|  | import functools | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn as nn | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from transformers import GPT2Config, GPT2PreTrainedModel, LogitsProcessorList | 
					
						
						|  | from transformers.modeling_outputs import CausalLMOutputWithCrossAttentions | 
					
						
						|  | from transformers.utils.model_parallel_utils import get_device_map, assert_device_map | 
					
						
						|  | from gpt.perceiver import PerceiverResampler | 
					
						
						|  | from gpt.conformer_encoder import ConformerEncoder | 
					
						
						|  | from indextts.utils.arch_util import AttentionBlock | 
					
						
						|  | from utils.typical_sampling import TypicalLogitsWarper | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def null_position_embeddings(range, dim): | 
					
						
						|  | return torch.zeros((range.shape[0], range.shape[1], dim), device=range.device) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ResBlock(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | Basic residual convolutional block that uses GroupNorm. | 
					
						
						|  | """ | 
					
						
						|  | def __init__(self, chan): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.net = nn.Sequential( | 
					
						
						|  | nn.Conv1d(chan, chan, kernel_size=3, padding=1), | 
					
						
						|  | nn.GroupNorm(chan//8, chan), | 
					
						
						|  | nn.ReLU(), | 
					
						
						|  | nn.Conv1d(chan, chan, kernel_size=3, padding=1), | 
					
						
						|  | nn.GroupNorm(chan//8, chan) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | return F.relu(self.net(x) + x) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class GPT2InferenceModel(GPT2PreTrainedModel): | 
					
						
						|  | def __init__(self, config, gpt, text_pos_emb, embeddings, norm, linear, kv_cache=False): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.transformer = gpt | 
					
						
						|  | self.text_pos_embedding = text_pos_emb | 
					
						
						|  | self.embeddings = embeddings | 
					
						
						|  | self.final_norm = norm | 
					
						
						|  | self.lm_head = nn.Sequential(norm, linear) | 
					
						
						|  | self.kv_cache = kv_cache | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | self.device_map = None | 
					
						
						|  | self.cached_mel_emb = None | 
					
						
						|  |  | 
					
						
						|  | def parallelize(self, device_map=None): | 
					
						
						|  | self.device_map = ( | 
					
						
						|  | get_device_map(len(self.transformer.h), range(max(1, torch.cuda.device_count()))) | 
					
						
						|  | if device_map is None | 
					
						
						|  | else device_map | 
					
						
						|  | ) | 
					
						
						|  | assert_device_map(self.device_map, len(self.transformer.h)) | 
					
						
						|  | self.transformer.parallelize(self.device_map) | 
					
						
						|  | self.lm_head = self.lm_head.to(self.transformer.first_device) | 
					
						
						|  | self.model_parallel = True | 
					
						
						|  |  | 
					
						
						|  | def deparallelize(self): | 
					
						
						|  | self.transformer.deparallelize() | 
					
						
						|  | self.transformer = self.transformer.to("cpu") | 
					
						
						|  | self.lm_head = self.lm_head.to("cpu") | 
					
						
						|  | self.model_parallel = False | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  | if torch.backends.mps.is_available(): | 
					
						
						|  | torch.mps.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def store_mel_emb(self, mel_emb): | 
					
						
						|  | self.cached_mel_emb = mel_emb | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation(self, input_ids, past_key_values=None, **kwargs): | 
					
						
						|  | token_type_ids = kwargs.get("token_type_ids", None) | 
					
						
						|  | if not self.kv_cache: | 
					
						
						|  | past_key_values = None | 
					
						
						|  |  | 
					
						
						|  | if past_key_values: | 
					
						
						|  | input_ids = input_ids[:, -1].unsqueeze(-1) | 
					
						
						|  | if token_type_ids is not None: | 
					
						
						|  | token_type_ids = token_type_ids[:, -1].unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | attention_mask = kwargs.get("attention_mask", None) | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -1].unsqueeze(-1) | 
					
						
						|  | else: | 
					
						
						|  | position_ids = None | 
					
						
						|  | return { | 
					
						
						|  | "input_ids": input_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | "token_type_ids": token_type_ids, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids=None, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | token_type_ids=None, | 
					
						
						|  | position_ids=None, | 
					
						
						|  | head_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | encoder_hidden_states=None, | 
					
