Spaces:
Runtime error
Runtime error
import argparse | |
import datetime | |
import glob | |
import json | |
import math | |
import os | |
import sys | |
import time | |
from collections import OrderedDict | |
import cv2 | |
import numpy as np | |
import torch | |
import torchvision | |
## note: decord should be imported after torch | |
from omegaconf import OmegaConf | |
from pytorch_lightning import seed_everything | |
from tqdm import tqdm | |
sys.path.insert(1, os.path.join(sys.path[0], '..', '..')) | |
from lvdm.models.samplers.ddim import DDIMSampler | |
from main.evaluation.motionctrl_prompts_camerapose_trajs import ( | |
both_prompt_camerapose_traj, cmcm_prompt_camerapose, omom_prompt_traj) | |
from utils.utils import instantiate_from_config | |
DEFAULT_NEGATIVE_PROMPT = 'blur, haze, deformed iris, deformed pupils, semi-realistic, cgi, 3d, render, '\ | |
'sketch, cartoon, drawing, anime, mutated hands and fingers, deformed, distorted, '\ | |
'disfigured, poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, '\ | |
'floating limbs, disconnected limbs, mutation, mutated, ugly, disgusting, amputation' | |
post_prompt = 'Ultra-detail, masterpiece, best quality, cinematic lighting, 8k uhd, dslr, soft lighting, film grain, Fujifilm XT3' | |
def load_model_checkpoint(model, ckpt, adapter_ckpt=None): | |
if adapter_ckpt: | |
## main model | |
state_dict = torch.load(ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
result = model.load_state_dict(state_dict, strict=False) | |
else: | |
# deepspeed | |
new_pl_sd = OrderedDict() | |
for key in state_dict['module'].keys(): | |
new_pl_sd[key[16:]]=state_dict['module'][key] | |
result = model.load_state_dict(new_pl_sd, strict=False) | |
print(result) | |
print('>>> model checkpoint loaded.') | |
## adapter | |
state_dict = torch.load(adapter_ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
model.adapter.load_state_dict(state_dict, strict=True) | |
print('>>> adapter checkpoint loaded.') | |
else: | |
state_dict = torch.load(ckpt, map_location="cpu") | |
if "state_dict" in list(state_dict.keys()): | |
state_dict = state_dict["state_dict"] | |
model.load_state_dict(state_dict, strict=False) | |
else: | |
# deepspeed | |
new_pl_sd = OrderedDict() | |
for key in state_dict['module'].keys(): | |
new_pl_sd[key[16:]]=state_dict['module'][key] | |
model.load_state_dict(new_pl_sd) | |
print('>>> model checkpoint loaded.') | |
return model | |
def load_trajs(cond_dir, trajs): | |
traj_files = [f'{cond_dir}/trajectories/{traj}.npy' for traj in trajs] | |
data_list = [] | |
traj_name = [] | |
for idx in range(len(traj_files)): | |
traj_name.append(traj_files[idx].split('/')[-1].split('.')[0]) | |
data_list.append(torch.tensor(np.load(traj_files[idx])).permute(3, 0, 1, 2).float()) # [t,h,w,c] -> [c,t,h,w] | |
return data_list, traj_name | |
def load_camera_pose(cond_dir, camera_poses): | |
pose_file = [f'{cond_dir}/camera_poses/{pose}.json' for pose in camera_poses] | |
pose_sample_num = len(pose_file) | |
data_list = [] | |
pose_name = [] | |
for idx in range(pose_sample_num): | |
cur_pose_name = camera_poses[idx].replace('test_camera_', '') | |
pose_name.append(cur_pose_name) | |
with open(pose_file[idx], 'r') as f: | |
pose = json.load(f) | |
pose = np.array(pose) # [t, 12] | |
pose = torch.tensor(pose).float() # [t, 12] | |
data_list.append(pose) | |
return data_list, pose_name | |
def save_results(samples, filename, savedir, fps=10): | |
