
label="Enhance prompt (using HF Inference)",
value=False
)
# Event handlers for reuse functionality
use_as_input_button.click(
fn=use_output_as_input,
inputs=[result],
outputs=[edit_image],
show_api=False
)
# Main generation pipeline with result clearing and button visibility
gr.on(
triggers=[run_button.click, prompt.submit],
fn=clear_result,
inputs=None,
outputs=result,
show_api=False
).then(
fn = infer,
inputs = [edit_image, prompt, negative_prompt, seed, randomize_seed, strength, num_inference_steps, true_cfg_scale, rewrite_prompt],
outputs = [result, seed]
).then(
fn=lambda: gr.update(visible=True),
inputs=None,
outputs=use_as_input_button,
show_api=False
)
demo.launch(share = True)