						
						|  | encoder_attention_mask=None, | 
					
						
						|  | labels=None, | 
					
						
						|  | use_cache=None, | 
					
						
						|  | output_attentions=None, | 
					
						
						|  | output_hidden_states=None, | 
					
						
						|  | return_dict=None, | 
					
						
						|  | ): | 
					
						
						|  | assert self.cached_mel_emb is not None | 
					
						
						|  | assert inputs_embeds is None | 
					
						
						|  | assert labels is None | 
					
						
						|  | return_dict = ( | 
					
						
						|  | return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mel_len = self.cached_mel_emb.shape[1] | 
					
						
						|  | if input_ids.shape[1] != 1: | 
					
						
						|  | text_inputs = input_ids[:, mel_len:] | 
					
						
						|  | text_emb = self.embeddings(text_inputs) | 
					
						
						|  | text_emb = text_emb + self.text_pos_embedding(text_emb) | 
					
						
						|  | if self.cached_mel_emb.shape[0] != text_emb.shape[0]: | 
					
						
						|  | mel_emb = self.cached_mel_emb.repeat_interleave( | 
					
						
						|  | text_emb.shape[0] // self.cached_mel_emb.shape[0], 0 | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | mel_emb = self.cached_mel_emb | 
					
						
						|  | emb = torch.cat([mel_emb, text_emb], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | emb = self.embeddings(input_ids) | 
					
						
						|  | emb = emb + self.text_pos_embedding.get_fixed_embedding( | 
					
						
						|  | attention_mask.shape[1] - mel_len, attention_mask.device | 
					
						
						|  | ) | 
					
						
						|  | transformer_outputs = self.transformer( | 
					
						
						|  | inputs_embeds=emb, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | token_type_ids=token_type_ids, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | head_mask=head_mask, | 
					
						
						|  | encoder_hidden_states=encoder_hidden_states, | 
					
						
						|  | encoder_attention_mask=encoder_attention_mask, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.model_parallel: | 
					
						
						|  | if torch.backends.mps.is_available(): | 
					
						
						|  | self.to(self.transformer.first_device) | 
					
						
						|  | else: | 
					
						
						|  | torch.cuda.set_device(self.transformer.first_device) | 
					
						
						|  | hidden_states = hidden_states.to(self.lm_head.weight.device) | 
					
						
						|  |  | 
					
						
						|  | lm_logits = self.lm_head(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return (lm_logits,) + transformer_outputs[1:] | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithCrossAttentions( | 
					
						
						|  | loss=None, | 
					
						
						|  | logits=lm_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | cross_attentions=transformer_outputs.cross_attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past, beam_idx): | 
					
						
						|  | """ | 
					
						
						|  | This function is used to re-order the :obj:`past_key_values` cache if | 
					
						
						|  | :meth:`~transformers.PreTrainedModel.beam_search` or :meth:`~transformers.PreTrainedModel.beam_sample` is | 
					
						
						|  | called. This is required to match :obj:`past_key_values` with the correct beam_idx at every generation step. | 
					
						
						|  | """ | 
					
						
						|  | return tuple( | 
					
						
						|  | tuple( | 
					
						
						|  | past_state.index_select(0, beam_idx.to(past_state.device)) | 
					
						
						|  | for past_state in layer_past | 
					
						
						|  | ) | 
					
						
						|  | for layer_past in past | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class ConditioningEncoder(nn.Module): | 
					
						
						|  | def __init__(self, | 
					
						
						|  | spec_dim, | 
					
						
						|  | embedding_dim, | 
					
						
						|  | attn_blocks=6, | 
					
						
						|  | num_attn_heads=4, | 
					
						
						|  | do_checkpointing=False, | 
					
						
						|  | mean=False): | 
					
						
						|  | super().__init__() | 
					
						
						|  | attn = [] | 
					
						
						|  | self.init = nn.Conv1d(spec_dim, embedding_dim, kernel_size=1) | 
					
						
						|  | for a in range(attn_blocks): | 
					
						
						|  | attn.append(AttentionBlock(embedding_dim, num_attn_heads)) | 
					
						
						|  | self.attn = nn.Sequential(*attn) | 
					
						
						|  | self.dim = embedding_dim | 
					
						
						|  | self.do_checkpointing = do_checkpointing | 
					
						
						|  | self.mean = mean | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | h = self.init(x) | 
					
