test
Browse files- .gitignore +162 -0
- README.md +0 -2
- app.py +161 -136
- models/controlnet.py +495 -0
- models/unet.py +1387 -0
- pipeline/pipeline_controlnext.py +1378 -0
- utils/preprocess.py +38 -0
- utils/tools.py +146 -0
- utils/utils.py +225 -0
.gitignore
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/latest/usage/project/#working-with-version-control
|
110 |
+
.pdm.toml
|
111 |
+
.pdm-python
|
112 |
+
.pdm-build/
|
113 |
+
|
114 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
115 |
+
__pypackages__/
|
116 |
+
|
117 |
+
# Celery stuff
|
118 |
+
celerybeat-schedule
|
119 |
+
celerybeat.pid
|
120 |
+
|
121 |
+
# SageMath parsed files
|
122 |
+
*.sage.py
|
123 |
+
|
124 |
+
# Environments
|
125 |
+
.env
|
126 |
+
.venv
|
127 |
+
env/
|
128 |
+
venv/
|
129 |
+
ENV/
|
130 |
+
env.bak/
|
131 |
+
venv.bak/
|
132 |
+
|
133 |
+
# Spyder project settings
|
134 |
+
.spyderproject
|
135 |
+
.spyproject
|
136 |
+
|
137 |
+
# Rope project settings
|
138 |
+
.ropeproject
|
139 |
+
|
140 |
+
# mkdocs documentation
|
141 |
+
/site
|
142 |
+
|
143 |
+
# mypy
|
144 |
+
.mypy_cache/
|
145 |
+
.dmypy.json
|
146 |
+
dmypy.json
|
147 |
+
|
148 |
+
# Pyre type checker
|
149 |
+
.pyre/
|
150 |
+
|
151 |
+
# pytype static type analyzer
|
152 |
+
.pytype/
|
153 |
+
|
154 |
+
# Cython debug symbols
|
155 |
+
cython_debug/
|
156 |
+
|
157 |
+
# PyCharm
|
158 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
159 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
160 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
161 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
162 |
+
#.idea/
|
README.md
CHANGED
@@ -9,5 +9,3 @@ app_file: app.py
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
-
|
13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
9 |
pinned: false
|
10 |
license: apache-2.0
|
11 |
---
|
|
|
|
app.py
CHANGED
@@ -1,146 +1,171 @@
|
|
1 |
import gradio as gr
|
2 |
-
import numpy as np
|
3 |
-
import random
|
4 |
-
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
-
pipe = pipe.to(device)
|
17 |
-
|
18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
19 |
-
MAX_IMAGE_SIZE = 1024
|
20 |
-
|
21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
22 |
-
|
23 |
-
if randomize_seed:
|
24 |
-
seed = random.randint(0, MAX_SEED)
|
25 |
-
|
26 |
-
generator = torch.Generator().manual_seed(seed)
|
27 |
-
|
28 |
-
image = pipe(
|
29 |
-
prompt = prompt,
|
30 |
-
negative_prompt = negative_prompt,
|
31 |
-
guidance_scale = guidance_scale,
|
32 |
-
num_inference_steps = num_inference_steps,
|
33 |
-
width = width,
|
34 |
-
height = height,
|
35 |
-
generator = generator
|
36 |
-
).images[0]
|
37 |
-
|
38 |
-
return image
|
39 |
-
|
40 |
-
examples = [
|
41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
-
"An astronaut riding a green horse",
|
43 |
-
"A delicious ceviche cheesecake slice",
|
44 |
-
]
|
45 |
-
|
46 |
-
css="""
|
47 |
-
#col-container {
|
48 |
-
margin: 0 auto;
|
49 |
-
max-width: 520px;
|
50 |
-
}
|
51 |
-
"""
|
52 |
-
|
53 |
-
if torch.cuda.is_available():
|
54 |
-
power_device = "GPU"
|
55 |
-
else:
|
56 |
-
power_device = "CPU"
|
57 |
-
|
58 |
-
with gr.Blocks(css=css) as demo:
|
59 |
-
|
60 |
-
with gr.Column(elem_id="col-container"):
|
61 |
gr.Markdown(f"""
|
62 |
-
#
|
63 |
-
Currently running on {power_device}.
|
64 |
""")
|
65 |
-
|
66 |
with gr.Row():
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
)
|
116 |
-
|
117 |
-
with gr.Row():
|
118 |
-
|
119 |
-
guidance_scale = gr.Slider(
|
120 |
-
label="Guidance scale",
|
121 |
-
minimum=0.0,
|
122 |
-
maximum=10.0,
|
123 |
-
step=0.1,
|
124 |
-
value=0.0,
|
125 |
-
)
|
126 |
-
|
127 |
-
num_inference_steps = gr.Slider(
|
128 |
-
label="Number of inference steps",
|
129 |
-
minimum=1,
|
130 |
-
maximum=12,
|
131 |
-
step=1,
|
132 |
-
value=2,
|
133 |
)
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
)
|
139 |
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
|
|
|
|
|
|
145 |
|
146 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
2 |
import torch
|
3 |
+
import numpy as np
|
4 |
+
from huggingface_hub import hf_hub_download
|
5 |
+
from utils import utils, tools, preprocess
|
6 |
+
|
7 |
+
# BASE_MODEL_PATH = "stablediffusionapi/neta-art-xl-v2"
|
8 |
+
VAE_PATH = "madebyollin/sdxl-vae-fp16-fix"
|
9 |
+
REPO_ID = "Pbihao/ControlNeXt"
|
10 |
+
UNET_FILENAME = "ControlAny-SDXL/anime_canny/unet.safetensors"
|
11 |
+
CONTROLNET_FILENAME = "ControlAny-SDXL/anime_canny/controlnet.safetensors"
|
12 |
+
CACHE_DIR = None
|
13 |
+
|
14 |
+
|
15 |
+
def ui():
|
16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
17 |
+
model_file = hf_hub_download(
|
18 |
+
repo_id='Lykon/AAM_XL_AnimeMix',
|
19 |
+
filename='AAM_XL_Anime_Mix.safetensors',
|
20 |
+
cache_dir=CACHE_DIR,
|
21 |
+
)
|
22 |
+
unet_file = hf_hub_download(
|
23 |
+
repo_id=REPO_ID,
|
24 |
+
filename=UNET_FILENAME,
|
25 |
+
cache_dir=CACHE_DIR,
|
26 |
+
)
|
27 |
+
controlnet_file = hf_hub_download(
|
28 |
+
repo_id=REPO_ID,
|
29 |
+
filename=CONTROLNET_FILENAME,
|
30 |
+
cache_dir=CACHE_DIR,
|
31 |
+
)
|
32 |
+
pipeline = tools.get_pipeline(
|
33 |
+
pretrained_model_name_or_path=model_file,
|
34 |
+
unet_model_name_or_path=unet_file,
|
35 |
+
controlnet_model_name_or_path=controlnet_file,
|
36 |
+
vae_model_name_or_path=VAE_PATH,
|
37 |
+
|
38 |
+
load_weight_increasement=True,
|
39 |
+
device=device,
|
40 |
+
hf_cache_dir=CACHE_DIR,
|
41 |
+
use_safetensors=True,
|
42 |
+
enable_xformers_memory_efficient_attention=True,
|
43 |
+
)
|
44 |
+
|
45 |
+
preprocessors = ['canny']
|
46 |
+
schedulers = ['Euler A', 'UniPC', 'Euler', 'DDIM', 'DDPM']
|
47 |
|
48 |
+
css = """
|
49 |
+
#col-container {
|
50 |
+
margin: 0 auto;
|
51 |
+
max-width: 520px;
|
52 |
+
}
|
53 |
+
"""
|
54 |
+
|
55 |
+
with gr.Blocks(css=css) as demo:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
gr.Markdown(f"""
|
57 |
+
# [ControlNeXt](https://github.com/dvlab-research/ControlNeXt) Official Demo
|
|
|
58 |
""")
|
|
|
59 |
with gr.Row():
|
60 |
+
with gr.Column(scale=9):
|
61 |
+
prompt = gr.Textbox(lines=3, placeholder='prompt', container=False)
|
62 |
+
negative_prompt = gr.Textbox(lines=3, placeholder='negative prompt', container=False)
|
63 |
+
with gr.Column(scale=1):
|
64 |
+
generate_button = gr.Button("Generate", variant='primary', min_width=96)
|
65 |
+
with gr.Row():
|
66 |
+
with gr.Column(scale=1):
|
67 |
+
with gr.Row():
|
68 |
+
control_image = gr.Image(
|
69 |
+
value=None,
|
70 |
+
label='Condition',
|
71 |
+
sources=['upload'],
|
72 |
+
type='pil',
|
73 |
+
height=512,
|
74 |
+
show_download_button=True,
|
75 |
+
show_share_button=True,
|
76 |
+
)
|
77 |
+
with gr.Row():
|
78 |
+
scheduler = gr.Dropdown(
|
79 |
+
label='Scheduler',
|
80 |
+
choices=schedulers,
|
81 |
+
value='Euler A',
|
82 |
+
multiselect=False,
|
83 |
+
allow_custom_value=False,
|
84 |
+
filterable=True,
|
85 |
+
)
|
86 |
+
num_inference_steps = gr.Slider(minimum=1, maximum=100, step=1, value=20, label='Steps')
|
87 |
+
with gr.Row():
|
88 |
+
cfg_scale = gr.Slider(minimum=1, maximum=30, step=1, value=7.5, label='CFG Scale')
|
89 |
+
controlnet_scale = gr.Slider(minimum=0, maximum=1, step=0.01, value=0.5, label='ControlNet Scale')
|
90 |
+
with gr.Row():
|
91 |
+
seed = gr.Number(label='Seed', step=1, precision=0, value=-1)
|
92 |
+
with gr.Row():
|
93 |
+
processor = gr.Dropdown(
|
94 |
+
label='Image Preprocessor',
|
95 |
+
choices=preprocessors,
|
96 |
+
value='canny',
|
97 |
+
)
|
98 |
+
process_button = gr.Button("Process", variant='primary', min_width=96, scale=0)
|
99 |
+
with gr.Column(scale=1):
|
100 |
+
output = gr.Gallery(
|
101 |
+
label='Output',
|
102 |
+
value=None,
|
103 |
+
object_fit='scale-down',
|
104 |
+
columns=4,
|
105 |
+
height=512,
|
106 |
+
show_download_button=True,
|
107 |
+
show_share_button=True,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
108 |
)
|
109 |
+
|
110 |
+
def generate(
|
111 |
+
prompt,
|
112 |
+
control_image,
|
113 |
+
negative_prompt,
|
114 |
+
cfg_scale,
|
115 |
+
controlnet_scale,
|
116 |
+
num_inference_steps,
|
117 |
+
scheduler,
|
118 |
+
seed,
|
119 |
+
):
|
120 |
+
pipeline.scheduler = tools.get_scheduler(scheduler, pipeline.scheduler.config)
|
121 |
+
|
122 |
+
generator = torch.Generator(device=device).manual_seed(max(0, min(seed, np.iinfo(np.int32).max))) if seed != -1 else None
|
123 |
+
|
124 |
+
if control_image is None:
|
125 |
+
raise gr.Error('Please upload an image.')
|
126 |
+
width, height = utils.around_reso(control_image.width, control_image.height, reso=1024, max_width=2048, max_height=2048, divisible=32)
|
127 |
+
control_image = control_image.resize((width, height)).convert('RGB')
|
128 |
+
|
129 |
+
with torch.autocast(device):
|
130 |
+
output_images = pipeline.__call__(
|
131 |
+
prompt=prompt,
|
132 |
+
negative_prompt=negative_prompt,
|
133 |
+
controlnet_image=control_image,
|
134 |
+
controlnet_scale=controlnet_scale,
|
135 |
+
width=width,
|
136 |
+
height=height,
|
137 |
+
generator=generator,
|
138 |
+
guidance_scale=cfg_scale,
|
139 |
+
num_inference_steps=num_inference_steps,
|
140 |
+
).images
|
141 |
+
|
142 |
+
return output_images
|
143 |
+
|
144 |
+
def process(
|
145 |
+
image,
|
146 |
+
processor,
|
147 |
+
):
|
148 |
+
if image is None:
|
149 |
+
raise gr.Error('Please upload an image.')
|
150 |
+
processor = preprocess.get_extractor(processor)
|
151 |
+
image = processor(image)
|
152 |
+
return image
|
153 |
+
|
154 |
+
generate_button.click(
|
155 |
+
fn=generate,
|
156 |
+
inputs=[prompt, control_image, negative_prompt, cfg_scale, controlnet_scale, num_inference_steps, scheduler, seed],
|
157 |
+
outputs=[output],
|
158 |
)
|
159 |
|
160 |
+
process_button.click(
|
161 |
+
fn=process,
|
162 |
+
inputs=[control_image, processor],
|
163 |
+
outputs=[control_image],
|
164 |
+
)
|
165 |
+
|
166 |
+
return demo
|
167 |
+
|
168 |
|
169 |
+
if __name__ == '__main__':
|
170 |
+
demo = ui()
|
171 |
+
demo.queue().launch()
|
models/controlnet.py
ADDED
@@ -0,0 +1,495 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
from torch import nn
|
19 |
+
|
20 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
21 |
+
from diffusers.utils import BaseOutput, logging
|
22 |
+
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
23 |
+
from diffusers.models.modeling_utils import ModelMixin
|
24 |
+
from diffusers.models.resnet import Downsample2D, ResnetBlock2D
|
25 |
+
from einops import rearrange
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
29 |
+
|
30 |
+
|
31 |
+
@dataclass
|
32 |
+
class ControlNetOutput(BaseOutput):
|
33 |
+
"""
|
34 |
+
The output of [`ControlNetModel`].