## save prompt | |
## save video | |
videos = [samples] | |
savedirs = [savedir] | |
for idx, video in enumerate(videos): | |
if video is None: | |
continue | |
# b,c,t,h,w | |
video = video.detach().cpu() | |
video = torch.clamp(video.float(), -1., 1.) | |
n = video.shape[0] | |
video = video.permute(2, 0, 1, 3, 4) # t,n,c,h,w | |
frame_grids = [torchvision.utils.make_grid(framesheet, nrow=int(n)) for framesheet in video] #[3, 1*h, n*w] | |
grid = torch.stack(frame_grids, dim=0) # stack in temporal dim [t, 3, n*h, w] | |
grid = (grid + 1.0) / 2.0 | |
grid = (grid * 255).to(torch.uint8).permute(0, 2, 3, 1) | |
path = os.path.join(savedirs[idx], "%s.mp4"%filename) | |
torchvision.io.write_video(path, grid, fps=fps, video_codec='h264', options={'crf': '10'}) | |
def motionctrl_sample( | |
model, | |
prompts, | |
noise_shape, | |
camera_poses=None, | |
trajs=None, | |
n_samples=1, | |
unconditional_guidance_scale=1.0, | |
unconditional_guidance_scale_temporal=None, | |
ddim_steps=50, | |
ddim_eta=1., | |
**kwargs): | |
ddim_sampler = DDIMSampler(model) | |
batch_size = noise_shape[0] | |
## get condition embeddings (support single prompt only) | |
if isinstance(prompts, str): | |
prompts = [prompts] | |
for i in range(len(prompts)): | |
prompts[i] = f'{prompts[i]}, {post_prompt}' | |
cond = model.get_learned_conditioning(prompts) | |
if camera_poses is not None: | |
RT = camera_poses[..., None] | |
else: | |
RT = None | |
if trajs is not None: | |
traj_features = model.get_traj_features(trajs) | |
else: | |
traj_features = None | |
if unconditional_guidance_scale != 1.0: | |
# prompts = batch_size * [""] | |
prompts = batch_size * [DEFAULT_NEGATIVE_PROMPT] | |
uc = model.get_learned_conditioning(prompts) | |
if traj_features is not None: | |
un_motion = model.get_traj_features(torch.zeros_like(trajs)) | |
else: | |
un_motion = None | |
uc = {"features_adapter": un_motion, "uc": uc} | |
else: | |
uc = None | |
batch_variants = [] | |
for _ in range(n_samples): | |
if ddim_sampler is not None: | |
samples, _ = ddim_sampler.sample(S=ddim_steps, | |
conditioning=cond, | |
batch_size=noise_shape[0], | |
shape=noise_shape[1:], | |
verbose=False, | |
unconditional_guidance_scale=unconditional_guidance_scale, | |
unconditional_conditioning=uc, | |
eta=ddim_eta, | |
temporal_length=noise_shape[2], | |
conditional_guidance_scale_temporal=unconditional_guidance_scale_temporal, | |
features_adapter=traj_features, | |
pose_emb=RT, | |
**kwargs | |
) | |
## reconstruct from latent to pixel space | |
batch_images = model.decode_first_stage(samples) | |
batch_variants.append(batch_images) | |
## variants, batch, c, t, h, w | |
batch_variants = torch.stack(batch_variants) | |
return batch_variants.permute(1, 0, 2, 3, 4, 5) | |
def run_inference(args, gpu_num, gpu_no): | |
## model config | |
config = OmegaConf.load(args.base) | |
model_config = config.pop("model", OmegaConf.create()) | |
model = instantiate_from_config(model_config) | |
model = model.cuda(gpu_no) | |
assert os.path.exists(args.ckpt_path), f"Error: checkpoint {args.ckpt_path} Not Found!" | |
print(f"Loading checkpoint from {args.ckpt_path}") | |
model = load_model_checkpoint(model, args.ckpt_path, args.adapter_ckpt) | |
model.eval() | |
## run over data | |
assert (args.height % 16 == 0) and (args.width % 16 == 0), "Error: image size [h,w] should be multiples of 16!" | |
## latent noise shape | |
h, w = args.height // 8, args.width // 8 | |
channels = model.channels | |
