svjack's picture
Update app.py
5fe3d75
raw
history blame
1.72 kB
import os
import gradio as gr
from llama_cpp import Llama
from huggingface_hub import hf_hub_download
# Hugging FaceのAPIトークンを設定
#os.environ["HUGGINGFACE_TOKEN"] = os.getenv("HUGGINGFACE_TOKEN")
model_name_or_path = "TheBloke/OpenBuddy-Llama2-13B-v11.1-GGUF"
model_basename = "openbuddy-llama2-13b-v11.1.Q2_K.gguf"
model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename, revision="main")
llama = Llama(model_path)
def predict(message, history):
messages = []
for human_content, system_content in history:
message_human = {
"role": "user",
"content": human_content + "\n",
}
message_system = {
"role": "system",
"content": system_content + "\n",
}
messages.append(message_human)
messages.append(message_system)
message_human = {
"role": "user",
"content": message + "\n",
}
messages.append(message_human)
# Llamaでの回答を取得(ストリーミングオン)
streamer = llama.create_chat_completion(messages, stream=True)
partial_message = ""
for msg in streamer:
message = msg['choices'][0]['delta']
if 'content' in message:
partial_message += message['content']
yield partial_message
gr.ChatInterface(predict,
examples=[
"What's the relationship between Harry Potter and Hermione ?",
"请解释下面的emoji符号描述的情景👨👩🔥❄️",
"明朝内阁制度的特点是什么?",
"如何进行经济建设?",
"你听说过马克思吗?",
],
cache_examples=False,
).launch(enable_queue=True)