|
35 |
+
|
36 |
+
Args:
|
37 |
+
down_block_res_samples (`tuple[torch.Tensor]`):
|
38 |
+
A tuple of downsample activations at different resolutions for each downsampling block. Each tensor should
|
39 |
+
be of shape `(batch_size, channel * resolution, height //resolution, width // resolution)`. Output can be
|
40 |
+
used to condition the original UNet's downsampling activations.
|
41 |
+
mid_down_block_re_sample (`torch.Tensor`):
|
42 |
+
The activation of the midde block (the lowest sample resolution). Each tensor should be of shape
|
43 |
+
`(batch_size, channel * lowest_resolution, height // lowest_resolution, width // lowest_resolution)`.
|
44 |
+
Output can be used to condition the original UNet's middle block activation.
|
45 |
+
"""
|
46 |
+
|
47 |
+
down_block_res_samples: Tuple[torch.Tensor]
|
48 |
+
mid_block_res_sample: torch.Tensor
|
49 |
+
|
50 |
+
|
51 |
+
class Block2D(nn.Module):
|
52 |
+
def __init__(
|
53 |
+
self,
|
54 |
+
in_channels: int,
|
55 |
+
out_channels: int,
|
56 |
+
temb_channels: int,
|
57 |
+
dropout: float = 0.0,
|
58 |
+
num_layers: int = 1,
|
59 |
+
resnet_eps: float = 1e-6,
|
60 |
+
resnet_time_scale_shift: str = "default",
|
61 |
+
resnet_act_fn: str = "swish",
|
62 |
+
resnet_groups: int = 32,
|
63 |
+
resnet_pre_norm: bool = True,
|
64 |
+
output_scale_factor: float = 1.0,
|
65 |
+
add_downsample: bool = True,
|
66 |
+
downsample_padding: int = 1,
|
67 |
+
):
|
68 |
+
super().__init__()
|
69 |
+
resnets = []
|
70 |
+
|
71 |
+
for i in range(num_layers):
|
72 |
+
in_channels = in_channels if i == 0 else out_channels
|
73 |
+
resnets.append(
|
74 |
+
ResnetBlock2D(
|
75 |
+
in_channels=in_channels,
|
76 |
+
out_channels=out_channels,
|
77 |
+
temb_channels=temb_channels,
|
78 |
+
eps=resnet_eps,
|
79 |
+
groups=resnet_groups,
|
80 |
+
dropout=dropout,
|
81 |
+
time_embedding_norm=resnet_time_scale_shift,
|
82 |
+
non_linearity=resnet_act_fn,
|
83 |
+
output_scale_factor=output_scale_factor,
|
84 |
+
pre_norm=resnet_pre_norm,
|
85 |
+
)
|
86 |
+
)
|
87 |
+
|
88 |
+
self.resnets = nn.ModuleList(resnets)
|
89 |
+
|
90 |
+
if add_downsample:
|
91 |
+
self.downsamplers = nn.ModuleList(
|
92 |
+
[
|
93 |
+
Downsample2D(
|
94 |
+
out_channels,
|
95 |
+
use_conv=True,
|
96 |
+
out_channels=out_channels,
|
97 |
+
padding=downsample_padding,
|
98 |
+
name="op",
|
99 |
+
)
|
100 |
+
]
|
101 |
+
)
|
102 |
+
else:
|
103 |
+
self.downsamplers = None
|
104 |
+
|
105 |
+
self.gradient_checkpointing = False
|
106 |
+
|
107 |
+
def forward(
|
108 |
+
self,
|
109 |
+
hidden_states: torch.FloatTensor,
|
110 |
+
temb: Optional[torch.FloatTensor] = None,
|
111 |
+
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
112 |
+
output_states = ()
|
113 |
+
|
114 |
+
for resnet in zip(self.resnets):
|
115 |
+
hidden_states = resnet(hidden_states, temb)
|
116 |
+
output_states += (hidden_states,)
|
117 |
+
|
118 |
+
if self.downsamplers is not None:
|
119 |
+
for downsampler in self.downsamplers:
|
120 |
+
hidden_states = downsampler(hidden_states)
|
121 |
+
|
122 |
+
output_states += (hidden_states,)
|
123 |
+
|
124 |
+
return hidden_states, output_states
|
125 |
+
|
126 |
+
|
127 |
+
class IdentityModule(nn.Module):
|
128 |
+
def __init__(self):
|
129 |
+
super(IdentityModule, self).__init__()
|
130 |
+
|
131 |
+
def forward(self, *args):
|
132 |
+
if len(args) > 0:
|
133 |
+
return args[0]
|
134 |
+
else:
|
135 |
+
return None
|
136 |
+
|
137 |
+
|
138 |
+
class BasicBlock(nn.Module):
|
139 |
+
def __init__(self,
|
140 |
+
in_channels: int,
|
141 |
+
out_channels: Optional[int] = None,
|
142 |
+
stride=1,
|
143 |
+
conv_shortcut: bool = False,
|
144 |
+
dropout: float = 0.0,
|
145 |
+
temb_channels: int = 512,
|
146 |
+
groups: int = 32,
|
147 |
+
groups_out: Optional[int] = None,
|
148 |
+
pre_norm: bool = True,
|
149 |
+
eps: float = 1e-6,
|
150 |
+
non_linearity: str = "swish",
|
151 |
+
skip_time_act: bool = False,
|
152 |
+
time_embedding_norm: str = "default", # default, scale_shift, ada_group, spatial
|
153 |
+
kernel: Optional[torch.FloatTensor] = None,
|
154 |
+
output_scale_factor: float = 1.0,
|
155 |
+
use_in_shortcut: Optional[bool] = None,
|
156 |
+
up: bool = False,
|
157 |
+
down: bool = False,
|
158 |
+
conv_shortcut_bias: bool = True,
|
159 |
+
conv_2d_out_channels: Optional[int] = None,):
|
160 |
+
super(BasicBlock, self).__init__()
|
161 |
+
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0, bias=False)
|
162 |
+
self.bn1 = nn.BatchNorm2d(out_channels)
|
163 |
+
self.relu = nn.ReLU(inplace=True)
|
164 |
+
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
|
165 |
+
self.bn2 = nn.BatchNorm2d(out_channels)
|
166 |
+
|
167 |
+
self.downsample = None
|
168 |
+
if stride != 1 or in_channels != out_channels:
|
169 |
+
self.downsample = nn.Sequential(
|
170 |
+
nn.Conv2d(in_channels,
|
171 |
+
out_channels,
|
172 |
+
kernel_size=3 if stride != 1 else 1,
|
173 |
+
stride=stride,
|
174 |
+
padding=1 if stride != 1 else 0,
|
175 |
+
bias=False),
|
176 |
+
nn.BatchNorm2d(out_channels)
|
177 |
+
)
|
178 |
+
|
179 |
+
def forward(self, x, *args):
|
180 |
+
residual = x
|
181 |
+
out = self.conv1(x)
|
182 |
+
out = self.bn1(out)
|
183 |
+
out = self.relu(out)
|
184 |
+
|
185 |
+
out = self.conv2(out)
|
186 |
+
out = self.bn2(out)
|
187 |
+
|
188 |
+
if self.downsample is not None:
|
189 |
+
residual = self.downsample(x)
|
190 |
+
|
191 |
+
out += residual
|
192 |
+
out = self.relu(out)
|
193 |
+
|
194 |
+
return out
|
195 |
+
|
196 |
+
|
197 |
+
class Block2D(nn.Module):
|
198 |
+
def __init__(
|
199 |
+
self,
|
200 |
+
in_channels: int,
|
201 |
+
out_channels: int,
|
202 |
+
temb_channels: int,
|
203 |
+
dropout: float = 0.0,
|
204 |
+
num_layers: int = 1,
|
205 |
+
resnet_eps: float = 1e-6,
|
206 |
+
resnet_time_scale_shift: str = "default",
|
207 |
+
resnet_act_fn: str = "swish",
|
208 |
+
resnet_groups: int = 32,
|
209 |
+
resnet_pre_norm: bool = True,
|
210 |
+
output_scale_factor: float = 1.0,
|
211 |
+
add_downsample: bool = True,
|
212 |
+
downsample_padding: int = 1,
|
213 |
+
):
|
214 |
+
super().__init__()
|
215 |
+
resnets = []
|
216 |
+
|
217 |
+
for i in range(num_layers):
|
218 |
+
# in_channels = in_channels if i == 0 else out_channels
|
219 |
+
resnets.append(
|
220 |
+
# ResnetBlock2D(
|
221 |
+
# in_channels=in_channels,
|
222 |
+
# out_channels=out_channels,
|
223 |
+
# temb_channels=temb_channels,
|
224 |
+
# eps=resnet_eps,
|
225 |
+
# groups=resnet_groups,
|
226 |
+
# dropout=dropout,
|
227 |
+
# time_embedding_norm=resnet_time_scale_shift,
|
228 |
+
# non_linearity=resnet_act_fn,
|
229 |
+
# output_scale_factor=output_scale_factor,
|
230 |
+
# pre_norm=resnet_pre_norm,
|
231 |
+
BasicBlock(
|
232 |
+
in_channels=in_channels,
|
233 |
+
out_channels=out_channels,
|
234 |
+
temb_channels=temb_channels,
|
235 |
+
eps=resnet_eps,
|
236 |
+
groups=resnet_groups,
|
237 |
+
dropout=dropout,
|
238 |
+
time_embedding_norm=resnet_time_scale_shift,
|
239 |
+
non_linearity=resnet_act_fn,
|
240 |
+
output_scale_factor=output_scale_factor,
|
241 |
+
pre_norm=resnet_pre_norm,
|
242 |
+
) if i == num_layers - 1 else \
|
243 |
+
IdentityModule()
|
244 |
+
)
|
245 |
+
|
246 |
+
self.resnets = nn.ModuleList(resnets)
|
247 |
+
|
248 |
+
if add_downsample:
|
249 |
+
self.downsamplers = nn.ModuleList(
|
250 |
+
[
|
251 |
+
# Downsample2D(
|
252 |
+
# out_channels,
|
253 |
+
# use_conv=True,
|
254 |
+
# out_channels=out_channels,
|
255 |
+
# padding=downsample_padding,
|
256 |
+
# name="op",
|
257 |
+
# )
|
258 |
+
BasicBlock(
|
259 |
+
in_channels=out_channels,
|
260 |
+
out_channels=out_channels,
|
261 |
+
temb_channels=temb_channels,
|
262 |
+
stride=2,
|
263 |
+
eps=resnet_eps,
|
264 |
+
groups=resnet_groups,
|
265 |
+
dropout=dropout,
|
266 |
+
time_embedding_norm=resnet_time_scale_shift,
|
267 |
+
non_linearity=resnet_act_fn,
|
268 |
+
output_scale_factor=output_scale_factor,
|
269 |
+
pre_norm=resnet_pre_norm,
|
270 |
+
)
|
271 |
+
]
|
272 |
+
)
|
273 |
+
else:
|
274 |
+
self.downsamplers = None
|
275 |
+
|
276 |
+
self.gradient_checkpointing = False
|
277 |
+
|
278 |
+
def forward(
|
279 |
+
self,
|
280 |
+
hidden_states: torch.FloatTensor,
|
281 |
+
temb: Optional[torch.FloatTensor] = None,
|
282 |
+
) -> Union[torch.FloatTensor, Tuple[torch.FloatTensor, ...]]:
|
283 |
+
output_states = ()
|
284 |
+
|
285 |
+
for resnet in self.resnets:
|
286 |
+
hidden_states = resnet(hidden_states, temb)
|
287 |
+
output_states += (hidden_states,)
|
288 |
+
|
289 |
+
if self.downsamplers is not None:
|
290 |
+
for downsampler in self.downsamplers:
|
291 |
+
hidden_states = downsampler(hidden_states)
|
292 |
+
|
293 |
+
output_states += (hidden_states,)
|
294 |
+
|
295 |
+
return hidden_states, output_states
|
296 |
+
|
297 |
+
|
298 |
+
class ControlProject(nn.Module):
|
299 |
+
def __init__(self, num_channels, scale=8, is_empty=False) -> None:
|
300 |
+
super().__init__()
|
301 |
+
assert scale and scale & (scale - 1) == 0
|
302 |
+
self.is_empty = is_empty
|
303 |
+
self.scale = scale
|
304 |
+
if not is_empty:
|
305 |
+
if scale > 1:
|
306 |
+
self.down_scale = nn.AvgPool2d(scale, scale)
|
307 |
+
else:
|
308 |
+
self.down_scale = nn.Identity()
|
309 |
+
self.out = nn.Conv2d(num_channels, num_channels, kernel_size=1, stride=1, bias=False)
|
310 |
+
for p in self.out.parameters():
|
311 |
+
nn.init.zeros_(p)
|
312 |
+
|
313 |
+
def forward(
|
314 |
+
self,
|
315 |
+
hidden_states: torch.FloatTensor):
|
316 |
+
if self.is_empty:
|
317 |
+
shape = list(hidden_states.shape)
|
318 |
+
shape[-2] = shape[-2] // self.scale
|
319 |
+
shape[-1] = shape[-1] // self.scale
|
320 |
+
return torch.zeros(shape).to(hidden_states)
|
321 |
+
|
322 |
+
if len(hidden_states.shape) == 5:
|
323 |
+
B, F, C, H, W = hidden_states.shape
|
324 |
+
hidden_states = rearrange(hidden_states, "B F C H W -> (B F) C H W")
|
325 |
+
hidden_states = self.down_scale(hidden_states)
|
326 |
+
hidden_states = self.out(hidden_states)
|
327 |
+
hidden_states = rearrange(hidden_states, "(B F) C H W -> B F C H W", F=F)
|
328 |
+
else:
|
329 |
+
hidden_states = self.down_scale(hidden_states)
