svjack's picture
Update app.py
dc9a407
import os
import numpy as np
import PIL.Image
import gradio as gr
import matplotlib.pyplot as plt
import requests
import io
import random
import os
from PIL import Image, ImageDraw, ImageFont
import pandas as pd
from time import sleep
from tqdm import tqdm
import extcolors
from gradio_client import Client
import cv2
import numpy as np
import glob
import pathlib
from skimage import io as skio
from pyxelate import Pyx, Pal
from uuid import uuid1
API_TOKEN = os.environ.get("HF_READ_TOKEN")
DEFAULT_PROMPT = "Superman go to Istanbul"
#DEFAULT_ROLE = "Superman"
#DEFAULT_BOOK_COVER = "book_cover_dir/Blank.png"
def tensor_to_image(tensor):
tensor = tensor*255
tensor = np.array(tensor, dtype=np.uint8)
if np.ndim(tensor)>3:
assert tensor.shape[0] == 1
tensor = tensor[0]
return PIL.Image.fromarray(tensor)
list_models = [
"Pixel-Art-XL",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Dalle-3-XL",
]
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None, API_TOKEN = API_TOKEN):
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
#API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if type(prompt) != type(""):
prompt = DEFAULT_PROMPT
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
from huggingface_hub import InferenceClient
import gradio as gr
import pandas as pd
import numpy as np
import os
event_reasoning_df = pd.DataFrame(
[['Use the following events as a background to answer questions related to the cause and effect of time.', 'Ok'],
['What are the necessary preconditions for the next event?:X had a big meal.', 'X placed an order'],
['What could happen after the next event?:X had a big meal.', 'X becomes fat'],
['What is the motivation for the next event?:X had a big meal.', 'X is hungry'],
['What are your feelings after the following event?:X had a big meal.', "X tastes good"],
['What are the necessary preconditions for the next event?:X met his favorite star.', 'X bought a ticket'],
['What could happen after the next event?:X met his favorite star.', 'X is motivated'],
['What is the motivation for the next event?:X met his favorite star.', 'X wants to have some entertainment'],
['What are your feelings after the following event?:X met his favorite star.', "X is in a happy mood"],
['What are the necessary preconditions for the next event?: X to cheat', 'X has evil intentions'],
['What could happen after the next event?:X to cheat', 'X is accused'],
['What is the motivation for the next event?:X to cheat', 'X wants to get something for nothing'],
['What are your feelings after the following event?:X to cheat', "X is starving and freezing in prison"],
['What could happen after the next event?:X go to Istanbul', ''],
],
columns = ["User", "Assistant"]
)
Mistral_7B_client = InferenceClient(
"mistralai/Mistral-7B-Instruct-v0.1"
)
NEED_PREFIX = 'What are the necessary preconditions for the next event?'
EFFECT_PREFIX = 'What could happen after the next event?'
INTENT_PREFIX = 'What is the motivation for the next event?'
REACT_PREFIX = 'What are your feelings after the following event?'