						
						|  | h = self.attn(h) | 
					
						
						|  | if self.mean: | 
					
						
						|  | return h.mean(dim=2) | 
					
						
						|  | else: | 
					
						
						|  | return h | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class LearnedPositionEmbeddings(nn.Module): | 
					
						
						|  | def __init__(self, seq_len, model_dim, init=.02): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.emb = nn.Embedding(seq_len, model_dim) | 
					
						
						|  |  | 
					
						
						|  | self.emb.weight.data.normal_(mean=0.0, std=init) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | sl = x.shape[1] | 
					
						
						|  | return self.emb(torch.arange(0, sl, device=x.device)) | 
					
						
						|  |  | 
					
						
						|  | def get_fixed_embedding(self, ind, dev): | 
					
						
						|  | return self.emb(torch.tensor([ind], device=dev)).unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def build_hf_gpt_transformer(layers, model_dim, heads, max_mel_seq_len, max_text_seq_len, checkpointing): | 
					
						
						|  | """ | 
					
						
						|  | GPT-2 implemented by the HuggingFace library. | 
					
						
						|  | """ | 
					
						
						|  | from transformers import GPT2Config, GPT2Model | 
					
						
						|  | gpt_config = GPT2Config(vocab_size=256, | 
					
						
						|  | n_positions=max_mel_seq_len+max_text_seq_len, | 
					
						
						|  | n_ctx=max_mel_seq_len+max_text_seq_len, | 
					
						
						|  | n_embd=model_dim, | 
					
						
						|  | n_layer=layers, | 
					
						
						|  | n_head=heads, | 
					
						
						|  | gradient_checkpointing=checkpointing, | 
					
						
						|  | use_cache=not checkpointing) | 
					
						
						|  | gpt = GPT2Model(gpt_config) | 
					
						
						|  |  | 
					
						
						|  | del gpt.wpe | 
					
						
						|  | gpt.wpe = functools.partial(null_position_embeddings, dim=model_dim) | 
					
						
						|  |  | 
					
						
						|  | del gpt.wte | 
					
						
						|  | return gpt, LearnedPositionEmbeddings(max_mel_seq_len, model_dim), LearnedPositionEmbeddings(max_text_seq_len, model_dim),\ | 
					
						
						|  | None, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MelEncoder(nn.Module): | 
					
						
						|  | def __init__(self, channels, mel_channels=80, resblocks_per_reduction=2): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.channels = channels | 
					
						
						|  | self.encoder = nn.Sequential(nn.Conv1d(mel_channels, channels//4, kernel_size=3, padding=1), | 
					
						
						|  | nn.Sequential(*[ResBlock(channels//4) for _ in range(resblocks_per_reduction)]), | 
					
						
						|  | nn.Conv1d(channels//4, channels//2, kernel_size=3, stride=2, padding=1), | 
					
						
						|  | nn.GroupNorm(channels//16, channels//2), | 
					
						
						|  | nn.ReLU(), | 
					
						
						|  | nn.Sequential(*[ResBlock(channels//2) for _ in range(resblocks_per_reduction)]), | 
					
						
						|  | nn.Conv1d(channels//2, channels, kernel_size=3, stride=2, padding=1), | 
					
						
						|  | nn.GroupNorm(channels//8, channels), | 
					
						
						|  | nn.ReLU(), | 
					
						
						|  | nn.Sequential(*[ResBlock(channels) for _ in range(resblocks_per_reduction)]), | 
					
						
						|  | ) | 
					
						
						|  | self.reduction = 4 | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | for e in self.encoder: | 
					
						
						|  | x = e(x) | 
					
						
						|  | return x.permute(0, 2, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class UnifiedVoice(nn.Module): | 
					
						
						|  | def __init__(self, layers=8, model_dim=512, heads=8, max_text_tokens=120, max_mel_tokens=250, max_conditioning_inputs=1, | 
					
						
						|  | mel_length_compression=1024, number_text_tokens=256, | 
					
						
						|  | start_text_token=0, stop_text_token=1, number_mel_codes=8194, start_mel_token=8192, stop_mel_token=8193, | 
					