|
330 |
+
hidden_states = self.out(hidden_states)
|
331 |
+
return hidden_states
|
332 |
+
|
333 |
+
|
334 |
+
class ControlNetModel(ModelMixin, ConfigMixin):
|
335 |
+
|
336 |
+
_supports_gradient_checkpointing = True
|
337 |
+
|
338 |
+
@register_to_config
|
339 |
+
def __init__(
|
340 |
+
self,
|
341 |
+
in_channels: List[int] = [128, 128],
|
342 |
+
out_channels: List[int] = [128, 256],
|
343 |
+
groups: List[int] = [4, 8],
|
344 |
+
time_embed_dim: int = 256,
|
345 |
+
final_out_channels: int = 320,
|
346 |
+
):
|
347 |
+
super().__init__()
|
348 |
+
|
349 |
+
self.time_proj = Timesteps(128, True, downscale_freq_shift=0)
|
350 |
+
self.time_embedding = TimestepEmbedding(128, time_embed_dim)
|
351 |
+
|
352 |
+
self.embedding = nn.Sequential(
|
353 |
+
nn.Conv2d(3, 64, kernel_size=3, stride=2, padding=1),
|
354 |
+
nn.GroupNorm(2, 64),
|
355 |
+
nn.ReLU(),
|
356 |
+
nn.Conv2d(64, 64, kernel_size=3, padding=1),
|
357 |
+
nn.GroupNorm(2, 64),
|
358 |
+
nn.ReLU(),
|
359 |
+
nn.Conv2d(64, 128, kernel_size=3, padding=1),
|
360 |
+
nn.GroupNorm(2, 128),
|
361 |
+
nn.ReLU(),
|
362 |
+
)
|
363 |
+
|
364 |
+
self.down_res = nn.ModuleList()
|
365 |
+
self.down_sample = nn.ModuleList()
|
366 |
+
for i in range(len(in_channels)):
|
367 |
+
self.down_res.append(
|
368 |
+
ResnetBlock2D(
|
369 |
+
in_channels=in_channels[i],
|
370 |
+
out_channels=out_channels[i],
|
371 |
+
temb_channels=time_embed_dim,
|
372 |
+
groups=groups[i]
|
373 |
+
),
|
374 |
+
)
|
375 |
+
self.down_sample.append(
|
376 |
+
Downsample2D(
|
377 |
+
out_channels[i],
|
378 |
+
use_conv=True,
|
379 |
+
out_channels=out_channels[i],
|
380 |
+
padding=1,
|
381 |
+
name="op",
|
382 |
+
)
|
383 |
+
)
|
384 |
+
|
385 |
+
self.mid_convs = nn.ModuleList()
|
386 |
+
self.mid_convs.append(nn.Sequential(
|
387 |
+
nn.Conv2d(
|
388 |
+
in_channels=out_channels[-1],
|
389 |
+
out_channels=out_channels[-1],
|
390 |
+
kernel_size=3,
|
391 |
+
stride=1,
|
392 |
+
padding=1
|
393 |
+
),
|
394 |
+
nn.ReLU(),
|
395 |
+
nn.GroupNorm(8, out_channels[-1]),
|
396 |
+
nn.Conv2d(
|
397 |
+
in_channels=out_channels[-1],
|
398 |
+
out_channels=out_channels[-1],
|
399 |
+
kernel_size=3,
|
400 |
+
stride=1,
|
401 |
+
padding=1
|
402 |
+
),
|
403 |
+
nn.GroupNorm(8, out_channels[-1]),
|
404 |
+
))
|
405 |
+
self.mid_convs.append(
|
406 |
+
nn.Conv2d(
|
407 |
+
in_channels=out_channels[-1],
|
408 |
+
out_channels=final_out_channels,
|
409 |
+
kernel_size=1,
|
410 |
+
stride=1,
|
411 |
+
))
|
412 |
+
self.scale = 1.0 # nn.Parameter(torch.tensor(1.))
|
413 |
+
|
414 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
415 |
+
if hasattr(module, "gradient_checkpointing"):
|
416 |
+
module.gradient_checkpointing = value
|
417 |
+
|
418 |
+
# Copied from diffusers.models.unet_3d_condition.UNet3DConditionModel.enable_forward_chunking
|
419 |
+
def enable_forward_chunking(self, chunk_size: Optional[int] = None, dim: int = 0) -> None:
|
420 |
+
"""
|
421 |
+
Sets the attention processor to use [feed forward
|
422 |
+
chunking](https://huggingface.co/blog/reformer#2-chunked-feed-forward-layers).
|
423 |
+
|
424 |
+
Parameters:
|
425 |
+
chunk_size (`int`, *optional*):
|
426 |
+
The chunk size of the feed-forward layers. If not specified, will run feed-forward layer individually
|
427 |
+
over each tensor of dim=`dim`.
|
428 |
+
dim (`int`, *optional*, defaults to `0`):
|
429 |
+
The dimension over which the feed-forward computation should be chunked. Choose between dim=0 (batch)
|
430 |
+
or dim=1 (sequence length).
|
431 |
+
"""
|
432 |
+
if dim not in [0, 1]:
|
433 |
+
raise ValueError(f"Make sure to set `dim` to either 0 or 1, not {dim}")
|
434 |
+
|
435 |
+
# By default chunk size is 1
|
436 |
+
chunk_size = chunk_size or 1
|
437 |
+
|
438 |
+
def fn_recursive_feed_forward(module: torch.nn.Module, chunk_size: int, dim: int):
|
439 |
+
if hasattr(module, "set_chunk_feed_forward"):
|
440 |
+
module.set_chunk_feed_forward(chunk_size=chunk_size, dim=dim)
|
441 |
+
|
442 |
+
for child in module.children():
|
443 |
+
fn_recursive_feed_forward(child, chunk_size, dim)
|
444 |
+
|
445 |
+
for module in self.children():
|
446 |
+
fn_recursive_feed_forward(module, chunk_size, dim)
|
447 |
+
|
448 |
+
def forward(
|
449 |
+
self,
|
450 |
+
sample: torch.FloatTensor,
|
451 |
+
timestep: Union[torch.Tensor, float, int],
|
452 |
+
) -> Union[ControlNetOutput, Tuple]:
|
453 |
+
|
454 |
+
timesteps = timestep
|
455 |
+
if not torch.is_tensor(timesteps):
|
456 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
457 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
458 |
+
is_mps = sample.device.type == "mps"
|
459 |
+
if isinstance(timestep, float):
|
460 |
+
dtype = torch.float32 if is_mps else torch.float64
|
461 |
+
else:
|
462 |
+
dtype = torch.int32 if is_mps else torch.int64
|
463 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
464 |
+
elif len(timesteps.shape) == 0:
|
465 |
+
timesteps = timesteps[None].to(sample.device)
|
466 |
+
|
467 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
468 |
+
batch_size = sample.shape[0]
|
469 |
+
timesteps = timesteps.expand(batch_size)
|
470 |
+
t_emb = self.time_proj(timesteps)
|
471 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
472 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
473 |
+
# there might be better ways to encapsulate this.
|
474 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
475 |
+
emb_batch = self.time_embedding(t_emb)
|
476 |
+
|
477 |
+
# Repeat the embeddings num_video_frames times
|
478 |
+
# emb: [batch, channels] -> [batch * frames, channels]
|
479 |
+
emb = emb_batch
|
480 |
+
sample = self.embedding(sample)
|
481 |
+
for res, downsample in zip(self.down_res, self.down_sample):
|
482 |
+
sample = res(sample, emb)
|
483 |
+
sample = downsample(sample, emb)
|
484 |
+
sample = self.mid_convs[0](sample) + sample
|
485 |
+
sample = self.mid_convs[1](sample)
|
486 |
+
return {
|
487 |
+
'out': sample,
|
488 |
+
'scale': self.scale,
|
489 |
+
}
|
490 |
+
|
491 |
+
|
492 |
+
def zero_module(module):
|
493 |
+
for p in module.parameters():
|
494 |
+
nn.init.zeros_(p)
|
495 |
+
return module
|
models/unet.py
ADDED
@@ -0,0 +1,1387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from dataclasses import dataclass
|
15 |
+
from typing import Any, Dict, List, Optional, Tuple, Union
|
16 |
+
|
17 |
+
import torch
|
18 |
+
import torch.nn as nn
|
19 |
+
import torch.utils.checkpoint
|
20 |
+
|
21 |
+
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
22 |
+
from diffusers.loaders import PeftAdapterMixin, UNet2DConditionLoadersMixin
|
23 |
+
from diffusers.loaders.single_file_model import FromOriginalModelMixin
|
24 |
+
from diffusers.utils import USE_PEFT_BACKEND, BaseOutput, deprecate, logging, scale_lora_layers, unscale_lora_layers
|
25 |
+
from diffusers.models.activations import get_activation
|
26 |
+
from diffusers.models.attention_processor import (
|
27 |
+
ADDED_KV_ATTENTION_PROCESSORS,
|
28 |
+
CROSS_ATTENTION_PROCESSORS,
|
29 |
+
Attention,
|
30 |
+
AttentionProcessor,
|
31 |
+
AttnAddedKVProcessor,
|
32 |
+
AttnProcessor,
|
33 |
+
)
|
34 |
+
from diffusers.models.embeddings import (
|
35 |
+
GaussianFourierProjection,
|
36 |
+
GLIGENTextBoundingboxProjection,
|
37 |
+
ImageHintTimeEmbedding,
|
38 |
+
ImageProjection,
|
39 |
+
ImageTimeEmbedding,
|
40 |
+
TextImageProjection,
|
41 |
+
TextImageTimeEmbedding,
|
42 |
+
TextTimeEmbedding,
|
43 |
+
TimestepEmbedding,
|
44 |
+
Timesteps,
|
45 |
+
)
|
46 |
+
from diffusers.models.modeling_utils import ModelMixin
|
47 |
+
from diffusers.models.unets.unet_2d_blocks import (
|
48 |
+
get_down_block,
|
49 |
+
get_mid_block,
|
50 |
+
get_up_block,
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
55 |
+
|
56 |
+
UNET_CONFIG = {
|
57 |
+
"_class_name": "UNet2DConditionModel",
|
58 |
+
"_diffusers_version": "0.19.0.dev0",
|
59 |
+
"act_fn": "silu",
|
60 |
+
"addition_embed_type": "text_time",
|
61 |
+
"addition_embed_type_num_heads": 64,
|
62 |
+
"addition_time_embed_dim": 256,
|
63 |
+
"attention_head_dim": [
|
64 |
+
5,
|
65 |
+
10,
|
66 |
+
20
|
67 |
+
],
|
68 |
+
"block_out_channels": [
|
69 |
+
320,
|
70 |
+
640,
|
71 |
+
1280
|
72 |
+
],
|
73 |
+
"center_input_sample": False,
|
74 |
+
"class_embed_type": None,
|
75 |
+
"class_embeddings_concat": False,
|
76 |
+
"conv_in_kernel": 3,
|
77 |
+
"conv_out_kernel": 3,
|
78 |
+
"cross_attention_dim": 2048,
|
79 |
+
"cross_attention_norm": None,
|
80 |
+
"down_block_types": [
|
81 |
+
"DownBlock2D",
|
82 |
+
"CrossAttnDownBlock2D",
|
83 |
+
"CrossAttnDownBlock2D"
|
84 |
+
],
|
85 |
+
"downsample_padding": 1,
|
86 |
+
"dual_cross_attention": False,
|
87 |
+
"encoder_hid_dim": None,
|
88 |
+
"encoder_hid_dim_type": None,
|
89 |
+
"flip_sin_to_cos": True,
|
90 |
+
"freq_shift": 0,
|
91 |
+
"in_channels": 4,
|
92 |
+
"layers_per_block": 2,
|
93 |
+
"mid_block_only_cross_attention": None,
|
94 |
+
"mid_block_scale_factor": 1,
|
95 |
+
"mid_block_type": "UNetMidBlock2DCrossAttn",
|
96 |
+
"norm_eps": 1e-05,
|
97 |
+
"norm_num_groups": 32,
|
98 |
+
"num_attention_heads": None,
|
99 |
+
"num_class_embeds": None,
|
100 |
+
"only_cross_attention": False,
|
101 |
+
"out_channels": 4,
|
102 |
+
"projection_class_embeddings_input_dim": 2816,
|
103 |
+
"resnet_out_scale_factor": 1.0,
|
104 |
+
"resnet_skip_time_act": False,
|
105 |
+
"resnet_time_scale_shift": "default",
|
106 |
+
"sample_size": 128,
|
107 |
+
"time_cond_proj_dim": None,
|
108 |
+
"time_embedding_act_fn": None,
|
109 |
+
"time_embedding_dim": None,
|
110 |
+
"time_embedding_type": "positional",
|
111 |
+
"timestep_post_act": None,
|
112 |
+
"transformer_layers_per_block": [
|
113 |
+
1,
|
114 |
+
2,
|
115 |
+
10
|
116 |
+
],
|
117 |
+
"up_block_types": [
|
118 |
+
"CrossAttnUpBlock2D",
|
119 |
+
"CrossAttnUpBlock2D",
|
120 |
+
"UpBlock2D"
|
121 |
+
],
|
122 |
+
"upcast_attention": None,
|
123 |
+
"use_linear_projection": True
|
124 |
+
}
|
125 |
+
|
126 |
+
|
127 |
+
@dataclass
|
128 |
+
class UNet2DConditionOutput(BaseOutput):
|
129 |
+
"""
|
130 |
+
The output of [`UNet2DConditionModel`].