def format_prompt(message, history):
prompt = "<s>"
for user_prompt, bot_response in history:
prompt += f"[INST] {user_prompt} [/INST]"
prompt += f" {bot_response}</s> "
prompt += f"[INST] {message} [/INST]"
return prompt
def generate(
prompt, history, client = Mistral_7B_client,
temperature=0.7, max_new_tokens=256, top_p=0.95, repetition_penalty=1.1,
):
temperature = float(temperature)
if temperature < 1e-2:
temperature = 1e-2
top_p = float(top_p)
generate_kwargs = dict(
temperature=temperature,
max_new_tokens=max_new_tokens,
top_p=top_p,
repetition_penalty=repetition_penalty,
do_sample=True,
seed=42,
)
formatted_prompt = format_prompt(prompt, history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield output
return output
l = [['Confucius', 'X read a book'],
['Superman', 'X go to Istanbul'],
['Monk Xuanzang', 'X went to the West to obtain Buddhist scriptures'],
['Mickey Mouse', 'X attends a party'],
['Napoleon', 'X riding a horse'],
['The Pope', 'X is being crowned'],
['Harry Potter', 'X defeated Voldemort'],
['Minions', 'X join the interstellar war'],
['Augustus Octavian', 'X served as tribune'],
['The Eastern Roman Emperor', 'X defeats Mongol Invaders']]
l = [
('Extract entity from following sentence.', 'Ok')
] + pd.DataFrame(l, columns = ["Role", "Event"]).apply(
lambda x: (x["Event"].replace("X", x["Role"]), "{} : {}".format(x["Role"], x["Event"])), axis = 1
).values.tolist()
#list(generate("The forbidden city build by emp from ming.", history = l, max_new_tokens = 2048))[-1]
#' The Forbidden City : X build by Emp from Ming</s>'
hist = event_reasoning_df.iloc[:-1, :].apply(
lambda x: (x["User"], x["Assistant"]), axis = 1
)
def produce_4_event(event_fact, hist = hist):
NEED_PREFIX_prompt = "{}:{}".format(NEED_PREFIX, event_fact)
EFFECT_PREFIX_prompt = "{}:{}".format(EFFECT_PREFIX, event_fact)
INTENT_PREFIX_prompt = "{}:{}".format(INTENT_PREFIX, event_fact)
REACT_PREFIX_prompt = "{}:{}".format(REACT_PREFIX, event_fact)
NEED_PREFIX_output = list(generate(NEED_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
EFFECT_PREFIX_output = list(generate(EFFECT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
INTENT_PREFIX_output = list(generate(INTENT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
REACT_PREFIX_output = list(generate(REACT_PREFIX_prompt, history = hist, max_new_tokens = 2048))[-1]
NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output = map(lambda x: x.replace("</s>", ""), [NEED_PREFIX_output, EFFECT_PREFIX_output, INTENT_PREFIX_output, REACT_PREFIX_output])
return {
NEED_PREFIX: NEED_PREFIX_output,
EFFECT_PREFIX: EFFECT_PREFIX_output,
INTENT_PREFIX: INTENT_PREFIX_output,
REACT_PREFIX: REACT_PREFIX_output,
}
def transform_4_event_as_sd_prompts(event_fact ,event_reasoning_dict, role_name = "superman"):
req = {}
for k, v in event_reasoning_dict.items():
if type(role_name) == type("") and role_name.strip():
v_ = v.replace("X", role_name)
else:
v_ = v
req[k] = list(generate("Transform this as a prompt in stable diffusion: {}".\
format(v_),
history = [], max_new_tokens = 2048))[-1].replace("</s>", "")
event_fact_ = event_fact.replace("X", role_name)
req["EVENT_FACT"] = list(generate("Transform this as a prompt in stable diffusion: {}".\
format(event_fact_),
history = [], max_new_tokens = 2048))[-1].replace("</s>", "")
req_list = [
req[INTENT_PREFIX], req[NEED_PREFIX],
req["EVENT_FACT"],
req[REACT_PREFIX], req[EFFECT_PREFIX]
]
caption_list = [
event_reasoning_dict[INTENT_PREFIX], event_reasoning_dict[NEED_PREFIX],
event_fact,
event_reasoning_dict[REACT_PREFIX], event_reasoning_dict[EFFECT_PREFIX]
]
caption_list = list(map(lambda x: x.replace("X", role_name), caption_list))
return caption_list ,req_list
def batch_as_list(input_, batch_size = 3):
req = []
for ele in input_:
if not req or len(req[-1]) >= batch_size:
req.append([ele])
else:
req[-1].append(ele)
return req
def add_margin(pil_img, top, right, bottom, left, color):
width, height = pil_img.size
new_width = width + right + left
