|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Callable, Dict, List, Optional, Union |
|
|
|
import diffusers |
|
import numpy as np |
|
import torch |
|
import torch.nn as nn |
|
from diffusers import FluxPipeline |
|
from diffusers.pipelines.flux.pipeline_flux import calculate_shift, retrieve_timesteps |
|
from diffusers.pipelines.flux.pipeline_output import FluxPipelineOutput |
|
from einops import repeat |
|
from huggingface_hub import hf_hub_download |
|
from safetensors.torch import load_file |
|
|
|
from dreamo.transformer import flux_transformer_forward |
|
from dreamo.utils import convert_flux_lora_to_diffusers |
|
|
|
diffusers.models.transformers.transformer_flux.FluxTransformer2DModel.forward = flux_transformer_forward |
|
|
|
|
|
def get_task_embedding_idx(task): |
|
return 0 |
|
|
|
|
|
class DreamOPipeline(FluxPipeline): |
|
def __init__(self, scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer): |
|
super().__init__(scheduler, vae, text_encoder, tokenizer, text_encoder_2, tokenizer_2, transformer) |
|
self.t5_embedding = nn.Embedding(10, 4096) |
|
self.task_embedding = nn.Embedding(2, 3072) |
|
self.idx_embedding = nn.Embedding(10, 3072) |
|
|
|
def load_dreamo_model(self, device, use_turbo=True): |
|
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo.safetensors', local_dir='models') |
|
hf_hub_download(repo_id='ByteDance/DreamO', filename='dreamo_cfg_distill.safetensors', local_dir='models') |
|
dreamo_lora = load_file('models/dreamo.safetensors') |
|
cfg_distill_lora = load_file('models/dreamo_cfg_distill.safetensors') |
|
self.t5_embedding.weight.data = dreamo_lora.pop('dreamo_t5_embedding.weight')[-10:] |
|
self.task_embedding.weight.data = dreamo_lora.pop('dreamo_task_embedding.weight') |
|
self.idx_embedding.weight.data = dreamo_lora.pop('dreamo_idx_embedding.weight') |
|
self._prepare_t5() |
|
|
|
dreamo_diffuser_lora = convert_flux_lora_to_diffusers(dreamo_lora) |
|
cfg_diffuser_lora = convert_flux_lora_to_diffusers(cfg_distill_lora) |
|
adapter_names = ['dreamo'] |
|
adapter_weights = [1] |
|
self.load_lora_weights(dreamo_diffuser_lora, adapter_name='dreamo') |
|
if cfg_diffuser_lora is not None: |
|
self.load_lora_weights(cfg_diffuser_lora, adapter_name='cfg') |
|
adapter_names.append('cfg') |
|
adapter_weights.append(1) |
|
if use_turbo: |
|
self.load_lora_weights( |
|
hf_hub_download( |
|
"alimama-creative/FLUX.1-Turbo-Alpha", "diffusion_pytorch_model.safetensors", local_dir='models' |
|
), |
|
adapter_name='turbo', |
|
) |
|
adapter_names.append('turbo') |
|
adapter_weights.append(1) |
|
|
|
self.fuse_lora(adapter_names=adapter_names, adapter_weights=adapter_weights, lora_scale=1) |
|
|
|
self.t5_embedding = self.t5_embedding.to(device) |
|
self.task_embedding = self.task_embedding.to(device) |
|
self.idx_embedding = self.idx_embedding.to(device) |
|
|
|
def _prepare_t5(self): |
|
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2)) |
|
num_new_token = 10 |
|
new_token_list = [f"[ref#{i}]" for i in range(1, 10)] + ["[res]"] |
|
self.tokenizer_2.add_tokens(new_token_list, special_tokens=False) |
|
self.text_encoder_2.resize_token_embeddings(len(self.tokenizer_2)) |
|
input_embedding = self.text_encoder_2.get_input_embeddings().weight.data |
|
input_embedding[-num_new_token:] = self.t5_embedding.weight.data |
|
|
|
@staticmethod |
|
def _prepare_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0): |
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + torch.arange(height // 2)[:, None] + start_height |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + torch.arange(width // 2)[None, :] + start_width |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) |
|
latent_image_ids = latent_image_ids.reshape( |
|
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@staticmethod |
|
def _prepare_style_latent_image_ids(batch_size, height, width, device, dtype, start_height=0, start_width=0): |
|
latent_image_ids = torch.zeros(height // 2, width // 2, 3) |
|
latent_image_ids[..., 1] = latent_image_ids[..., 1] + start_height |
|
latent_image_ids[..., 2] = latent_image_ids[..., 2] + start_width |
|
|
|
latent_image_id_height, latent_image_id_width, latent_image_id_channels = latent_image_ids.shape |