						
						|  | train_solo_embeddings=False, use_mel_codes_as_input=True, | 
					
						
						|  | checkpointing=True, types=1, | 
					
						
						|  | condition_num_latent=32, condition_type="perceiver", condition_module=None): | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | layers: Number of layers in transformer stack. | 
					
						
						|  | model_dim: Operating dimensions of the transformer | 
					
						
						|  | heads: Number of transformer heads. Must be divisible by model_dim. Recommend model_dim//64 | 
					
						
						|  | max_text_tokens: Maximum number of text tokens that will be encountered by model. | 
					
						
						|  | max_mel_tokens: Maximum number of MEL tokens that will be encountered by model. | 
					
						
						|  | max_conditioning_inputs: Maximum number of conditioning inputs provided to the model. If (1), conditioning input can be of format (b,80,s), otherwise (b,n,80,s). | 
					
						
						|  | mel_length_compression: The factor between <number_input_samples> and <mel_tokens>. Used to compute MEL code padding given wav input length. | 
					
						
						|  | number_text_tokens: | 
					
						
						|  | start_text_token: | 
					
						
						|  | stop_text_token: | 
					
						
						|  | number_mel_codes: | 
					
						
						|  | start_mel_token: | 
					
						
						|  | stop_mel_token: | 
					
						
						|  | train_solo_embeddings: | 
					
						
						|  | use_mel_codes_as_input: | 
					
						
						|  | checkpointing: | 
					
						
						|  | condition_type: perceiver, gst or default encoder | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.number_text_tokens = number_text_tokens | 
					
						
						|  | self.start_text_token = start_text_token | 
					
						
						|  | self.stop_text_token = stop_text_token | 
					
						
						|  | self.number_mel_codes = number_mel_codes | 
					
						
						|  | self.start_mel_token = start_mel_token | 
					
						
						|  | self.stop_mel_token = stop_mel_token | 
					
						
						|  | self.layers = layers | 
					
						
						|  | self.heads = heads | 
					
						
						|  | self.max_mel_tokens = max_mel_tokens | 
					
						
						|  | self.max_text_tokens = max_text_tokens | 
					
						
						|  | self.model_dim = model_dim | 
					
						
						|  | self.max_conditioning_inputs = max_conditioning_inputs | 
					
						
						|  | self.mel_length_compression = mel_length_compression | 
					
						
						|  | self.condition_type = condition_type | 
					
						
						|  | self.cond_num = condition_num_latent | 
					
						
						|  | self.cond_mask_pad = nn.ConstantPad1d((self.cond_num, 0), True) | 
					
						
						|  | if condition_type == "perceiver": | 
					
						
						|  | self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads) | 
					
						
						|  | self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=model_dim, num_latents=self.cond_num) | 
					
						
						|  | elif condition_type == "conformer_perceiver" or condition_type == "conformer_encoder": | 
					
						
						|  | self.conditioning_encoder = ConformerEncoder(input_size=100, | 
					
						
						|  | output_size=condition_module['output_size'], | 
					
						
						|  | linear_units=condition_module['linear_units'], | 
					
						
						|  | attention_heads=condition_module['attention_heads'], | 
					
						
						|  | num_blocks=condition_module['num_blocks'], | 
					
						
						|  | input_layer=condition_module['input_layer']) | 
					
						
						|  | if condition_type == "conformer_perceiver": | 
					
						
						|  | self.perceiver_encoder = PerceiverResampler(model_dim, dim_context=condition_module['output_size'], | 
					
						
						|  | ff_mult=condition_module['perceiver_mult'], | 
					
						
						|  | heads=condition_module['attention_heads'], | 
					
						
						|  | num_latents=self.cond_num) | 
					
						
						|  | else: | 
					
						
						|  | self.conditioning_encoder = ConditioningEncoder(100, model_dim, num_attn_heads=heads, mean=True) | 
					
						
						|  |  | 
					
						
						|  | self.text_embedding = nn.Embedding(self.number_text_tokens * types + 1, model_dim) | 
					
						
						|  | if use_mel_codes_as_input: | 
					
						
						|  | self.mel_embedding = nn.Embedding(self.number_mel_codes, model_dim) | 
					
						
						|  | else: | 
					
						
						|  | self.mel_embedding = MelEncoder(model_dim, resblocks_per_reduction=1) | 
					
						
						|  | self.gpt, self.mel_pos_embedding, self.text_pos_embedding, self.mel_layer_pos_embedding, self.text_layer_pos_embedding = \ | 
					