new_height = height + top + bottom
result = Image.new(pil_img.mode, (new_width, new_height), color)
result.paste(pil_img, (left, top))
return result
def add_caption_on_image(input_image, caption, marg_ratio = 0.15, row_token_num = 6):
from uuid import uuid1
assert hasattr(input_image, "save")
max_image_size = max(input_image.size)
marg_size = int(marg_ratio * max_image_size)
colors, pixel_count = extcolors.extract_from_image(input_image)
input_image = add_margin(input_image, marg_size, 0, 0, marg_size, colors[0][0])
font = ImageFont.truetype("DejaVuSerif-Italic.ttf" ,int(marg_size / 4))
caption_token_list = list(map(lambda x: x.strip() ,caption.split(" ")))
caption_list = list(map(" ".join ,batch_as_list(caption_token_list, row_token_num)))
draw = ImageDraw.Draw(input_image)
for line_num ,line_caption in enumerate(caption_list):
position = (
int(marg_size / 4) * (line_num + 1) * 1.1 ,
(int(marg_size / 4) * (
(line_num + 1) * 1.1
)))
draw.text(position, line_caption, fill="black", font = font)
return input_image
def expand2square(pil_img, background_color):
width, height = pil_img.size
if width == height:
return pil_img
elif width > height:
result = Image.new(pil_img.mode, (width, width), background_color)
result.paste(pil_img, (0, (width - height)))
return result
else:
result = Image.new(pil_img.mode, (height, height), background_color)
result.paste(pil_img, ((height - width)))
return result
def generate_video(images, video_name = 'ppt.avi'):
import cv2
from uuid import uuid1
im_names = []
for im in images:
name = "{}.png".format(uuid1())
im.save(name)
im_names.append(name)
frame = cv2.imread(im_names[0])
# setting the frame width, height width
# the width, height of first image
height, width, layers = frame.shape
video = cv2.VideoWriter(video_name, 0, 1, (width, height))
# Appending the images to the video one by one
for name in im_names:
video.write(cv2.imread(name))
os.remove(name)
# Deallocating memories taken for window creation
#cv2.destroyAllWindows()
video.release() # releasing the video generated
def make_video_from_image_list(image_list, video_name = "ppt.avi"):
if os.path.exists(video_name):
os.remove(video_name)
assert all(map(lambda x: hasattr(x, "save"), image_list))
max_size = list(map(max ,zip(*map(lambda x: x.size, image_list))))
max_size = max(max_size)
image_list = list(map(lambda x: expand2square(x,
extcolors.extract_from_image(x)[0][0][0]
).resize((max_size, max_size)), image_list))
generate_video(image_list, video_name = video_name)
return video_name
def style_transfer_func(content_img, downsample, palette, depth, upscale):
assert hasattr(content_img, "save")
#image = io.imread(image.name)
path = "{}.png".format(uuid1())
#Image.fromarray(image).save(path)
content_img.save(path)
image = skio.imread(path)
os.remove(path)
downsample_by = int(downsample) # new image will be 1/14th of the original in size
palette = int(palette) # find 7 colors
# 1) Instantiate Pyx transformer
pyx = Pyx(factor=downsample_by, palette=palette,depth=int(depth),upscale = int(upscale))
# 2) fit an image, allow Pyxelate to learn the color palette
pyx.fit(image)
# 3) transform image to pixel art using the learned color palette
new_image = pyx.transform(image)
# save new image with 'skimage.io.imsave()'
skio.imsave(path, new_image)
out = Image.open(path)
os.remove(path)
return out
def gen_images_from_event_fact(current_model, event_fact, role_name,
downsample = 0, palette = 0, depth = 0, upscale = 0,
):
event_reasoning_dict = produce_4_event(event_fact)
caption_list ,event_reasoning_sd_list = transform_4_event_as_sd_prompts(event_fact ,
event_reasoning_dict,
role_name = role_name
)
img_list = []
for prompt in tqdm(event_reasoning_sd_list):
im = generate_txt2img(current_model, prompt, is_negative=False, image_style="None style")
img_list.append(im)
sleep(2)
img_list = list(filter(lambda x: hasattr(x, "save"), img_list))
if downsample is not None and downsample > 0:
print("perform styling.....")