|
|
|
latent_image_ids = latent_image_ids[None, :].repeat(batch_size, 1, 1, 1) |
|
latent_image_ids = latent_image_ids.reshape( |
|
batch_size, latent_image_id_height * latent_image_id_width, latent_image_id_channels |
|
) |
|
|
|
return latent_image_ids.to(device=device, dtype=dtype) |
|
|
|
@torch.no_grad() |
|
def __call__( |
|
self, |
|
prompt: Union[str, List[str]] = None, |
|
prompt_2: Optional[Union[str, List[str]]] = None, |
|
negative_prompt: Union[str, List[str]] = None, |
|
negative_prompt_2: Optional[Union[str, List[str]]] = None, |
|
true_cfg_scale: float = 1.0, |
|
true_cfg_start_step: int = 1, |
|
true_cfg_end_step: int = 1, |
|
height: Optional[int] = None, |
|
width: Optional[int] = None, |
|
num_inference_steps: int = 28, |
|
sigmas: Optional[List[float]] = None, |
|
guidance_scale: float = 3.5, |
|
neg_guidance_scale: float = 3.5, |
|
num_images_per_prompt: Optional[int] = 1, |
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, |
|
latents: Optional[torch.FloatTensor] = None, |
|
prompt_embeds: Optional[torch.FloatTensor] = None, |
|
pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, |
|
output_type: Optional[str] = "pil", |
|
return_dict: bool = True, |
|
joint_attention_kwargs: Optional[Dict[str, Any]] = None, |
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, |
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"], |
|
max_sequence_length: int = 512, |
|
ref_conds=None, |
|
first_step_guidance_scale=3.5, |
|
): |
|
r""" |
|
Function invoked when calling the pipeline for generation. |
|
|
|
Args: |
|
prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. |
|
instead. |
|
prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is |
|
will be used instead. |
|
negative_prompt (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass |
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is |
|
not greater than `1`). |
|
negative_prompt_2 (`str` or `List[str]`, *optional*): |
|
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and |
|
`text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. |
|
true_cfg_scale (`float`, *optional*, defaults to 1.0): |
|
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. |
|
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The height in pixels of the generated image. This is set to 1024 by default for the best results. |
|
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): |
|
The width in pixels of the generated image. This is set to 1024 by default for the best results. |
|
num_inference_steps (`int`, *optional*, defaults to 50): |
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the |
|
expense of slower inference. |
|
sigmas (`List[float]`, *optional*): |
|
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in |
|
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed |
|
will be used. |
|
guidance_scale (`float`, *optional*, defaults to 3.5): |
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). |
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen |
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > |
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, |
|
usually at the expense of lower image quality. |
|
num_images_per_prompt (`int`, *optional*, defaults to 1): |
|
The number of images to generate per prompt. |
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): |
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) |
|
to make generation deterministic. |
|
latents (`torch.FloatTensor`, *optional*): |
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image |
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents |
|
tensor will ge generated by sampling using the supplied random `generator`. |
|
prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not |
|
provided, text embeddings will be generated from `prompt` input argument. |
|
pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. |
|
If not provided, pooled text embeddings will be generated from `prompt` input argument. |
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input |
|
argument. |
|
negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): |
|
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt |
|
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` |
|
input argument. |
|
output_type (`str`, *optional*, defaults to `"pil"`): |
|
The output format of the generate image. Choose between |
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. |
|
return_dict (`bool`, *optional*, defaults to `True`): |
|
Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. |
|
joint_attention_kwargs (`dict`, *optional*): |
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under |
|
`self.processor` in |
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). |
|
callback_on_step_end (`Callable`, *optional*): |
|
A function that calls at the end of each denoising steps during the inference. The function is called |
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, |
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by |
|
`callback_on_step_end_tensor_inputs`. |
|
callback_on_step_end_tensor_inputs (`List`, *optional*): |
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list |
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the |
|
`._callback_tensor_inputs` attribute of your pipeline class. |
|
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`. |
|
|
|
Examples: |
|
|
|
Returns: |
|
[`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` |
|
is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated |
|
images. |
|
""" |
|
|
|
height = height or self.default_sample_size * self.vae_scale_factor |
|
width = width or self.default_sample_size * self.vae_scale_factor |
|
|
|
|
|
self.check_inputs( |
|
prompt, |
|
prompt_2, |
|
height, |
|
width, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, |
|
max_sequence_length=max_sequence_length, |
|
) |
|
|
|
self._guidance_scale = guidance_scale |
|
self._joint_attention_kwargs = joint_attention_kwargs |
|
self._current_timestep = None |
|
self._interrupt = False |
|
|
|
|
|
if prompt is not None and isinstance(prompt, str): |
|
batch_size = 1 |
|
elif prompt is not None and isinstance(prompt, list): |
|
batch_size = len(prompt) |
|
else: |
|
batch_size = prompt_embeds.shape[0] |
|
|
|
device = self._execution_device |
|
|
|
lora_scale = ( |
|
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None |
|
) |
|
has_neg_prompt = negative_prompt is not None or ( |
|
negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None |
|
) |
|
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt |
|
( |
|
prompt_embeds, |
|
pooled_prompt_embeds, |
|
text_ids, |
|
) = self.encode_prompt( |
|
prompt=prompt, |
|
prompt_2=prompt_2, |
|
prompt_embeds=prompt_embeds, |
|
pooled_prompt_embeds=pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
if do_true_cfg: |
|
( |
|
negative_prompt_embeds, |
|
negative_pooled_prompt_embeds, |
|
_, |
|
) = self.encode_prompt( |
|
prompt=negative_prompt, |
|
prompt_2=negative_prompt_2, |
|
prompt_embeds=negative_prompt_embeds, |
|
pooled_prompt_embeds=negative_pooled_prompt_embeds, |
|
device=device, |
|
num_images_per_prompt=num_images_per_prompt, |
|
max_sequence_length=max_sequence_length, |
|
lora_scale=lora_scale, |
|
) |
|
|
|
|
|
num_channels_latents = self.transformer.config.in_channels // 4 |
|
latents, latent_image_ids = self.prepare_latents( |
|
batch_size * num_images_per_prompt, |
|
num_channels_latents, |
|
height, |
|
width, |
|
prompt_embeds.dtype, |
|
device, |
|
generator, |
|
latents, |
|
) |
|
|
|
|
|
origin_img_len = latents.shape[1] |
|
embeddings = repeat(self.task_embedding.weight[1], "c -> n l c", n=batch_size, l=origin_img_len) |
|
ref_latents = [] |
|
ref_latent_image_idss = [] |
|
start_height = height // 16 |
|
start_width = width // 16 |
|
for ref_cond in ref_conds: |
|
img = ref_cond['img'] |
|
task = ref_cond['task'] |
|
idx = ref_cond['idx'] |
|
|
|
|
|
img = img.to(latents) |
|
ref_latent = self.vae.encode(img).latent_dist.sample() |
|
ref_latent = (ref_latent - self.vae.config.shift_factor) * self.vae.config.scaling_factor |
|
cur_height = ref_latent.shape[2] |
|
cur_width = ref_latent.shape[3] |
|
ref_latent = self._pack_latents(ref_latent, batch_size, num_channels_latents, cur_height, cur_width) |
|
ref_latent_image_ids = self._prepare_latent_image_ids( |
|