						
						|  | build_hf_gpt_transformer(layers, model_dim, heads, self.max_mel_tokens + 2 + self.max_conditioning_inputs, | 
					
						
						|  | self.max_text_tokens + 2, checkpointing) | 
					
						
						|  | if train_solo_embeddings: | 
					
						
						|  | self.mel_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) | 
					
						
						|  | self.text_solo_embedding = nn.Parameter(torch.randn(1, 1, model_dim) * .02, requires_grad=True) | 
					
						
						|  | else: | 
					
						
						|  | self.mel_solo_embedding = 0 | 
					
						
						|  | self.text_solo_embedding = 0 | 
					
						
						|  |  | 
					
						
						|  | self.final_norm = nn.LayerNorm(model_dim) | 
					
						
						|  | self.text_head = nn.Linear(model_dim, self.number_text_tokens * types + 1) | 
					
						
						|  | self.mel_head = nn.Linear(model_dim, self.number_mel_codes) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | embeddings = [self.text_embedding] | 
					
						
						|  | if use_mel_codes_as_input: | 
					
						
						|  | embeddings.append(self.mel_embedding) | 
					
						
						|  | for module in embeddings: | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=.02) | 
					
						
						|  |  | 
					
						
						|  | def post_init_gpt2_config(self, use_deepspeed=False, kv_cache=False, half=False): | 
					
						
						|  | seq_length = self.max_mel_tokens + self.max_text_tokens + 2 | 
					
						
						|  | gpt_config = GPT2Config( | 
					
						
						|  | vocab_size=self.max_mel_tokens, | 
					
						
						|  | n_positions=seq_length, | 
					
						
						|  | n_ctx=seq_length, | 
					
						
						|  | n_embd=self.model_dim, | 
					
						
						|  | n_layer=self.layers, | 
					
						
						|  | n_head=self.heads, | 
					
						
						|  | gradient_checkpointing=False, | 
					
						
						|  | use_cache=True, | 
					
						
						|  | ) | 
					
						
						|  | self.inference_model = GPT2InferenceModel( | 
					
						
						|  | gpt_config, | 
					
						
						|  | self.gpt, | 
					
						
						|  | self.mel_pos_embedding, | 
					
						
						|  | self.mel_embedding, | 
					
						
						|  | self.final_norm, | 
					
						
						|  | self.mel_head, | 
					
						
						|  | kv_cache=kv_cache, | 
					
						
						|  | ) | 
					
						
						|  | if use_deepspeed and half and torch.cuda.is_available(): | 
					
						
						|  | import deepspeed | 
					
						
						|  | self.ds_engine = deepspeed.init_inference(model=self.inference_model, | 
					
						
						|  | mp_size=1, | 
					
						
						|  | replace_with_kernel_inject=True, | 
					
						
						|  | dtype=torch.float16) | 
					
						
						|  | self.inference_model = self.ds_engine.module.eval() | 
					
						
						|  | elif use_deepspeed and torch.cuda.is_available(): | 
					
						
						|  | import deepspeed | 
					
						
						|  | self.ds_engine = deepspeed.init_inference(model=self.inference_model, | 
					
						
						|  | mp_size=1, | 
					
						
						|  | replace_with_kernel_inject=True, | 
					
						
						|  | dtype=torch.float32) | 
					
						
						|  | self.inference_model = self.ds_engine.module.eval() | 
					
						
						|  | else: | 
					
						
						|  | self.inference_model = self.inference_model.eval() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.gpt.wte = self.mel_embedding | 
					
						
						|  |  | 
					
						
						|  | def build_aligned_inputs_and_targets(self, input, start_token, stop_token): | 
					
						
						|  | inp = F.pad(input, (1, 0), value=start_token) | 
					
						
						|  | tar = F.pad(input, (0, 1), value=stop_token) | 
					
						
						|  | return inp, tar | 
					
						
						|  |  | 
					
						
						|  | def set_mel_padding(self, mel_input_tokens, mel_lengths): | 
					
						
						|  | """ | 
					
						
						|  | Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in | 
					
						
						|  | that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required | 
					
						
						|  | preformatting to create a working TTS model. | 
					
						
						|  | """ | 
					
						
						|  | for b in range(len(mel_lengths)): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | actual_end = mel_lengths[b] | 
					