img_list_ = []
for x in tqdm(img_list):
img_list_.append(style_transfer_func(x, downsample, palette, depth, upscale))
#img_list = img_list_
else:
img_list_ = img_list
def trans_img_list_to_video(img_list, video_name):
img_list = list(map(lambda t2: add_caption_on_image(t2[0], t2[1]) ,zip(*[img_list, caption_list])))
img_mid = img_list[2]
img_list_reordered = [img_mid]
for ele in img_list:
if ele not in img_list_reordered:
img_list_reordered.append(ele)
video_path = make_video_from_image_list(img_list_reordered, video_name = video_name)
return video_path
ppt_avi_path = trans_img_list_to_video(img_list, "ppt.avi")
pix_ppt_avi_path = trans_img_list_to_video(img_list_, "pix_ppt.avi")
return ppt_avi_path, pix_ppt_avi_path
def gen_images_from_prompt(current_model, prompt = DEFAULT_PROMPT,
downsample = 0, palette = 0, depth = 0, upscale = 0,
):
#### event_fact = DEFAULT_PROMPT, role_name = DEFAULT_ROLE
#list(generate("The forbidden city build by emp from ming.", history = l, max_new_tokens = 2048))[-1]
#' The Forbidden City : X build by Emp from Ming</s>'
out = list(generate(prompt, history = l, max_new_tokens = 2048))[-1]
role_name, event_fact = map(lambda x: x.replace("</s>", "").strip() ,out.split(":"))
video_path, pix_video_path = gen_images_from_event_fact(current_model, event_fact, role_name,
downsample, palette, depth, upscale,
)
return video_path, pix_video_path
with gr.Blocks(css=".caption-label {display:none}") as demo:
favicon = '<img src="" width="48px" style="display: inline">'
gr.Markdown(
f"""<h1><center> 🧱 Pixel Story Teller</center></h1>
"""
)
with gr.Row():
with gr.Column(elem_id="prompt-container"):
with gr.Row():
gr.HTML('''<h2 id="input_header">Input 👇</h2>''')
with gr.Row():
text_prompt = gr.Textbox(label="Event Prompt", placeholder=DEFAULT_PROMPT,
lines=1, elem_id="prompt-text-input", value = DEFAULT_PROMPT,
info = "You should set the prompt in format 'Someone do something'",
)
with gr.Row():
current_model = gr.Dropdown(label="Current Model", choices=list_models, value="Pixel-Art-XL")
downsample = gr.Number(value=8, label="downsample by")
palette = gr.Number(value=10, label="palette")
depth = gr.Number(value=1, label="depth")
upscale = gr.Number(value=4, label="upscale")
with gr.Column():
'''
with gr.Row():
gr.HTML('<h2 id="output_header"> 👈 Input </h2>')
'''
gr.Examples(
[
["OpenJourney-V4", "Augustus Octavian" + " served as tribune"],
["Pixel-Art-XL", "Confucius" + " read a book"],
["Pixel-Art-XL", "Superman" + " go to Istanbul"],
["SD-1.5", "Monk Xuanzang" + " went to the West to obtain Buddhist scriptures"],
["SD-1.5", "Mickey Mouse" + " attends a party"],
["SD-1.5", "Napoleon" + " riding a horse"],
["SD-1.5", "The Pope" + " is being crowned"],
["SD-1.5", "The Eastern Roman Emperor" + " defeats Mongol Invaders"],
],
inputs = [current_model, text_prompt],
#label = "Example collection"
)
with gr.Row():
text_button = gr.Button("Generate", variant='primary', elem_id="gen-button")
with gr.Row():
with gr.Row():
video_output = gr.Video(label = "Story Video", elem_id="gallery", height = 768 - 128,)
pix_video_output = gr.Video(label = "Pixel Story Video", elem_id="gallery", height = 768 - 128,)
text_button.click(gen_images_from_prompt, inputs=[current_model, text_prompt,
downsample, palette, depth, upscale
],
outputs=[video_output, pix_video_output])
demo.launch(show_api=False)