svjack's picture
Update app.py
f444a84
raw
history blame
16.6 kB
import json
import random
import gradio as gr
from pathlib import Path
import os
import requests
from PIL import Image
import io
import pathlib
API_TOKEN = os.environ.get("HF_READ_TOKEN")
base_dir = "."
dropdown_options_file = Path(base_dir, "json/dropdown_options.json")
category_data_file = Path(base_dir, "json/category_data.json")
style_data_file = Path(base_dir, "json/style_data.json")
prefix_data_file = Path(base_dir, "json/prefix_data.json")
lightning_data_file = Path(base_dir, "json/lightning_data.json")
lens_data_file = Path(base_dir, "json/lens_data.json")
class Model:
'''
Small strut to hold data for the text generator
'''
def __init__(self, name) -> None:
self.name = name
pass
def populate_dropdown_options():
path = dropdown_options_file
with open(path, 'r') as f:
data = json.load(f)
category_choices = data["category"]
style_choices = data["style"]
lightning_choices = data["lightning"]
lens_choices = data["lens"]
return tuple(category_choices), tuple(style_choices), tuple(lightning_choices), tuple(lens_choices),
def add_to_prompt(*args):
prompt, use_default_negative_prompt, base_prompt, negative_base_prompt = args
default_negative_prompt = "(worst quality:1.2), (low quality:1.2), (lowres:1.1), (monochrome:1.1), (greyscale), multiple views, comic, sketch, (((bad anatomy))), (((deformed))), (((disfigured))), watermark, multiple_views, mutation hands, mutation fingers, extra fingers, missing fingers, watermark"
if(use_default_negative_prompt):
return "{} {}".format(base_prompt ,prompt), default_negative_prompt
else:
return "{} {}".format(base_prompt ,prompt), ""
def get_random_prompt(data):
random_key = random.choice(list(data.keys()))
random_array = random.choice(data[random_key])
random_strings = random.sample(random_array, 3)
return random_strings
def get_correct_prompt(data, selected_dropdown):
correct_array = data[selected_dropdown]
random_array = random.choice(correct_array)
random_strings = random.sample(random_array, 3)
random_strings.insert(0, selected_dropdown)
return random_strings
def generate_prompt_output(*args):
#all imported files
prefix_path = prefix_data_file
category_path = category_data_file
style_path = style_data_file
lightning_path = lightning_data_file
lens_path = lens_data_file
#destructure args
category, style, lightning, lens, negative_prompt = args
# Convert variables to lowercase
category = category.lower()
style = style.lower()
lightning = lightning.lower()
lens = lens.lower()
# Open category_data.json and grab correct text
with open(prefix_path, 'r') as f:
prefix_data = json.load(f)
prefix_prompt = random.sample(prefix_data, 6)
modified_prefix_prompt = [f"(({item}))" for item in prefix_prompt]
# Open category_data.json and grab correct text
with open(category_path, 'r') as f2:
category_data = json.load(f2)
if category == "none":
category_prompt = ""
elif category == "random":
category_prompt = get_random_prompt(category_data)
else:
category_prompt = get_correct_prompt(category_data, category)
# Open style_data.json and grab correct text
with open(style_path, 'r') as f3:
style_data = json.load(f3)
if style == "none":
style_prompt = ""
elif style == "random":
style_prompt = get_random_prompt(style_data)
else:
style_prompt = get_correct_prompt(style_data, style)
# Open lightning_data.json and grab correct text
with open(lightning_path, 'r') as f4:
lightning_data = json.load(f4)
if lightning == "none":
lightning_prompt = ""
elif lightning == "random":
lightning_prompt = get_random_prompt(lightning_data)
else:
lightning_prompt = get_correct_prompt(lightning_data, lightning)
# Open lens_data.json and grab correct text
with open(lens_path, 'r') as f5:
lens_data = json.load(f5)
if lens == "none":
lens_prompt = ""
elif lens == "random":
lens_prompt = get_random_prompt(lens_data)
else:
lens_prompt = get_correct_prompt(lens_data, lens)
prompt_output = modified_prefix_prompt, category_prompt, style_prompt, lightning_prompt, lens_prompt
prompt_strings = []
for sublist in prompt_output:
# Join the sublist elements into a single string
prompt_string = ", ".join(str(item) for item in sublist)
if prompt_string: # Check if the prompt_string is not empty
prompt_strings.append(prompt_string)
# Join the non-empty prompt_strings
final_output = ", ".join(prompt_strings)
return final_output
list_models = [
"SDXL-1.0",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Pixel-Art-XL",
"Dalle-3-XL",
"Midjourney-V4-XL",
]
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None, API_TOKEN = API_TOKEN):
print("call {} {} one time".format(current_model, prompt))
'''
import shutil
im_save_dir = "local_img_dir"
if not os.path.exists(im_save_dir):
#shutil.rmtree(im_save_dir)
os.mkdir(im_save_dir)
'''
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL-1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney-V4-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
#API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if type(prompt) != type(""):
prompt = DEFAULT_PROMPT
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
'''
from uuid import uuid1
path = os.path.join(im_save_dir ,"{}.png".format(uuid1()))
image.save(path)
return path
'''
return image
#yield image
#return [image]
def on_ui_tabs():
'''
# UI structure
txt2img_prompt = modules.ui.txt2img_paste_fields[0][0]