						
						|  | if actual_end < mel_input_tokens.shape[-1]: | 
					
						
						|  | mel_input_tokens[b, actual_end:] = self.stop_mel_token | 
					
						
						|  | return mel_input_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_text_padding(self, text_input_tokens, text_lengths): | 
					
						
						|  | """ | 
					
						
						|  | Given mel tokens that are derived from a padded audio clip and the actual lengths of each batch element in | 
					
						
						|  | that audio clip, reformats the tokens with STOP_MEL_TOKEN in place of the zero padding. This is required | 
					
						
						|  | preformatting to create a working TTS model. | 
					
						
						|  | """ | 
					
						
						|  | for b in range(len(text_lengths)): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | actual_end = text_lengths[b] | 
					
						
						|  | if actual_end < text_input_tokens.shape[-1]: | 
					
						
						|  | text_input_tokens[b, actual_end:] = self.stop_text_token | 
					
						
						|  | return text_input_tokens | 
					
						
						|  |  | 
					
						
						|  | def get_logits(self, speech_conditioning_inputs, first_inputs, first_head, second_inputs=None, second_head=None, get_attns=False, return_latent=False): | 
					
						
						|  | if second_inputs is not None: | 
					
						
						|  | emb = torch.cat([speech_conditioning_inputs, first_inputs, second_inputs], dim=1) | 
					
						
						|  | else: | 
					
						
						|  | emb = torch.cat([speech_conditioning_inputs, first_inputs], dim=1) | 
					
						
						|  |  | 
					
						
						|  | gpt_out = self.gpt(inputs_embeds=emb, return_dict=True, output_attentions=get_attns) | 
					
						
						|  | if get_attns: | 
					
						
						|  | return gpt_out.attentions | 
					
						
						|  |  | 
					
						
						|  | offset = speech_conditioning_inputs.shape[1] | 
					
						
						|  | enc = gpt_out.last_hidden_state[:, offset:] | 
					
						
						|  | enc = self.final_norm(enc) | 
					
						
						|  |  | 
					
						
						|  | if return_latent: | 
					
						
						|  | return enc[:, :first_inputs.shape[1]], enc[:, -second_inputs.shape[1]:] | 
					
						
						|  |  | 
					
						
						|  | first_logits = enc[:, :first_inputs.shape[1]] | 
					
						
						|  | first_logits = first_head(first_logits) | 
					
						
						|  | first_logits = first_logits.permute(0, 2, 1) | 
					
						
						|  | if second_inputs is not None: | 
					
						
						|  | second_logits = enc[:, -second_inputs.shape[1]:] | 
					
						
						|  | second_logits = second_head(second_logits) | 
					
						
						|  | second_logits = second_logits.permute(0, 2, 1) | 
					
						
						|  | return first_logits, second_logits | 
					
						
						|  | else: | 
					
						
						|  | return first_logits | 
					
						
						|  |  | 
					
						
						|  | def get_conditioning(self, speech_conditioning_input, cond_mel_lengths=None): | 
					
						
						|  | if self.condition_type == "perceiver": | 
					
						
						|  | if speech_conditioning_input.ndim == 4: | 
					
						
						|  | speech_conditioning_input = speech_conditioning_input.squeeze(1) | 
					
						
						|  | speech_conditioning_input = self.conditioning_encoder(speech_conditioning_input) | 
					
						
						|  | conds = self.perceiver_encoder(speech_conditioning_input.transpose(1, 2)) | 
					
						
						|  | elif self.condition_type == "conformer_perceiver": | 
					
						
						|  | speech_conditioning_input, mask = self.conditioning_encoder(speech_conditioning_input.transpose(1, 2), | 
					