|
131 |
+
|
132 |
+
Args:
|
133 |
+
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
134 |
+
The hidden states output conditioned on `encoder_hidden_states` input. Output of last layer of model.
|
135 |
+
"""
|
136 |
+
|
137 |
+
sample: torch.Tensor = None
|
138 |
+
|
139 |
+
|
140 |
+
class UNet2DConditionModel(
|
141 |
+
ModelMixin, ConfigMixin, FromOriginalModelMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin
|
142 |
+
):
|
143 |
+
r"""
|
144 |
+
A conditional 2D UNet model that takes a noisy sample, conditional state, and a timestep and returns a sample
|
145 |
+
shaped output.
|
146 |
+
|
147 |
+
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
148 |
+
for all models (such as downloading or saving).
|
149 |
+
|
150 |
+
Parameters:
|
151 |
+
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
152 |
+
Height and width of input/output sample.
|
153 |
+
in_channels (`int`, *optional*, defaults to 4): Number of channels in the input sample.
|
154 |
+
out_channels (`int`, *optional*, defaults to 4): Number of channels in the output.
|
155 |
+
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
156 |
+
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
157 |
+
Whether to flip the sin to cos in the time embedding.
|
158 |
+
freq_shift (`int`, *optional*, defaults to 0): The frequency shift to apply to the time embedding.
|
159 |
+
down_block_types (`Tuple[str]`, *optional*, defaults to `("CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D")`):
|
160 |
+
The tuple of downsample blocks to use.
|
161 |
+
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2DCrossAttn"`):
|
162 |
+
Block type for middle of UNet, it can be one of `UNetMidBlock2DCrossAttn`, `UNetMidBlock2D`, or
|
163 |
+
`UNetMidBlock2DSimpleCrossAttn`. If `None`, the mid block layer is skipped.
|
164 |
+
up_block_types (`Tuple[str]`, *optional*, defaults to `("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D")`):
|
165 |
+
The tuple of upsample blocks to use.
|
166 |
+
only_cross_attention(`bool` or `Tuple[bool]`, *optional*, default to `False`):
|
167 |
+
Whether to include self-attention in the basic transformer blocks, see
|
168 |
+
[`~models.attention.BasicTransformerBlock`].
|
169 |
+
block_out_channels (`Tuple[int]`, *optional*, defaults to `(320, 640, 1280, 1280)`):
|
170 |
+
The tuple of output channels for each block.
|
171 |
+
layers_per_block (`int`, *optional*, defaults to 2): The number of layers per block.
|
172 |
+
downsample_padding (`int`, *optional*, defaults to 1): The padding to use for the downsampling convolution.
|
173 |
+
mid_block_scale_factor (`float`, *optional*, defaults to 1.0): The scale factor to use for the mid block.
|
174 |
+
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
175 |
+
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
176 |
+
norm_num_groups (`int`, *optional*, defaults to 32): The number of groups to use for the normalization.
|
177 |
+
If `None`, normalization and activation layers is skipped in post-processing.
|
178 |
+
norm_eps (`float`, *optional*, defaults to 1e-5): The epsilon to use for the normalization.
|
179 |
+
cross_attention_dim (`int` or `Tuple[int]`, *optional*, defaults to 1280):
|
180 |
+
The dimension of the cross attention features.
|
181 |
+
transformer_layers_per_block (`int`, `Tuple[int]`, or `Tuple[Tuple]` , *optional*, defaults to 1):
|
182 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`]. Only relevant for
|
183 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
184 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
185 |
+
reverse_transformer_layers_per_block : (`Tuple[Tuple]`, *optional*, defaults to None):
|
186 |
+
The number of transformer blocks of type [`~models.attention.BasicTransformerBlock`], in the upsampling
|
187 |
+
blocks of the U-Net. Only relevant if `transformer_layers_per_block` is of type `Tuple[Tuple]` and for
|
188 |
+
[`~models.unets.unet_2d_blocks.CrossAttnDownBlock2D`], [`~models.unets.unet_2d_blocks.CrossAttnUpBlock2D`],
|
189 |
+
[`~models.unets.unet_2d_blocks.UNetMidBlock2DCrossAttn`].
|
190 |
+
encoder_hid_dim (`int`, *optional*, defaults to None):
|
191 |
+
If `encoder_hid_dim_type` is defined, `encoder_hidden_states` will be projected from `encoder_hid_dim`
|
192 |
+
dimension to `cross_attention_dim`.
|
193 |
+
encoder_hid_dim_type (`str`, *optional*, defaults to `None`):
|
194 |
+
If given, the `encoder_hidden_states` and potentially other embeddings are down-projected to text
|
195 |
+
embeddings of dimension `cross_attention` according to `encoder_hid_dim_type`.
|
196 |
+
attention_head_dim (`int`, *optional*, defaults to 8): The dimension of the attention heads.
|
197 |
+
num_attention_heads (`int`, *optional*):
|
198 |
+
The number of attention heads. If not defined, defaults to `attention_head_dim`
|
199 |
+
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
200 |
+
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
201 |
+
class_embed_type (`str`, *optional*, defaults to `None`):
|
202 |
+
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
203 |
+
`"timestep"`, `"identity"`, `"projection"`, or `"simple_projection"`.
|
204 |
+
addition_embed_type (`str`, *optional*, defaults to `None`):
|
205 |
+
Configures an optional embedding which will be summed with the time embeddings. Choose from `None` or
|
206 |
+
"text". "text" will use the `TextTimeEmbedding` layer.
|
207 |
+
addition_time_embed_dim: (`int`, *optional*, defaults to `None`):
|
208 |
+
Dimension for the timestep embeddings.
|
209 |
+
num_class_embeds (`int`, *optional*, defaults to `None`):
|
210 |
+
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim`, when performing
|
211 |
+
class conditioning with `class_embed_type` equal to `None`.
|
212 |
+
time_embedding_type (`str`, *optional*, defaults to `positional`):
|
213 |
+
The type of position embedding to use for timesteps. Choose from `positional` or `fourier`.
|
214 |
+
time_embedding_dim (`int`, *optional*, defaults to `None`):
|
215 |
+
An optional override for the dimension of the projected time embedding.
|
216 |
+
time_embedding_act_fn (`str`, *optional*, defaults to `None`):
|
217 |
+
Optional activation function to use only once on the time embeddings before they are passed to the rest of
|
218 |
+
the UNet. Choose from `silu`, `mish`, `gelu`, and `swish`.
|
219 |
+
timestep_post_act (`str`, *optional*, defaults to `None`):
|
220 |
+
The second activation function to use in timestep embedding. Choose from `silu`, `mish` and `gelu`.
|
221 |
+
time_cond_proj_dim (`int`, *optional*, defaults to `None`):
|
222 |
+
The dimension of `cond_proj` layer in the timestep embedding.
|
223 |
+
conv_in_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_in` layer.
|
224 |
+
conv_out_kernel (`int`, *optional*, default to `3`): The kernel size of `conv_out` layer.
|
225 |
+
projection_class_embeddings_input_dim (`int`, *optional*): The dimension of the `class_labels` input when
|
226 |
+
`class_embed_type="projection"`. Required when `class_embed_type="projection"`.
|
227 |
+
class_embeddings_concat (`bool`, *optional*, defaults to `False`): Whether to concatenate the time
|
228 |
+
embeddings with the class embeddings.
|
229 |
+
mid_block_only_cross_attention (`bool`, *optional*, defaults to `None`):
|
230 |
+
Whether to use cross attention with the mid block when using the `UNetMidBlock2DSimpleCrossAttn`. If
|
231 |
+
`only_cross_attention` is given as a single boolean and `mid_block_only_cross_attention` is `None`, the
|
232 |
+
`only_cross_attention` value is used as the value for `mid_block_only_cross_attention`. Default to `False`
|
233 |
+
otherwise.
|
234 |
+
"""
|
235 |
+
|
236 |
+
_supports_gradient_checkpointing = True
|
237 |
+
_no_split_modules = ["BasicTransformerBlock", "ResnetBlock2D", "CrossAttnUpBlock2D"]
|
238 |
+
|
239 |
+
@register_to_config
|
240 |
+
def __init__(
|
241 |
+
self,
|
242 |
+
sample_size: Optional[int] = None,
|
243 |
+
in_channels: int = 4,
|
244 |
+
out_channels: int = 4,
|
245 |
+
center_input_sample: bool = False,
|
246 |
+
flip_sin_to_cos: bool = True,
|
247 |
+
freq_shift: int = 0,
|
248 |
+
down_block_types: Tuple[str] = (
|
249 |
+
"CrossAttnDownBlock2D",
|
250 |
+
"CrossAttnDownBlock2D",
|
251 |
+
"CrossAttnDownBlock2D",
|
252 |
+
"DownBlock2D",
|
253 |
+
),
|
254 |
+
mid_block_type: Optional[str] = "UNetMidBlock2DCrossAttn",
|
255 |
+
up_block_types: Tuple[str] = ("UpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "CrossAttnUpBlock2D"),
|
256 |
+
only_cross_attention: Union[bool, Tuple[bool]] = False,
|
257 |
+
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
|
258 |
+
layers_per_block: Union[int, Tuple[int]] = 2,
|
259 |
+
downsample_padding: int = 1,
|
260 |
+
mid_block_scale_factor: float = 1,
|
261 |
+
dropout: float = 0.0,
|
262 |
+
act_fn: str = "silu",
|
263 |
+
norm_num_groups: Optional[int] = 32,
|
264 |
+
norm_eps: float = 1e-5,
|
265 |
+
cross_attention_dim: Union[int, Tuple[int]] = 1280,
|
266 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple]] = 1,
|
267 |
+
reverse_transformer_layers_per_block: Optional[Tuple[Tuple[int]]] = None,
|
268 |
+
encoder_hid_dim: Optional[int] = None,
|
269 |
+
encoder_hid_dim_type: Optional[str] = None,
|
270 |
+
attention_head_dim: Union[int, Tuple[int]] = 8,
|
271 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]] = None,
|
272 |
+
dual_cross_attention: bool = False,
|
273 |
+
use_linear_projection: bool = False,
|
274 |
+
class_embed_type: Optional[str] = None,
|
275 |
+
addition_embed_type: Optional[str] = None,
|
276 |
+
addition_time_embed_dim: Optional[int] = None,
|
277 |
+
num_class_embeds: Optional[int] = None,
|
278 |
+
upcast_attention: bool = False,
|
279 |
+
resnet_time_scale_shift: str = "default",
|
280 |
+
resnet_skip_time_act: bool = False,
|
281 |
+
resnet_out_scale_factor: float = 1.0,
|
282 |
+
time_embedding_type: str = "positional",
|
283 |
+
time_embedding_dim: Optional[int] = None,
|
284 |
+
time_embedding_act_fn: Optional[str] = None,
|
285 |
+
timestep_post_act: Optional[str] = None,
|
286 |
+
time_cond_proj_dim: Optional[int] = None,
|
287 |
+
conv_in_kernel: int = 3,
|
288 |
+
conv_out_kernel: int = 3,
|
289 |
+
projection_class_embeddings_input_dim: Optional[int] = None,
|
290 |
+
attention_type: str = "default",
|
291 |
+
class_embeddings_concat: bool = False,
|
292 |
+
mid_block_only_cross_attention: Optional[bool] = None,
|
293 |
+
cross_attention_norm: Optional[str] = None,
|
294 |
+
addition_embed_type_num_heads: int = 64,
|
295 |
+
):
|
296 |
+
super().__init__()
|
297 |
+
|
298 |
+
self.sample_size = sample_size
|
299 |
+
|
300 |
+
if num_attention_heads is not None:
|
301 |
+
raise ValueError(
|
302 |
+
"At the moment it is not possible to define the number of attention heads via `num_attention_heads` because of a naming issue as described in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131. Passing `num_attention_heads` will only be supported in diffusers v0.19."