frames = model.temporal_length | |
noise_shape = [args.bs, channels, frames, h, w] | |
savedir = os.path.join(args.savedir, "samples") | |
os.makedirs(savedir, exist_ok=True) | |
if args.condtype == 'camera_motion': | |
prompt_list = cmcm_prompt_camerapose['prompts'] | |
camera_pose_list, pose_name = load_camera_pose(args.cond_dir, cmcm_prompt_camerapose['camera_poses']) | |
traj_list = None | |
save_name_list = [] | |
for i in range(len(pose_name)): | |
save_name_list.append(f"{pose_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}") | |
elif args.condtype == 'object_motion': | |
prompt_list = omom_prompt_traj['prompts'] | |
traj_list, traj_name = load_trajs(args.cond_dir, omom_prompt_traj['trajs']) | |
camera_pose_list = None | |
save_name_list = [] | |
for i in range(len(traj_name)): | |
save_name_list.append(f"{traj_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}") | |
elif args.condtype == 'both': | |
prompt_list = both_prompt_camerapose_traj['prompts'] | |
camera_pose_list, pose_name = load_camera_pose(args.cond_dir, both_prompt_camerapose_traj['camera_poses']) | |
traj_list, traj_name = load_trajs(args.cond_dir, both_prompt_camerapose_traj['trajs']) | |
save_name_list = [] | |
for i in range(len(pose_name)): | |
save_name_list.append(f"{pose_name[i]}__{traj_name[i]}__{prompt_list[i].replace(' ', '_').replace(',', '')}") | |
num_samples = len(prompt_list) | |
samples_split = num_samples // gpu_num | |
print('Prompts testing [rank:%d] %d/%d samples loaded.'%(gpu_no, samples_split, num_samples)) | |
#indices = random.choices(list(range(0, num_samples)), k=samples_per_device) | |
indices = list(range(samples_split*gpu_no, samples_split*(gpu_no+1))) | |
prompt_list_rank = [prompt_list[i] for i in indices] | |
camera_pose_list_rank = None if camera_pose_list is None else [camera_pose_list[i] for i in indices] | |
traj_list_rank = None if traj_list is None else [traj_list[i] for i in indices] | |
save_name_list_rank = [save_name_list[i] for i in indices] | |
start = time.time() | |
for idx, indice in tqdm(enumerate(range(0, len(prompt_list_rank), args.bs)), desc='Sample Batch'): | |
prompts = prompt_list_rank[indice:indice+args.bs] | |
camera_poses = None if camera_pose_list_rank is None else camera_pose_list_rank[indice:indice+args.bs] | |
trajs = None if traj_list_rank is None else traj_list_rank[indice:indice+args.bs] | |
save_name = save_name_list_rank[indice:indice+args.bs] | |
print(f'Processing {save_name}') | |
if camera_poses is not None: | |
camera_poses = torch.stack(camera_poses, dim=0).to("cuda") | |
if trajs is not None: | |
trajs = torch.stack(trajs, dim=0).to("cuda") | |
batch_samples = motionctrl_sample( | |
model, | |
prompts, | |
noise_shape, | |
camera_poses=camera_poses, | |
trajs=trajs, | |
n_samples=args.n_samples, | |
unconditional_guidance_scale=args.unconditional_guidance_scale, | |
unconditional_guidance_scale_temporal=args.unconditional_guidance_scale_temporal, | |
ddim_steps=args.ddim_steps, | |
ddim_eta=args.ddim_eta, | |
cond_T = args.cond_T, | |
) | |
## save each example individually | |
for nn, samples in enumerate(batch_samples): | |
## samples : [n_samples,c,t,h,w] | |
prompt = prompts[nn] | |
name = save_name[nn] | |
if len(name) > 90: | |
name = name[:90] | |
filename = f'{name}_{idx*args.bs+nn:04d}_randk{gpu_no}' | |
save_results(samples, filename, savedir, fps=10) | |
if args.save_imgs: | |
parts = save_name[nn].split('__') | |