batch_size, cur_height, cur_width, device, prompt_embeds.dtype, start_height, start_width |
|
) |
|
start_height += cur_height // 2 |
|
start_width += cur_width // 2 |
|
|
|
|
|
task_idx = get_task_embedding_idx(task) |
|
cur_task_embedding = repeat( |
|
self.task_embedding.weight[task_idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1] |
|
) |
|
cur_idx_embedding = repeat( |
|
self.idx_embedding.weight[idx], "c -> n l c", n=batch_size, l=ref_latent.shape[1] |
|
) |
|
cur_embedding = cur_task_embedding + cur_idx_embedding |
|
|
|
|
|
embeddings = torch.cat([embeddings, cur_embedding], dim=1) |
|
ref_latents.append(ref_latent) |
|
ref_latent_image_idss.append(ref_latent_image_ids) |
|
|
|
|
|
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas |
|
image_seq_len = latents.shape[1] |
|
mu = calculate_shift( |
|
image_seq_len, |
|
self.scheduler.config.get("base_image_seq_len", 256), |
|
self.scheduler.config.get("max_image_seq_len", 4096), |
|
self.scheduler.config.get("base_shift", 0.5), |
|
self.scheduler.config.get("max_shift", 1.15), |
|
) |
|
timesteps, num_inference_steps = retrieve_timesteps( |
|
self.scheduler, |
|
num_inference_steps, |
|
device, |
|
sigmas=sigmas, |
|
mu=mu, |
|
) |
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) |
|
self._num_timesteps = len(timesteps) |
|
|
|
|
|
if self.transformer.config.guidance_embeds: |
|
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) |
|
guidance = guidance.expand(latents.shape[0]) |
|
else: |
|
guidance = None |
|
neg_guidance = torch.full([1], neg_guidance_scale, device=device, dtype=torch.float32) |
|
neg_guidance = neg_guidance.expand(latents.shape[0]) |
|
first_step_guidance = torch.full([1], first_step_guidance_scale, device=device, dtype=torch.float32) |
|
|
|
if self.joint_attention_kwargs is None: |
|
self._joint_attention_kwargs = {} |
|
|
|
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar: |
|
for i, t in enumerate(timesteps): |
|
if self.interrupt: |
|
continue |
|
|
|
self._current_timestep = t |
|
|
|
timestep = t.expand(latents.shape[0]).to(latents.dtype) |
|
|
|
noise_pred = self.transformer( |
|
hidden_states=torch.cat((latents, *ref_latents), dim=1), |
|
timestep=timestep / 1000, |
|
guidance=guidance if i > 0 else first_step_guidance, |
|
pooled_projections=pooled_prompt_embeds, |
|
encoder_hidden_states=prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=torch.cat((latent_image_ids, *ref_latent_image_idss), dim=1), |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
embeddings=embeddings, |
|
)[0][:, :origin_img_len] |
|
|
|
if do_true_cfg and i >= true_cfg_start_step and i < true_cfg_end_step: |
|
neg_noise_pred = self.transformer( |
|
hidden_states=latents, |
|
timestep=timestep / 1000, |
|
guidance=neg_guidance, |
|
pooled_projections=negative_pooled_prompt_embeds, |
|
encoder_hidden_states=negative_prompt_embeds, |
|
txt_ids=text_ids, |
|
img_ids=latent_image_ids, |
|
joint_attention_kwargs=self.joint_attention_kwargs, |
|
return_dict=False, |
|
)[0] |
|
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) |
|
|
|
|
|
latents_dtype = latents.dtype |
|
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0] |
|
|
|
if latents.dtype != latents_dtype and torch.backends.mps.is_available(): |
|
|
|
latents = latents.to(latents_dtype) |
|
|
|
if callback_on_step_end is not None: |
|
callback_kwargs = {} |
|
for k in callback_on_step_end_tensor_inputs: |
|
callback_kwargs[k] = locals()[k] |
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) |
|
|
|
latents = callback_outputs.pop("latents", latents) |
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) |
|
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): |
|
progress_bar.update() |
|
|
|
self._current_timestep = None |
|
|
|
if output_type == "latent": |
|
image = latents |
|
else: |
|
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) |
|
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor |
|
image = self.vae.decode(latents, return_dict=False)[0] |
|
image = self.image_processor.postprocess(image, output_type=output_type) |
|
|
|
|
|
self.maybe_free_model_hooks() |
|
|
|
if not return_dict: |
|
return (image,) |
|
|
|
return FluxPipelineOutput(images=image) |
|
|