|
303 |
+
)
|
304 |
+
|
305 |
+
# If `num_attention_heads` is not defined (which is the case for most models)
|
306 |
+
# it will default to `attention_head_dim`. This looks weird upon first reading it and it is.
|
307 |
+
# The reason for this behavior is to correct for incorrectly named variables that were introduced
|
308 |
+
# when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131
|
309 |
+
# Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking
|
310 |
+
# which is why we correct for the naming here.
|
311 |
+
num_attention_heads = num_attention_heads or attention_head_dim
|
312 |
+
|
313 |
+
# Check inputs
|
314 |
+
self._check_config(
|
315 |
+
down_block_types=down_block_types,
|
316 |
+
up_block_types=up_block_types,
|
317 |
+
only_cross_attention=only_cross_attention,
|
318 |
+
block_out_channels=block_out_channels,
|
319 |
+
layers_per_block=layers_per_block,
|
320 |
+
cross_attention_dim=cross_attention_dim,
|
321 |
+
transformer_layers_per_block=transformer_layers_per_block,
|
322 |
+
reverse_transformer_layers_per_block=reverse_transformer_layers_per_block,
|
323 |
+
attention_head_dim=attention_head_dim,
|
324 |
+
num_attention_heads=num_attention_heads,
|
325 |
+
)
|
326 |
+
|
327 |
+
# input
|
328 |
+
conv_in_padding = (conv_in_kernel - 1) // 2
|
329 |
+
self.conv_in = nn.Conv2d(
|
330 |
+
in_channels, block_out_channels[0], kernel_size=conv_in_kernel, padding=conv_in_padding
|
331 |
+
)
|
332 |
+
|
333 |
+
# time
|
334 |
+
time_embed_dim, timestep_input_dim = self._set_time_proj(
|
335 |
+
time_embedding_type,
|
336 |
+
block_out_channels=block_out_channels,
|
337 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
338 |
+
freq_shift=freq_shift,
|
339 |
+
time_embedding_dim=time_embedding_dim,
|
340 |
+
)
|
341 |
+
|
342 |
+
self.time_embedding = TimestepEmbedding(
|
343 |
+
timestep_input_dim,
|
344 |
+
time_embed_dim,
|
345 |
+
act_fn=act_fn,
|
346 |
+
post_act_fn=timestep_post_act,
|
347 |
+
cond_proj_dim=time_cond_proj_dim,
|
348 |
+
)
|
349 |
+
|
350 |
+
self._set_encoder_hid_proj(
|
351 |
+
encoder_hid_dim_type,
|
352 |
+
cross_attention_dim=cross_attention_dim,
|
353 |
+
encoder_hid_dim=encoder_hid_dim,
|
354 |
+
)
|
355 |
+
|
356 |
+
# class embedding
|
357 |
+
self._set_class_embedding(
|
358 |
+
class_embed_type,
|
359 |
+
act_fn=act_fn,
|
360 |
+
num_class_embeds=num_class_embeds,
|
361 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
362 |
+
time_embed_dim=time_embed_dim,
|
363 |
+
timestep_input_dim=timestep_input_dim,
|
364 |
+
)
|
365 |
+
|
366 |
+
self._set_add_embedding(
|
367 |
+
addition_embed_type,
|
368 |
+
addition_embed_type_num_heads=addition_embed_type_num_heads,
|
369 |
+
addition_time_embed_dim=addition_time_embed_dim,
|
370 |
+
cross_attention_dim=cross_attention_dim,
|
371 |
+
encoder_hid_dim=encoder_hid_dim,
|
372 |
+
flip_sin_to_cos=flip_sin_to_cos,
|
373 |
+
freq_shift=freq_shift,
|
374 |
+
projection_class_embeddings_input_dim=projection_class_embeddings_input_dim,
|
375 |
+
time_embed_dim=time_embed_dim,
|
376 |
+
)
|
377 |
+
|
378 |
+
if time_embedding_act_fn is None:
|
379 |
+
self.time_embed_act = None
|
380 |
+
else:
|
381 |
+
self.time_embed_act = get_activation(time_embedding_act_fn)
|
382 |
+
|
383 |
+
self.down_blocks = nn.ModuleList([])
|
384 |
+
self.up_blocks = nn.ModuleList([])
|
385 |
+
|
386 |
+
if isinstance(only_cross_attention, bool):
|
387 |
+
if mid_block_only_cross_attention is None:
|
388 |
+
mid_block_only_cross_attention = only_cross_attention
|
389 |
+
|
390 |
+
only_cross_attention = [only_cross_attention] * len(down_block_types)
|
391 |
+
|
392 |
+
if mid_block_only_cross_attention is None:
|
393 |
+
mid_block_only_cross_attention = False
|
394 |
+
|
395 |
+
if isinstance(num_attention_heads, int):
|
396 |
+
num_attention_heads = (num_attention_heads,) * len(down_block_types)
|
397 |
+
|
398 |
+
if isinstance(attention_head_dim, int):
|
399 |
+
attention_head_dim = (attention_head_dim,) * len(down_block_types)
|
400 |
+
|
401 |
+
if isinstance(cross_attention_dim, int):
|
402 |
+
cross_attention_dim = (cross_attention_dim,) * len(down_block_types)
|
403 |
+
|
404 |
+
if isinstance(layers_per_block, int):
|
405 |
+
layers_per_block = [layers_per_block] * len(down_block_types)
|
406 |
+
|
407 |
+
if isinstance(transformer_layers_per_block, int):
|
408 |
+
transformer_layers_per_block = [transformer_layers_per_block] * len(down_block_types)
|
409 |
+
|
410 |
+
if class_embeddings_concat:
|
411 |
+
# The time embeddings are concatenated with the class embeddings. The dimension of the
|
412 |
+
# time embeddings passed to the down, middle, and up blocks is twice the dimension of the
|
413 |
+
# regular time embeddings
|
414 |
+
blocks_time_embed_dim = time_embed_dim * 2
|
415 |
+
else:
|
416 |
+
blocks_time_embed_dim = time_embed_dim
|
417 |
+
|
418 |
+
# down
|
419 |
+
output_channel = block_out_channels[0]
|
420 |
+
for i, down_block_type in enumerate(down_block_types):
|
421 |
+
input_channel = output_channel
|
422 |
+
output_channel = block_out_channels[i]
|
423 |
+
is_final_block = i == len(block_out_channels) - 1
|
424 |
+
|
425 |
+
down_block = get_down_block(
|
426 |
+
down_block_type,
|
427 |
+
num_layers=layers_per_block[i],
|
428 |
+
transformer_layers_per_block=transformer_layers_per_block[i],
|
429 |
+
in_channels=input_channel,
|
430 |
+
out_channels=output_channel,
|
431 |
+
temb_channels=blocks_time_embed_dim,
|
432 |
+
add_downsample=not is_final_block,
|
433 |
+
resnet_eps=norm_eps,
|
434 |
+
resnet_act_fn=act_fn,
|
435 |
+
resnet_groups=norm_num_groups,
|
436 |
+
cross_attention_dim=cross_attention_dim[i],
|
437 |
+
num_attention_heads=num_attention_heads[i],
|
438 |
+
downsample_padding=downsample_padding,
|
439 |
+
dual_cross_attention=dual_cross_attention,
|
440 |
+
use_linear_projection=use_linear_projection,
|
441 |
+
only_cross_attention=only_cross_attention[i],
|
442 |
+
upcast_attention=upcast_attention,
|
443 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
444 |
+
attention_type=attention_type,
|
445 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
446 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
447 |
+
cross_attention_norm=cross_attention_norm,
|
448 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
449 |
+
dropout=dropout,
|
450 |
+
)
|
451 |
+
self.down_blocks.append(down_block)
|
452 |
+
|
453 |
+
# mid
|
454 |
+
self.mid_block = get_mid_block(
|
455 |
+
mid_block_type,
|
456 |
+
temb_channels=blocks_time_embed_dim,
|
457 |
+
in_channels=block_out_channels[-1],
|
458 |
+
resnet_eps=norm_eps,
|
459 |
+
resnet_act_fn=act_fn,
|
460 |
+
resnet_groups=norm_num_groups,
|
461 |
+
output_scale_factor=mid_block_scale_factor,
|
462 |
+
transformer_layers_per_block=transformer_layers_per_block[-1],
|
463 |
+
num_attention_heads=num_attention_heads[-1],
|
464 |
+
cross_attention_dim=cross_attention_dim[-1],
|
465 |
+
dual_cross_attention=dual_cross_attention,
|
466 |
+
use_linear_projection=use_linear_projection,
|
467 |
+
mid_block_only_cross_attention=mid_block_only_cross_attention,
|
468 |
+
upcast_attention=upcast_attention,
|
469 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
470 |
+
attention_type=attention_type,
|
471 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
472 |
+
cross_attention_norm=cross_attention_norm,
|
473 |
+
attention_head_dim=attention_head_dim[-1],
|
474 |
+
dropout=dropout,
|
475 |
+
)
|
476 |
+
|
477 |
+
# count how many layers upsample the images
|
478 |
+
self.num_upsamplers = 0
|
479 |
+
|
480 |
+
# up
|
481 |
+
reversed_block_out_channels = list(reversed(block_out_channels))
|
482 |
+
reversed_num_attention_heads = list(reversed(num_attention_heads))
|
483 |
+
reversed_layers_per_block = list(reversed(layers_per_block))
|
484 |
+
reversed_cross_attention_dim = list(reversed(cross_attention_dim))
|
485 |
+
reversed_transformer_layers_per_block = (
|
486 |
+
list(reversed(transformer_layers_per_block))
|
487 |
+
if reverse_transformer_layers_per_block is None
|
488 |
+
else reverse_transformer_layers_per_block
|
489 |
+
)
|
490 |
+
only_cross_attention = list(reversed(only_cross_attention))
|
491 |
+
|
492 |
+
output_channel = reversed_block_out_channels[0]
|
493 |
+
for i, up_block_type in enumerate(up_block_types):
|
494 |
+
is_final_block = i == len(block_out_channels) - 1
|
495 |
+
|
496 |
+
prev_output_channel = output_channel
|
497 |
+
output_channel = reversed_block_out_channels[i]
|
498 |
+
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
499 |
+
|
500 |
+
# add upsample block for all BUT final layer
|
501 |
+
if not is_final_block:
|
502 |
+
add_upsample = True
|
503 |
+
self.num_upsamplers += 1
|
504 |
+
else:
|
505 |
+
add_upsample = False
|
506 |
+
|
507 |
+
up_block = get_up_block(
|
508 |
+
up_block_type,
|
509 |
+
num_layers=reversed_layers_per_block[i] + 1,
|
510 |
+
transformer_layers_per_block=reversed_transformer_layers_per_block[i],
|
511 |
+
in_channels=input_channel,
|
512 |
+
out_channels=output_channel,
|
513 |
+
prev_output_channel=prev_output_channel,
|
514 |
+
temb_channels=blocks_time_embed_dim,
|
515 |
+
add_upsample=add_upsample,
|
516 |
+
resnet_eps=norm_eps,
|
517 |
+
resnet_act_fn=act_fn,
|
518 |
+
resolution_idx=i,
|
519 |
+
resnet_groups=norm_num_groups,
|
520 |
+
cross_attention_dim=reversed_cross_attention_dim[i],
|
521 |
+
num_attention_heads=reversed_num_attention_heads[i],
|
522 |
+
dual_cross_attention=dual_cross_attention,
|
523 |
+
use_linear_projection=use_linear_projection,
|
524 |
+
only_cross_attention=only_cross_attention[i],
|
525 |
+
upcast_attention=upcast_attention,
|
526 |
+
resnet_time_scale_shift=resnet_time_scale_shift,
|
527 |
+
attention_type=attention_type,
|
528 |
+
resnet_skip_time_act=resnet_skip_time_act,
|
529 |
+
resnet_out_scale_factor=resnet_out_scale_factor,
|
530 |
+
cross_attention_norm=cross_attention_norm,
|
531 |
+
attention_head_dim=attention_head_dim[i] if attention_head_dim[i] is not None else output_channel,
|
532 |
+
dropout=dropout,
|
533 |
+
)
|
534 |
+
self.up_blocks.append(up_block)
|
535 |
+
prev_output_channel = output_channel
|
536 |
+
|
537 |
+
# out
|
538 |
+
if norm_num_groups is not None:
|
539 |
+
self.conv_norm_out = nn.GroupNorm(
|
540 |
+
num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps
|
541 |
+
)
|
542 |
+
|
543 |
+
self.conv_act = get_activation(act_fn)
|
544 |
+
|
545 |
+
else:
|
546 |
+
self.conv_norm_out = None
|
547 |
+
self.conv_act = None
|
548 |
+
|
549 |
+
conv_out_padding = (conv_out_kernel - 1) // 2
|
550 |
+
self.conv_out = nn.Conv2d(
|
551 |
+
block_out_channels[0], out_channels, kernel_size=conv_out_kernel, padding=conv_out_padding
|
552 |
+
)
|
553 |
+
|
554 |
+
self._set_pos_net_if_use_gligen(attention_type=attention_type, cross_attention_dim=cross_attention_dim)
|
555 |
+
|
556 |
+
def _check_config(
|
557 |
+
self,
|
558 |
+
down_block_types: Tuple[str],
|
559 |
+
up_block_types: Tuple[str],
|
560 |
+
only_cross_attention: Union[bool, Tuple[bool]],
|
561 |
+
block_out_channels: Tuple[int],
|
562 |
+
layers_per_block: Union[int, Tuple[int]],
|
563 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
564 |
+
transformer_layers_per_block: Union[int, Tuple[int], Tuple[Tuple[int]]],
|
565 |
+
reverse_transformer_layers_per_block: bool,
|
566 |
+
attention_head_dim: int,
|
567 |
+
num_attention_heads: Optional[Union[int, Tuple[int]]],
|
568 |
+
):
|
569 |
+
if len(down_block_types) != len(up_block_types):
|
570 |
+
raise ValueError(
|
571 |
+
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
572 |
+
)
|
573 |
+
|
574 |
+
if len(block_out_channels) != len(down_block_types):
|
575 |
+
raise ValueError(
|
576 |
+
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
577 |
+
)
|
578 |
+
|
579 |
+
if not isinstance(only_cross_attention, bool) and len(only_cross_attention) != len(down_block_types):
|
580 |
+
raise ValueError(
|
581 |
+
f"Must provide the same number of `only_cross_attention` as `down_block_types`. `only_cross_attention`: {only_cross_attention}. `down_block_types`: {down_block_types}."