						
						|  | cond_mel_lengths) | 
					
						
						|  | if self.condition_type == "conformer_perceiver": | 
					
						
						|  |  | 
					
						
						|  | conds_mask = self.cond_mask_pad(mask.squeeze(1)) | 
					
						
						|  | conds = self.perceiver_encoder(speech_conditioning_input, conds_mask) | 
					
						
						|  | elif self.condition_type == "gst": | 
					
						
						|  | if speech_conditioning_input.ndim == 4: | 
					
						
						|  | speech_conditioning_input = speech_conditioning_input.squeeze(1) | 
					
						
						|  | conds = self.gst_encoder(speech_conditioning_input.transpose(1, 2)) | 
					
						
						|  | else: | 
					
						
						|  | speech_conditioning_input = ( | 
					
						
						|  | speech_conditioning_input.unsqueeze(1) | 
					
						
						|  | if len(speech_conditioning_input.shape) == 3 | 
					
						
						|  | else speech_conditioning_input | 
					
						
						|  | ) | 
					
						
						|  | conds = [] | 
					
						
						|  | for j in range(speech_conditioning_input.shape[1]): | 
					
						
						|  | conds.append(self.conditioning_encoder(speech_conditioning_input[:, j])) | 
					
						
						|  | conds = torch.stack(conds, dim=1) | 
					
						
						|  | conds = conds.mean(dim=1) | 
					
						
						|  | conds = conds.unsqueeze(1) | 
					
						
						|  | return conds | 
					
						
						|  |  | 
					
						
						|  | def forward(self, speech_conditioning_latent, text_inputs, text_lengths, mel_codes, wav_lengths, | 
					
						
						|  | cond_mel_lengths=None, types=None, text_first=True, raw_mels=None, return_attentions=False, | 
					
						
						|  | return_latent=False, clip_inputs=False): | 
					
						
						|  | """ | 
					
						
						|  | Forward pass that uses both text and voice in either text conditioning mode or voice conditioning mode | 
					
						
						|  | (actuated by `text_first`). | 
					
						
						|  |  | 
					
						
						|  | speech_conditioning_input: MEL float tensor, (b,1024) | 
					
						
						|  | text_inputs: long tensor, (b,t) | 
					
						
						|  | text_lengths: long tensor, (b,) | 
					
						
						|  | mel_inputs:  long tensor, (b,m) | 
					
						
						|  | wav_lengths: long tensor, (b,) | 
					
						
						|  | raw_mels: MEL float tensor (b,80,s) | 
					
						
						|  |  | 
					
						
						|  | If return_attentions is specified, only logits are returned. | 
					
						
						|  | If return_latent is specified, loss & logits are not computed or returned. Only the predicted latents are returned. | 
					
						
						|  | If clip_inputs is True, the inputs will be clipped to the smallest input size across each input modality. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths) | 
					
						
						|  |  | 
					
						
						|  | if types is not None: | 
					
						
						|  | text_inputs = text_inputs * (1+types).unsqueeze(-1) | 
					
						
						|  |  | 
					
						
						|  | if clip_inputs: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | max_text_len = text_lengths.max() | 
					
						
						|  | text_inputs = text_inputs[:, :max_text_len] | 
					
						
						|  | max_mel_len = wav_lengths.max() // self.mel_length_compression | 
					
						
						|  | mel_codes = mel_codes[:, :max_mel_len] | 
					
						
						|  | if raw_mels is not None: | 
					
						
						|  | raw_mels = raw_mels[:, :, :max_mel_len*4] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | mel_codes_lengths = torch.ceil(wav_lengths / self.mel_length_compression).long() + 1 | 
					
						
						|  | mel_codes = self.set_mel_padding(mel_codes, mel_codes_lengths) | 
					
						
						|  |  | 
					
						
						|  | text_inputs = self.set_text_padding(text_inputs, text_lengths) | 
					
						
						|  | text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) | 
					
						
						|  | mel_codes = F.pad(mel_codes, (0, 1), value=self.stop_mel_token) | 
					
						
						|  |  | 
					
						
						|  | conds = speech_conditioning_latent | 
					
						
						|  | text_inputs, text_targets = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) | 
					
						
						|  | text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) | 
					
						
						|  | mel_codes, mel_targets = self.build_aligned_inputs_and_targets(mel_codes, self.start_mel_token, self.stop_mel_token) | 
					