img2img_prompt = modules.ui.img2img_paste_fields[0][0]
txt2img_negative_prompt = modules.ui.txt2img_paste_fields[1][0]
img2img_negative_prompt = modules.ui.img2img_paste_fields[1][0]
'''
with gr.Blocks(css = '''
.header img {
float: middle;
width: 33px;
height: 33px;
}
.header h1 {
top: 18px;
left: 10px;
}
'''
) as prompt_generator:
gr.HTML(
'''
<center>
<div class="header">
<h1 class = "logo"> <img src="https://huggingface.co/spaces/svjack/Next-Diffusion-Prompt-Generator/resolve/main/images/nextdiffusion_logo.png" alt="logo" /> πŸ§‘β€πŸŽ¨ Next Diffusion Prompt On Stable Diffuison </h1>
</center>
''')
with gr.Tab("Prompt Generator"):
with gr.Row(): # Use Row to arrange two columns side by side
with gr.Column(): # Left column for dropdowns
category_choices, style_choices, lightning_choices, lens_choices = populate_dropdown_options()
with gr.Row():
gr.HTML('''<h2 id="input_header">Input πŸ‘‡</h2>''')
with gr.Row():
# Create a dropdown to select
with gr.Row():
txt2img_prompt = gr.Textbox(label = "txt2img_prompt", interactive = True)
txt2img_negative_prompt = gr.Textbox(label = "txt2img_negative_prompt", interactive = True)
'''
with gr.Row():
img2img_prompt = gr.Textbox(label = "img2img_prompt", interactive = True)
img2img_negative_prompt = gr.Textbox(label = "img2img_negative_prompt", interactive = True)
'''
with gr.Row():
current_model = gr.Dropdown(label="Current Model", choices=list_models, value=list_models[1])
text_button = gr.Button("Generate image by Stable Diffusion")
with gr.Row():
image_output = gr.Image(label="Output Image", type = "filepath", elem_id="gallery", height = 512,
show_share_button = True
)
#image_gallery = gr.Gallery(height = 512, label = "Output Gallery")
#image_file = gr.File(label="Output Image File")
with gr.Column(): # Right column for result_textbox and generate_button
# Add a Textbox to display the generated text
with gr.Row():
gr.HTML('''<h2 id="output_header">Prompt Extender by Rule πŸ‘‹ (aid Input πŸ‘ˆ)</h2>''')
with gr.Row().style(equal_height=True): # Place dropdowns side by side
category_dropdown = gr.Dropdown(
choices=category_choices,
value=category_choices[1],
label="Category", show_label=True
)
style_dropdown = gr.Dropdown(
choices=style_choices,
value=style_choices[1],
label="Style", show_label=True
)
with gr.Row():
lightning_dropdown = gr.Dropdown(
choices=lightning_choices,
value=lightning_choices[1],
label="Lightning", show_label=True
)
lens_dropdown = gr.Dropdown(
choices=lens_choices,
value=lens_choices[1],
label="Lens", show_label=True
)
result_textbox = gr.Textbox(label="Generated Prompt", lines=3)
use_default_negative_prompt = gr.Checkbox(label="Include Negative Prompt", value=True, interactive=True, elem_id="negative_prompt_checkbox")
setattr(use_default_negative_prompt,"do_not_save_to_config",True)
with gr.Row():
generate_button = gr.Button(value="Generate", elem_id="generate_button")
clear_button = gr.Button(value="Clear")
with gr.Row():
txt2img = gr.Button("Send to txt2img")
#img2img = gr.Button("Send to img2img")
with gr.Row():
gr.HTML('''
<hr class="rounded" id="divider">
''')
with gr.Row():
gr.HTML('''<h2 id="input_header">Links</h2>''')
with gr.Row():
gr.HTML('''
<h3>Stable Diffusion Tutorials⚑</h3>
<container>
<a href="https://nextdiffusion.ai" target="_blank">
<button id="website_button" class="external-link">Website</button>
</a>
<a href="https://www.youtube.com/channel/UCd9UIUkLnjE-Fj-CGFdU74Q?sub_confirmation=1" target="_blank">
<button id="youtube_button" class="external-link">YouTube</button>
</a>
</container>
''')
'''
with gr.Accordion("Advanced settings", open=True):
negative_prompt = gr.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1, elem_id="negative-prompt-text-input")
image_style = gr.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style", allow_custom_value=False) with gr.Row():
'''
# Create a button to trigger text generation
txt2img.click(add_to_prompt, inputs=[result_textbox, use_default_negative_prompt, txt2img_prompt, txt2img_negative_prompt], outputs=[txt2img_prompt, txt2img_negative_prompt ])
#img2img.click(add_to_prompt, inputs=[result_textbox, use_default_negative_prompt, img2img_prompt, img2img_negative_prompt], outputs=[img2img_prompt, img2img_negative_prompt])
clear_button.click(lambda x: [""] * 3 + ["Random", "Random", "Random", "Random"], None,
[result_textbox, txt2img_prompt, txt2img_negative_prompt,
category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown
])
text_button.click(generate_txt2img, inputs=[current_model, txt2img_prompt, txt2img_negative_prompt], outputs=image_output,
)
# Register the callback for the Generate button
generate_button.click(fn=generate_prompt_output, inputs=[category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown, use_default_negative_prompt], outputs=[result_textbox])
gr.Examples(
[
["A lovely cat", "low quality, blur", "OpenJourney-V4", "Anime", "Drawing", "Bloom light", "F/14"],
["Forest house", "low quality, blur", "SD-1.5", "None", "Photograph", "Beautifully lit", "800mm lens"],
["A girl in pink", "low quality, blur", "SD-1.5", "Anime", "3D style", "None", "Random"],
],
inputs = [txt2img_prompt, txt2img_negative_prompt, current_model, category_dropdown, style_dropdown, lightning_dropdown, lens_dropdown]
)
return prompt_generator
with on_ui_tabs() as demo:
pass
demo.launch(show_api = False)