|
582 |
+
)
|
583 |
+
|
584 |
+
if not isinstance(num_attention_heads, int) and len(num_attention_heads) != len(down_block_types):
|
585 |
+
raise ValueError(
|
586 |
+
f"Must provide the same number of `num_attention_heads` as `down_block_types`. `num_attention_heads`: {num_attention_heads}. `down_block_types`: {down_block_types}."
|
587 |
+
)
|
588 |
+
|
589 |
+
if not isinstance(attention_head_dim, int) and len(attention_head_dim) != len(down_block_types):
|
590 |
+
raise ValueError(
|
591 |
+
f"Must provide the same number of `attention_head_dim` as `down_block_types`. `attention_head_dim`: {attention_head_dim}. `down_block_types`: {down_block_types}."
|
592 |
+
)
|
593 |
+
|
594 |
+
if isinstance(cross_attention_dim, list) and len(cross_attention_dim) != len(down_block_types):
|
595 |
+
raise ValueError(
|
596 |
+
f"Must provide the same number of `cross_attention_dim` as `down_block_types`. `cross_attention_dim`: {cross_attention_dim}. `down_block_types`: {down_block_types}."
|
597 |
+
)
|
598 |
+
|
599 |
+
if not isinstance(layers_per_block, int) and len(layers_per_block) != len(down_block_types):
|
600 |
+
raise ValueError(
|
601 |
+
f"Must provide the same number of `layers_per_block` as `down_block_types`. `layers_per_block`: {layers_per_block}. `down_block_types`: {down_block_types}."
|
602 |
+
)
|
603 |
+
if isinstance(transformer_layers_per_block, list) and reverse_transformer_layers_per_block is None:
|
604 |
+
for layer_number_per_block in transformer_layers_per_block:
|
605 |
+
if isinstance(layer_number_per_block, list):
|
606 |
+
raise ValueError("Must provide 'reverse_transformer_layers_per_block` if using asymmetrical UNet.")
|
607 |
+
|
608 |
+
def _set_time_proj(
|
609 |
+
self,
|
610 |
+
time_embedding_type: str,
|
611 |
+
block_out_channels: int,
|
612 |
+
flip_sin_to_cos: bool,
|
613 |
+
freq_shift: float,
|
614 |
+
time_embedding_dim: int,
|
615 |
+
) -> Tuple[int, int]:
|
616 |
+
if time_embedding_type == "fourier":
|
617 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 2
|
618 |
+
if time_embed_dim % 2 != 0:
|
619 |
+
raise ValueError(f"`time_embed_dim` should be divisible by 2, but is {time_embed_dim}.")
|
620 |
+
self.time_proj = GaussianFourierProjection(
|
621 |
+
time_embed_dim // 2, set_W_to_weight=False, log=False, flip_sin_to_cos=flip_sin_to_cos
|
622 |
+
)
|
623 |
+
timestep_input_dim = time_embed_dim
|
624 |
+
elif time_embedding_type == "positional":
|
625 |
+
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
626 |
+
|
627 |
+
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
628 |
+
timestep_input_dim = block_out_channels[0]
|
629 |
+
else:
|
630 |
+
raise ValueError(
|
631 |
+
f"{time_embedding_type} does not exist. Please make sure to use one of `fourier` or `positional`."
|
632 |
+
)
|
633 |
+
|
634 |
+
return time_embed_dim, timestep_input_dim
|
635 |
+
|
636 |
+
def _set_encoder_hid_proj(
|
637 |
+
self,
|
638 |
+
encoder_hid_dim_type: Optional[str],
|
639 |
+
cross_attention_dim: Union[int, Tuple[int]],
|
640 |
+
encoder_hid_dim: Optional[int],
|
641 |
+
):
|
642 |
+
if encoder_hid_dim_type is None and encoder_hid_dim is not None:
|
643 |
+
encoder_hid_dim_type = "text_proj"
|
644 |
+
self.register_to_config(encoder_hid_dim_type=encoder_hid_dim_type)
|
645 |
+
logger.info("encoder_hid_dim_type defaults to 'text_proj' as `encoder_hid_dim` is defined.")
|
646 |
+
|
647 |
+
if encoder_hid_dim is None and encoder_hid_dim_type is not None:
|
648 |
+
raise ValueError(
|
649 |
+
f"`encoder_hid_dim` has to be defined when `encoder_hid_dim_type` is set to {encoder_hid_dim_type}."
|
650 |
+
)
|
651 |
+
|
652 |
+
if encoder_hid_dim_type == "text_proj":
|
653 |
+
self.encoder_hid_proj = nn.Linear(encoder_hid_dim, cross_attention_dim)
|
654 |
+
elif encoder_hid_dim_type == "text_image_proj":
|
655 |
+
# image_embed_dim DOESN'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
656 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
657 |
+
# case when `addition_embed_type == "text_image_proj"` (Kandinsky 2.1)`
|
658 |
+
self.encoder_hid_proj = TextImageProjection(
|
659 |
+
text_embed_dim=encoder_hid_dim,
|
660 |
+
image_embed_dim=cross_attention_dim,
|
661 |
+
cross_attention_dim=cross_attention_dim,
|
662 |
+
)
|
663 |
+
elif encoder_hid_dim_type == "image_proj":
|
664 |
+
# Kandinsky 2.2
|
665 |
+
self.encoder_hid_proj = ImageProjection(
|
666 |
+
image_embed_dim=encoder_hid_dim,
|
667 |
+
cross_attention_dim=cross_attention_dim,
|
668 |
+
)
|
669 |
+
elif encoder_hid_dim_type is not None:
|
670 |
+
raise ValueError(
|
671 |
+
f"encoder_hid_dim_type: {encoder_hid_dim_type} must be None, 'text_proj' or 'text_image_proj'."
|
672 |
+
)
|
673 |
+
else:
|
674 |
+
self.encoder_hid_proj = None
|
675 |
+
|
676 |
+
def _set_class_embedding(
|
677 |
+
self,
|
678 |
+
class_embed_type: Optional[str],
|
679 |
+
act_fn: str,
|
680 |
+
num_class_embeds: Optional[int],
|
681 |
+
projection_class_embeddings_input_dim: Optional[int],
|
682 |
+
time_embed_dim: int,
|
683 |
+
timestep_input_dim: int,
|
684 |
+
):
|
685 |
+
if class_embed_type is None and num_class_embeds is not None:
|
686 |
+
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
687 |
+
elif class_embed_type == "timestep":
|
688 |
+
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim, act_fn=act_fn)
|
689 |
+
elif class_embed_type == "identity":
|
690 |
+
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
691 |
+
elif class_embed_type == "projection":
|
692 |
+
if projection_class_embeddings_input_dim is None:
|
693 |
+
raise ValueError(
|
694 |
+
"`class_embed_type`: 'projection' requires `projection_class_embeddings_input_dim` be set"
|
695 |
+
)
|
696 |
+
# The projection `class_embed_type` is the same as the timestep `class_embed_type` except
|
697 |
+
# 1. the `class_labels` inputs are not first converted to sinusoidal embeddings
|
698 |
+
# 2. it projects from an arbitrary input dimension.
|
699 |
+
#
|
700 |
+
# Note that `TimestepEmbedding` is quite general, being mainly linear layers and activations.
|
701 |
+
# When used for embedding actual timesteps, the timesteps are first converted to sinusoidal embeddings.
|
702 |
+
# As a result, `TimestepEmbedding` can be passed arbitrary vectors.
|
703 |
+
self.class_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
704 |
+
elif class_embed_type == "simple_projection":
|
705 |
+
if projection_class_embeddings_input_dim is None:
|
706 |
+
raise ValueError(
|
707 |
+
"`class_embed_type`: 'simple_projection' requires `projection_class_embeddings_input_dim` be set"
|
708 |
+
)
|
709 |
+
self.class_embedding = nn.Linear(projection_class_embeddings_input_dim, time_embed_dim)
|
710 |
+
else:
|
711 |
+
self.class_embedding = None
|
712 |
+
|
713 |
+
def _set_add_embedding(
|
714 |
+
self,
|
715 |
+
addition_embed_type: str,
|
716 |
+
addition_embed_type_num_heads: int,
|
717 |
+
addition_time_embed_dim: Optional[int],
|
718 |
+
flip_sin_to_cos: bool,
|
719 |
+
freq_shift: float,
|
720 |
+
cross_attention_dim: Optional[int],
|
721 |
+
encoder_hid_dim: Optional[int],
|
722 |
+
projection_class_embeddings_input_dim: Optional[int],
|
723 |
+
time_embed_dim: int,
|
724 |
+
):
|
725 |
+
if addition_embed_type == "text":
|
726 |
+
if encoder_hid_dim is not None:
|
727 |
+
text_time_embedding_from_dim = encoder_hid_dim
|
728 |
+
else:
|
729 |
+
text_time_embedding_from_dim = cross_attention_dim
|
730 |
+
|
731 |
+
self.add_embedding = TextTimeEmbedding(
|
732 |
+
text_time_embedding_from_dim, time_embed_dim, num_heads=addition_embed_type_num_heads
|
733 |
+
)
|
734 |
+
elif addition_embed_type == "text_image":
|
735 |
+
# text_embed_dim and image_embed_dim DON'T have to be `cross_attention_dim`. To not clutter the __init__ too much
|
736 |
+
# they are set to `cross_attention_dim` here as this is exactly the required dimension for the currently only use
|
737 |
+
# case when `addition_embed_type == "text_image"` (Kandinsky 2.1)`
|
738 |
+
self.add_embedding = TextImageTimeEmbedding(
|
739 |
+
text_embed_dim=cross_attention_dim, image_embed_dim=cross_attention_dim, time_embed_dim=time_embed_dim
|
740 |
+
)
|
741 |
+
elif addition_embed_type == "text_time":
|
742 |
+
self.add_time_proj = Timesteps(addition_time_embed_dim, flip_sin_to_cos, freq_shift)
|
743 |
+
self.add_embedding = TimestepEmbedding(projection_class_embeddings_input_dim, time_embed_dim)
|
744 |
+
elif addition_embed_type == "image":
|
745 |
+
# Kandinsky 2.2
|
746 |
+
self.add_embedding = ImageTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
747 |
+
elif addition_embed_type == "image_hint":
|
748 |
+
# Kandinsky 2.2 ControlNet
|
749 |
+
self.add_embedding = ImageHintTimeEmbedding(image_embed_dim=encoder_hid_dim, time_embed_dim=time_embed_dim)
|
750 |
+
elif addition_embed_type is not None:
|
751 |
+
raise ValueError(f"addition_embed_type: {addition_embed_type} must be None, 'text' or 'text_image'.")
|
752 |
+
|
753 |
+
def _set_pos_net_if_use_gligen(self, attention_type: str, cross_attention_dim: int):
|
754 |
+
if attention_type in ["gated", "gated-text-image"]:
|
755 |
+
positive_len = 768
|
756 |
+
if isinstance(cross_attention_dim, int):
|
757 |
+
positive_len = cross_attention_dim
|
758 |
+
elif isinstance(cross_attention_dim, (list, tuple)):
|
759 |
+
positive_len = cross_attention_dim[0]
|
760 |
+
|
761 |
+
feature_type = "text-only" if attention_type == "gated" else "text-image"
|
762 |
+
self.position_net = GLIGENTextBoundingboxProjection(
|
763 |
+
positive_len=positive_len, out_dim=cross_attention_dim, feature_type=feature_type
|
764 |
+
)
|
765 |
+
|
766 |
+
@property
|
767 |
+
def attn_processors(self) -> Dict[str, AttentionProcessor]:
|
768 |
+
r"""
|
769 |
+
Returns:
|
770 |
+
`dict` of attention processors: A dictionary containing all attention processors used in the model with
|
771 |
+
indexed by its weight name.