						
						|  | if raw_mels is not None: | 
					
						
						|  | mel_inp = F.pad(raw_mels, (0, 8)) | 
					
						
						|  | else: | 
					
						
						|  | mel_inp = mel_codes | 
					
						
						|  | mel_emb = self.mel_embedding(mel_inp) | 
					
						
						|  | mel_emb = mel_emb + self.mel_pos_embedding(mel_codes) | 
					
						
						|  |  | 
					
						
						|  | if text_first: | 
					
						
						|  |  | 
					
						
						|  | text_logits, mel_logits = self.get_logits(conds, text_emb, self.text_head, mel_emb, self.mel_head, get_attns=return_attentions, return_latent=return_latent) | 
					
						
						|  | if return_latent: | 
					
						
						|  | return mel_logits[:, :-2] | 
					
						
						|  | else: | 
					
						
						|  | mel_logits, text_logits = self.get_logits(conds, mel_emb, self.mel_head, text_emb, self.text_head, get_attns=return_attentions, return_latent=return_latent) | 
					
						
						|  | if return_latent: | 
					
						
						|  | return text_logits[:, :-2] | 
					
						
						|  |  | 
					
						
						|  | if return_attentions: | 
					
						
						|  | return mel_logits | 
					
						
						|  |  | 
					
						
						|  | loss_text = F.cross_entropy(text_logits, text_targets.long()) | 
					
						
						|  | loss_mel = F.cross_entropy(mel_logits, mel_targets.long()) | 
					
						
						|  | return loss_text.mean(), loss_mel.mean(), mel_logits | 
					
						
						|  |  | 
					
						
						|  | def inference_speech(self, speech_conditioning_latent, text_inputs, cond_mel_lengths=None, input_tokens=None, num_return_sequences=1, | 
					
						
						|  | max_generate_length=None, typical_sampling=False, typical_mass=.9, **hf_generate_kwargs): | 
					
						
						|  |  | 
					
						
						|  | text_inputs = F.pad(text_inputs, (0, 1), value=self.stop_text_token) | 
					
						
						|  | text_inputs, _ = self.build_aligned_inputs_and_targets(text_inputs, self.start_text_token, self.stop_text_token) | 
					
						
						|  | text_emb = self.text_embedding(text_inputs) + self.text_pos_embedding(text_inputs) | 
					
						
						|  |  | 
					
						
						|  | speech_conditioning_latent = self.get_conditioning(speech_conditioning_latent, cond_mel_lengths) | 
					
						
						|  | conds = speech_conditioning_latent | 
					
						
						|  | emb = torch.cat([conds, text_emb], dim=1) | 
					
						
						|  | self.inference_model.store_mel_emb(emb) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | fake_inputs = torch.full((emb.shape[0], emb.shape[1]+1,), fill_value=1, dtype=torch.long, | 
					
						
						|  | device=text_inputs.device) | 
					
						
						|  |  | 
					
						
						|  | fake_inputs[:, -1] = self.start_mel_token | 
					
						
						|  | trunc_index = fake_inputs.shape[1] | 
					
						
						|  | if input_tokens is None: | 
					
						
						|  | inputs = fake_inputs | 
					
						
						|  | else: | 
					
						
						|  | assert num_return_sequences % input_tokens.shape[ | 
					
						
						|  | 0] == 0, "The number of return sequences must be divisible by the number of input sequences" | 
					
						
						|  | fake_inputs = fake_inputs.repeat(num_return_sequences, 1) | 
					
						
						|  | input_tokens = input_tokens.repeat(num_return_sequences // input_tokens.shape[0], 1) | 
					
						
						|  | inputs = torch.cat([fake_inputs, input_tokens], dim=1) | 
					
						
						|  |  | 
					
						
						|  | logits_processor = LogitsProcessorList([TypicalLogitsWarper(mass=typical_mass)]) if typical_sampling else LogitsProcessorList() | 
					
						
						|  | max_length = trunc_index + self.max_mel_tokens - 1 if max_generate_length is None else trunc_index + max_generate_length | 
					
						
						|  | gen = self.inference_model.generate(inputs, bos_token_id=self.start_mel_token, pad_token_id=self.stop_mel_token, | 
					
						
						|  | eos_token_id=self.stop_mel_token, | 
					
						
						|  | max_length=max_length, logits_processor=logits_processor, | 
					
						
						|  | num_return_sequences=num_return_sequences, **hf_generate_kwargs) | 
					
						
						|  | return gen[:, trunc_index:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  |