if len(parts) == 2: | |
cond_name = parts[0] | |
prname = prompts[nn].replace(' ', '_').replace(',', '') | |
cur_outdir = os.path.join(savedir, cond_name, prname) | |
elif len(parts) == 3: | |
poname, trajname, _ = save_name[nn].split('__') | |
prname = prompts[nn].replace(' ', '_').replace(',', '') | |
cur_outdir = os.path.join(savedir, poname, trajname, prname) | |
else: | |
raise NotImplementedError | |
os.makedirs(cur_outdir, exist_ok=True) | |
save_images(samples, cur_outdir) | |
if nn % 100 == 0: | |
print(f'Finish {nn}/{len(batch_samples)}') | |
print(f"Saved in {args.savedir}. Time used: {(time.time() - start):.2f} seconds") | |
def save_images(samples, savedir): | |
## samples : [n_samples,c,t,h,w] | |
n_samples, c, t, h, w = samples.shape | |
samples = torch.clamp(samples, -1.0, 1.0) | |
samples = (samples + 1.0) / 2.0 | |
samples = (samples * 255).detach().cpu().numpy().astype(np.uint8) | |
for i in range(n_samples): | |
cur_outdir = os.path.join(savedir, f'{i}/images') | |
os.makedirs(cur_outdir, exist_ok=True) | |
for j in range(t): | |
img = samples[i,:,j,:,:] | |
img = np.transpose(img, (1,2,0)) | |
img = img[:,:,::-1] # BGR to RGB | |
path = os.path.join(cur_outdir, f'{j:04d}.png') | |
cv2.imwrite(path, img) | |
def get_parser(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--savedir", type=str, default=None, help="results saving path") | |
parser.add_argument("--ckpt_path", type=str, default=None, help="checkpoint path") | |
parser.add_argument("--adapter_ckpt", type=str, default=None, help="adapter checkpoint path") | |
parser.add_argument("--base", type=str, help="config (yaml) path") | |
parser.add_argument("--condtype", default='frame', type=str, help="conditon type: {frame, depth, adapter}") | |
parser.add_argument("--prompt_dir", type=str, default=None, help="a data dir containing videos and prompts") | |
parser.add_argument("--n_samples", type=int, default=1, help="num of samples per prompt",) | |
parser.add_argument("--ddim_steps", type=int, default=50, help="steps of ddim if positive, otherwise use DDPM",) | |
parser.add_argument("--ddim_eta", type=float, default=1.0, help="eta for ddim sampling (0.0 yields deterministic sampling)",) | |
parser.add_argument("--bs", type=int, default=1, help="batch size for inference") | |
parser.add_argument("--height", type=int, default=512, help="image height, in pixel space") | |
parser.add_argument("--width", type=int, default=512, help="image width, in pixel space") | |
parser.add_argument("--unconditional_guidance_scale", type=float, default=1.0, help="prompt classifier-free guidance") | |
parser.add_argument("--unconditional_guidance_scale_temporal", type=float, default=None, help="temporal consistency guidance") | |
parser.add_argument("--seed", type=int, default=20230211, help="seed for seed_everything") | |
parser.add_argument("--cond_T", default=800, type=int, help="Steps smaller than cond_T will not contain condition") | |
parser.add_argument("--save_imgs", action='store_true', help="save condition") | |
parser.add_argument("--cond_dir", type=str, default=None, help="condition dir") | |
return parser | |
if __name__ == '__main__': | |
now = datetime.datetime.now().strftime("%Y-%m-%d-%H-%M-%S") | |
print("@CoLVDM cond-Inference: %s"%now) | |
parser = get_parser() | |
args, unkown = parser.parse_known_args() | |
# args = parser.parse_args() | |
seed_everything(args.seed) | |
rank, gpu_num = 0, 1 | |
run_inference(args, gpu_num, rank) |