|
772 |
+
"""
|
773 |
+
# set recursively
|
774 |
+
processors = {}
|
775 |
+
|
776 |
+
def fn_recursive_add_processors(name: str, module: torch.nn.Module, processors: Dict[str, AttentionProcessor]):
|
777 |
+
if hasattr(module, "get_processor"):
|
778 |
+
processors[f"{name}.processor"] = module.get_processor(return_deprecated_lora=True)
|
779 |
+
|
780 |
+
for sub_name, child in module.named_children():
|
781 |
+
fn_recursive_add_processors(f"{name}.{sub_name}", child, processors)
|
782 |
+
|
783 |
+
return processors
|
784 |
+
|
785 |
+
for name, module in self.named_children():
|
786 |
+
fn_recursive_add_processors(name, module, processors)
|
787 |
+
|
788 |
+
return processors
|
789 |
+
|
790 |
+
def set_attn_processor(self, processor: Union[AttentionProcessor, Dict[str, AttentionProcessor]]):
|
791 |
+
r"""
|
792 |
+
Sets the attention processor to use to compute attention.
|
793 |
+
|
794 |
+
Parameters:
|
795 |
+
processor (`dict` of `AttentionProcessor` or only `AttentionProcessor`):
|
796 |
+
The instantiated processor class or a dictionary of processor classes that will be set as the processor
|
797 |
+
for **all** `Attention` layers.
|
798 |
+
|
799 |
+
If `processor` is a dict, the key needs to define the path to the corresponding cross attention
|
800 |
+
processor. This is strongly recommended when setting trainable attention processors.
|
801 |
+
|
802 |
+
"""
|
803 |
+
count = len(self.attn_processors.keys())
|
804 |
+
|
805 |
+
if isinstance(processor, dict) and len(processor) != count:
|
806 |
+
raise ValueError(
|
807 |
+
f"A dict of processors was passed, but the number of processors {len(processor)} does not match the"
|
808 |
+
f" number of attention layers: {count}. Please make sure to pass {count} processor classes."
|
809 |
+
)
|
810 |
+
|
811 |
+
def fn_recursive_attn_processor(name: str, module: torch.nn.Module, processor):
|
812 |
+
if hasattr(module, "set_processor"):
|
813 |
+
if not isinstance(processor, dict):
|
814 |
+
module.set_processor(processor)
|
815 |
+
else:
|
816 |
+
module.set_processor(processor.pop(f"{name}.processor"))
|
817 |
+
|
818 |
+
for sub_name, child in module.named_children():
|
819 |
+
fn_recursive_attn_processor(f"{name}.{sub_name}", child, processor)
|
820 |
+
|
821 |
+
for name, module in self.named_children():
|
822 |
+
fn_recursive_attn_processor(name, module, processor)
|
823 |
+
|
824 |
+
def set_default_attn_processor(self):
|
825 |
+
"""
|
826 |
+
Disables custom attention processors and sets the default attention implementation.
|
827 |
+
"""
|
828 |
+
if all(proc.__class__ in ADDED_KV_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
829 |
+
processor = AttnAddedKVProcessor()
|
830 |
+
elif all(proc.__class__ in CROSS_ATTENTION_PROCESSORS for proc in self.attn_processors.values()):
|
831 |
+
processor = AttnProcessor()
|
832 |
+
else:
|
833 |
+
raise ValueError(
|
834 |
+
f"Cannot call `set_default_attn_processor` when attention processors are of type {next(iter(self.attn_processors.values()))}"
|
835 |
+
)
|
836 |
+
|
837 |
+
self.set_attn_processor(processor)
|
838 |
+
|
839 |
+
def set_attention_slice(self, slice_size: Union[str, int, List[int]] = "auto"):
|
840 |
+
r"""
|
841 |
+
Enable sliced attention computation.
|
842 |
+
|
843 |
+
When this option is enabled, the attention module splits the input tensor in slices to compute attention in
|
844 |
+
several steps. This is useful for saving some memory in exchange for a small decrease in speed.
|
845 |
+
|
846 |
+
Args:
|
847 |
+
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
|
848 |
+
When `"auto"`, input to the attention heads is halved, so attention is computed in two steps. If
|
849 |
+
`"max"`, maximum amount of memory is saved by running only one slice at a time. If a number is
|
850 |
+
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
|
851 |
+
must be a multiple of `slice_size`.
|
852 |
+
"""
|
853 |
+
sliceable_head_dims = []
|
854 |
+
|
855 |
+
def fn_recursive_retrieve_sliceable_dims(module: torch.nn.Module):
|
856 |
+
if hasattr(module, "set_attention_slice"):
|
857 |
+
sliceable_head_dims.append(module.sliceable_head_dim)
|
858 |
+
|
859 |
+
for child in module.children():
|
860 |
+
fn_recursive_retrieve_sliceable_dims(child)
|
861 |
+
|
862 |
+
# retrieve number of attention layers
|
863 |
+
for module in self.children():
|
864 |
+
fn_recursive_retrieve_sliceable_dims(module)
|
865 |
+
|
866 |
+
num_sliceable_layers = len(sliceable_head_dims)
|
867 |
+
|
868 |
+
if slice_size == "auto":
|
869 |
+
# half the attention head size is usually a good trade-off between
|
870 |
+
# speed and memory
|
871 |
+
slice_size = [dim // 2 for dim in sliceable_head_dims]
|
872 |
+
elif slice_size == "max":
|
873 |
+
# make smallest slice possible
|
874 |
+
slice_size = num_sliceable_layers * [1]
|
875 |
+
|
876 |
+
slice_size = num_sliceable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
|
877 |
+
|
878 |
+
if len(slice_size) != len(sliceable_head_dims):
|
879 |
+
raise ValueError(
|
880 |
+
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
|
881 |
+
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
|
882 |
+
)
|
883 |
+
|
884 |
+
for i in range(len(slice_size)):
|
885 |
+
size = slice_size[i]
|
886 |
+
dim = sliceable_head_dims[i]
|
887 |
+
if size is not None and size > dim:
|
888 |
+
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
|
889 |
+
|
890 |
+
# Recursively walk through all the children.
|
891 |
+
# Any children which exposes the set_attention_slice method
|
892 |
+
# gets the message
|
893 |
+
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
|
894 |
+
if hasattr(module, "set_attention_slice"):
|
895 |
+
module.set_attention_slice(slice_size.pop())
|
896 |
+
|
897 |
+
for child in module.children():
|
898 |
+
fn_recursive_set_attention_slice(child, slice_size)
|
899 |
+
|
900 |
+
reversed_slice_size = list(reversed(slice_size))
|
901 |
+
for module in self.children():
|
902 |
+
fn_recursive_set_attention_slice(module, reversed_slice_size)
|
903 |
+
|
904 |
+
def _set_gradient_checkpointing(self, module, value=False):
|
905 |
+
if hasattr(module, "gradient_checkpointing"):
|
906 |
+
module.gradient_checkpointing = value
|
907 |
+
|
908 |
+
def enable_freeu(self, s1: float, s2: float, b1: float, b2: float):
|
909 |
+
r"""Enables the FreeU mechanism from https://arxiv.org/abs/2309.11497.
|
910 |
+
|
911 |
+
The suffixes after the scaling factors represent the stage blocks where they are being applied.
|
912 |
+
|
913 |
+
Please refer to the [official repository](https://github.com/ChenyangSi/FreeU) for combinations of values that
|
914 |
+
are known to work well for different pipelines such as Stable Diffusion v1, v2, and Stable Diffusion XL.
|
915 |
+
|
916 |
+
Args:
|
917 |
+
s1 (`float`):
|
918 |
+
Scaling factor for stage 1 to attenuate the contributions of the skip features. This is done to
|
919 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
920 |
+
s2 (`float`):
|
921 |
+
Scaling factor for stage 2 to attenuate the contributions of the skip features. This is done to
|
922 |
+
mitigate the "oversmoothing effect" in the enhanced denoising process.
|
923 |
+
b1 (`float`): Scaling factor for stage 1 to amplify the contributions of backbone features.
|
924 |
+
b2 (`float`): Scaling factor for stage 2 to amplify the contributions of backbone features.
|
925 |
+
"""
|
926 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
927 |
+
setattr(upsample_block, "s1", s1)
|
928 |
+
setattr(upsample_block, "s2", s2)
|
929 |
+
setattr(upsample_block, "b1", b1)
|
930 |
+
setattr(upsample_block, "b2", b2)
|
931 |
+
|
932 |
+
def disable_freeu(self):
|
933 |
+
"""Disables the FreeU mechanism."""
|
934 |
+
freeu_keys = {"s1", "s2", "b1", "b2"}
|
935 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
936 |
+
for k in freeu_keys:
|
937 |
+
if hasattr(upsample_block, k) or getattr(upsample_block, k, None) is not None:
|
938 |
+
setattr(upsample_block, k, None)
|
939 |
+
|
940 |
+
def fuse_qkv_projections(self):
|
941 |
+
"""
|
942 |
+
Enables fused QKV projections. For self-attention modules, all projection matrices (i.e., query, key, value)
|
943 |
+
are fused. For cross-attention modules, key and value projection matrices are fused.
|
944 |
+
|
945 |
+
<Tip warning={true}>
|
946 |
+
|
947 |
+
This API is 🧪 experimental.
|
948 |
+
|
949 |
+
</Tip>
|
950 |
+
"""
|
951 |
+
self.original_attn_processors = None
|
952 |
+
|
953 |
+
for _, attn_processor in self.attn_processors.items():
|
954 |
+
if "Added" in str(attn_processor.__class__.__name__):
|
955 |
+
raise ValueError("`fuse_qkv_projections()` is not supported for models having added KV projections.")
|
956 |
+
|
957 |
+
self.original_attn_processors = self.attn_processors
|
958 |
+
|
959 |
+
for module in self.modules():
|
960 |
+
if isinstance(module, Attention):
|
961 |
+
module.fuse_projections(fuse=True)
|
962 |
+
|
963 |
+
def unfuse_qkv_projections(self):
|
964 |
+
"""Disables the fused QKV projection if enabled.
|
965 |
+
|
966 |
+
<Tip warning={true}>
|
967 |
+
|
968 |
+
This API is 🧪 experimental.
|
969 |
+
|
970 |
+
</Tip>
|
971 |
+
|
972 |
+
"""
|
973 |
+
if self.original_attn_processors is not None:
|
974 |
+
self.set_attn_processor(self.original_attn_processors)
|
975 |
+
|
976 |
+
def get_time_embed(
|
977 |
+
self, sample: torch.Tensor, timestep: Union[torch.Tensor, float, int]
|
978 |
+
) -> Optional[torch.Tensor]:
|
979 |
+
timesteps = timestep
|
980 |
+
if not torch.is_tensor(timesteps):
|
981 |
+
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
982 |
+
# This would be a good case for the `match` statement (Python 3.10+)
|
983 |
+
is_mps = sample.device.type == "mps"
|
984 |
+
if isinstance(timestep, float):
|
985 |
+
dtype = torch.float32 if is_mps else torch.float64
|
986 |
+
else:
|
987 |
+
dtype = torch.int32 if is_mps else torch.int64
|
988 |
+
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
|
989 |
+
elif len(timesteps.shape) == 0:
|
990 |
+
timesteps = timesteps[None].to(sample.device)
|
991 |
+
|
992 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
993 |
+
timesteps = timesteps.expand(sample.shape[0])
|
994 |
+
|
995 |
+
t_emb = self.time_proj(timesteps)
|
996 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
997 |
+
# but time_embedding might actually be running in fp16. so we need to cast here.
|
998 |
+
# there might be better ways to encapsulate this.
|
999 |
+
t_emb = t_emb.to(dtype=sample.dtype)
|
1000 |
+
return t_emb
|
1001 |
+
|
1002 |
+
def get_class_embed(self, sample: torch.Tensor, class_labels: Optional[torch.Tensor]) -> Optional[torch.Tensor]:
|
1003 |
+
class_emb = None
|
1004 |
+
if self.class_embedding is not None:
|
1005 |
+
if class_labels is None:
|
1006 |
+
raise ValueError("class_labels should be provided when num_class_embeds > 0")
|
1007 |
+
|
1008 |
+
if self.config.class_embed_type == "timestep":
|
1009 |
+
class_labels = self.time_proj(class_labels)
|
1010 |
+
|
1011 |
+
# `Timesteps` does not contain any weights and will always return f32 tensors
|
1012 |
+
# there might be better ways to encapsulate this.
|
1013 |
+
class_labels = class_labels.to(dtype=sample.dtype)
|
1014 |
+
|
1015 |
+
class_emb = self.class_embedding(class_labels).to(dtype=sample.dtype)
|
1016 |
+
return class_emb
|
1017 |
+
|
1018 |
+
def get_aug_embed(
|
1019 |
+
self, emb: torch.Tensor, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1020 |
+
) -> Optional[torch.Tensor]:
|
1021 |
+
aug_emb = None
|
1022 |
+
if self.config.addition_embed_type == "text":
|
1023 |
+
aug_emb = self.add_embedding(encoder_hidden_states)
|
1024 |
+
elif self.config.addition_embed_type == "text_image":
|
1025 |
+
# Kandinsky 2.1 - style
|
1026 |
+
if "image_embeds" not in added_cond_kwargs:
|
1027 |
+
raise ValueError(
|
1028 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1029 |
+
)
|
1030 |
+
|
1031 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1032 |
+
text_embs = added_cond_kwargs.get("text_embeds", encoder_hidden_states)
|
1033 |
+
aug_emb = self.add_embedding(text_embs, image_embs)
|
1034 |
+
elif self.config.addition_embed_type == "text_time":
|
1035 |
+
# SDXL - style
|
1036 |
+
if "text_embeds" not in added_cond_kwargs:
|
1037 |
+
raise ValueError(
|
1038 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `text_embeds` to be passed in `added_cond_kwargs`"
|
1039 |
+
)
|
1040 |
+
text_embeds = added_cond_kwargs.get("text_embeds")
|
1041 |
+
if "time_ids" not in added_cond_kwargs:
|
1042 |
+
raise ValueError(
|
1043 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'text_time' which requires the keyword argument `time_ids` to be passed in `added_cond_kwargs`"
|
1044 |
+
)
|
1045 |
+
time_ids = added_cond_kwargs.get("time_ids")
|
1046 |
+
time_embeds = self.add_time_proj(time_ids.flatten())
|
1047 |
+
time_embeds = time_embeds.reshape((text_embeds.shape[0], -1))
|
1048 |
+
add_embeds = torch.concat([text_embeds, time_embeds], dim=-1)
|
1049 |
+
add_embeds = add_embeds.to(emb.dtype)
|
1050 |
+
aug_emb = self.add_embedding(add_embeds)
|
1051 |
+
elif self.config.addition_embed_type == "image":
|
1052 |
+
# Kandinsky 2.2 - style
|
1053 |
+
if "image_embeds" not in added_cond_kwargs:
|
1054 |
+
raise ValueError(
|
1055 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image' which requires the keyword argument `image_embeds` to be passed in `added_cond_kwargs`"
|
1056 |
+
)
|
1057 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1058 |
+
aug_emb = self.add_embedding(image_embs)
|
1059 |
+
elif self.config.addition_embed_type == "image_hint":
|
1060 |
+
# Kandinsky 2.2 - style
|
1061 |
+
if "image_embeds" not in added_cond_kwargs or "hint" not in added_cond_kwargs:
|
1062 |
+
raise ValueError(
|
1063 |
+
f"{self.__class__} has the config param `addition_embed_type` set to 'image_hint' which requires the keyword arguments `image_embeds` and `hint` to be passed in `added_cond_kwargs`"
|
1064 |
+
)
|
1065 |
+
image_embs = added_cond_kwargs.get("image_embeds")
|
1066 |
+
hint = added_cond_kwargs.get("hint")
|
1067 |
+
aug_emb = self.add_embedding(image_embs, hint)
|
1068 |
+
return aug_emb
|
1069 |
+
|
1070 |
+
def process_encoder_hidden_states(
|
1071 |
+
self, encoder_hidden_states: torch.Tensor, added_cond_kwargs: Dict[str, Any]
|
1072 |
+
) -> torch.Tensor:
|
1073 |
+
if self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_proj":
|
1074 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states)
|
1075 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "text_image_proj":
|
1076 |
+
# Kandinsky 2.1 - style
|
1077 |
+
if "image_embeds" not in added_cond_kwargs:
|
1078 |
+
raise ValueError(
|
1079 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'text_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1083 |
+
encoder_hidden_states = self.encoder_hid_proj(encoder_hidden_states, image_embeds)
|
1084 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "image_proj":
|
1085 |
+
# Kandinsky 2.2 - style
|
1086 |
+
if "image_embeds" not in added_cond_kwargs:
|
1087 |
+
raise ValueError(
|
1088 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1089 |
+
)
|
1090 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1091 |
+
encoder_hidden_states = self.encoder_hid_proj(image_embeds)
|
1092 |
+
elif self.encoder_hid_proj is not None and self.config.encoder_hid_dim_type == "ip_image_proj":
|
1093 |
+
if "image_embeds" not in added_cond_kwargs:
|
1094 |
+
raise ValueError(
|
1095 |
+
f"{self.__class__} has the config param `encoder_hid_dim_type` set to 'ip_image_proj' which requires the keyword argument `image_embeds` to be passed in `added_conditions`"
|
1096 |
+
)
|
1097 |
+
image_embeds = added_cond_kwargs.get("image_embeds")
|
1098 |
+
image_embeds = self.encoder_hid_proj(image_embeds)
|
1099 |
+
encoder_hidden_states = (encoder_hidden_states, image_embeds)
|
1100 |
+
return encoder_hidden_states
|
1101 |
+
|
1102 |
+
def forward(
|
1103 |
+
self,
|
1104 |
+
sample: torch.Tensor,
|
1105 |
+
timestep: Union[torch.Tensor, float, int],
|
1106 |
+
encoder_hidden_states: torch.Tensor,
|
1107 |
+
class_labels: Optional[torch.Tensor] = None,
|
1108 |
+
timestep_cond: Optional[torch.Tensor] = None,
|
1109 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1110 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
1111 |
+
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
|
1112 |
+
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1113 |
+
mid_block_additional_residual: Optional[torch.Tensor] = None,
|
1114 |
+
down_intrablock_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
|
1115 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1116 |
+
controls: Optional[Dict[str, torch.Tensor]] = None,
|
1117 |
+
return_dict: bool = True,
|
1118 |
+
) -> Union[UNet2DConditionOutput, Tuple]:
|
1119 |
+
r"""
|
1120 |
+
The [`UNet2DConditionModel`] forward method.
|
1121 |
+
|
1122 |
+
Args:
|
1123 |
+
sample (`torch.Tensor`):
|
1124 |
+
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
1125 |
+
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
1126 |
+
encoder_hidden_states (`torch.Tensor`):
|
1127 |
+
The encoder hidden states with shape `(batch, sequence_length, feature_dim)`.
|
1128 |
+
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
1129 |
+
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
1130 |
+
timestep_cond: (`torch.Tensor`, *optional*, defaults to `None`):
|
1131 |
+
Conditional embeddings for timestep. If provided, the embeddings will be summed with the samples passed
|
1132 |
+
through the `self.time_embedding` layer to obtain the timestep embeddings.
|
1133 |
+
attention_mask (`torch.Tensor`, *optional*, defaults to `None`):
|
1134 |
+
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
|
1135 |
+
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
|
1136 |
+
negative values to the attention scores corresponding to "discard" tokens.
|
1137 |
+
cross_attention_kwargs (`dict`, *optional*):
|
1138 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1139 |
+
`self.processor` in
|
1140 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1141 |
+
added_cond_kwargs: (`dict`, *optional*):
|
1142 |
+
A kwargs dictionary containing additional embeddings that if specified are added to the embeddings that
|
1143 |
+
are passed along to the UNet blocks.
|
1144 |
+
down_block_additional_residuals: (`tuple` of `torch.Tensor`, *optional*):
|
1145 |
+
A tuple of tensors that if specified are added to the residuals of down unet blocks.
|
1146 |
+
mid_block_additional_residual: (`torch.Tensor`, *optional*):
|
1147 |
+
A tensor that if specified is added to the residual of the middle unet block.
|
1148 |
+
down_intrablock_additional_residuals (`tuple` of `torch.Tensor`, *optional*):
|
1149 |
+
additional residuals to be added within UNet down blocks, for example from T2I-Adapter side model(s)
|
1150 |
+
encoder_attention_mask (`torch.Tensor`):
|
1151 |
+
A cross-attention mask of shape `(batch, sequence_length)` is applied to `encoder_hidden_states`. If
|
1152 |
+
`True` the mask is kept, otherwise if `False` it is discarded. Mask will be converted into a bias,
|
1153 |
+
which adds large negative values to the attention scores corresponding to "discard" tokens.
|
1154 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
1155 |
+
Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
|
1156 |
+
tuple.
|
1157 |
+
|
1158 |
+
Returns:
|
1159 |
+
[`~models.unets.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
|
1160 |
+
If `return_dict` is True, an [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] is returned,
|
1161 |
+
otherwise a `tuple` is returned where the first element is the sample tensor.
|
1162 |
+
"""
|
1163 |
+
# By default samples have to be AT least a multiple of the overall upsampling factor.
|
1164 |
+
# The overall upsampling factor is equal to 2 ** (# num of upsampling layers).
|
1165 |
+
# However, the upsampling interpolation output size can be forced to fit any upsampling size
|
1166 |
+
# on the fly if necessary.
|
1167 |
+
default_overall_up_factor = 2**self.num_upsamplers
|
1168 |
+
|
1169 |
+
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
|
1170 |
+
forward_upsample_size = False
|
1171 |
+
upsample_size = None
|
1172 |
+
|
1173 |
+
for dim in sample.shape[-2:]:
|
1174 |
+
if dim % default_overall_up_factor != 0:
|
1175 |
+
# Forward upsample size to force interpolation output size.
|
1176 |
+
forward_upsample_size = True
|
1177 |
+
break
|
1178 |
+
|
1179 |
+
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension
|
1180 |
+
# expects mask of shape:
|
1181 |
+
# [batch, key_tokens]
|
1182 |
+
# adds singleton query_tokens dimension:
|
1183 |
+
# [batch, 1, key_tokens]
|
1184 |
+
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
|
1185 |
+
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
|
1186 |
+
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
|
1187 |
+
if attention_mask is not None:
|
1188 |
+
# assume that mask is expressed as:
|
1189 |
+
# (1 = keep, 0 = discard)
|
1190 |
+
# convert mask into a bias that can be added to attention scores:
|
1191 |
+
# (keep = +0, discard = -10000.0)
|
1192 |
+
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
|
1193 |
+
attention_mask = attention_mask.unsqueeze(1)
|
1194 |
+
|
1195 |
+
# convert encoder_attention_mask to a bias the same way we do for attention_mask
|
1196 |
+
if encoder_attention_mask is not None:
|
1197 |
+
encoder_attention_mask = (1 - encoder_attention_mask.to(sample.dtype)) * -10000.0
|
1198 |
+
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
|
1199 |
+
|
1200 |
+
# 0. center input if necessary
|
1201 |
+
if self.config.center_input_sample:
|
1202 |
+
sample = 2 * sample - 1.0
|
1203 |
+
|
1204 |
+
# 1. time
|
1205 |
+
t_emb = self.get_time_embed(sample=sample, timestep=timestep)
|
1206 |
+
emb = self.time_embedding(t_emb, timestep_cond)
|
1207 |
+
aug_emb = None
|
1208 |
+
|
1209 |
+
class_emb = self.get_class_embed(sample=sample, class_labels=class_labels)
|
1210 |
+
if class_emb is not None:
|
1211 |
+
if self.config.class_embeddings_concat:
|
1212 |
+
emb = torch.cat([emb, class_emb], dim=-1)
|
1213 |
+
else:
|
1214 |
+
emb = emb + class_emb
|
1215 |
+
|
1216 |
+
aug_emb = self.get_aug_embed(
|
1217 |
+
emb=emb, encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1218 |
+
)
|
1219 |
+
if self.config.addition_embed_type == "image_hint":
|
1220 |
+
aug_emb, hint = aug_emb
|
1221 |
+
sample = torch.cat([sample, hint], dim=1)
|
1222 |
+
|
1223 |
+
emb = emb + aug_emb if aug_emb is not None else emb
|
1224 |
+
|
1225 |
+
if self.time_embed_act is not None:
|
1226 |
+
emb = self.time_embed_act(emb)
|
1227 |
+
|
1228 |
+
encoder_hidden_states = self.process_encoder_hidden_states(
|
1229 |
+
encoder_hidden_states=encoder_hidden_states, added_cond_kwargs=added_cond_kwargs
|
1230 |
+
)
|
1231 |
+
|
1232 |
+
# 2. pre-process
|
1233 |
+
sample = self.conv_in(sample)
|
1234 |
+
|
1235 |
+
# 2.5 GLIGEN position net
|
1236 |
+
if cross_attention_kwargs is not None and cross_attention_kwargs.get("gligen", None) is not None:
|
1237 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1238 |
+
gligen_args = cross_attention_kwargs.pop("gligen")
|
1239 |
+
cross_attention_kwargs["gligen"] = {"objs": self.position_net(**gligen_args)}
|
1240 |
+
|
1241 |
+
# 3. down
|
1242 |
+
# we're popping the `scale` instead of getting it because otherwise `scale` will be propagated
|
1243 |
+
# to the internal blocks and will raise deprecation warnings. this will be confusing for our users.
|
1244 |
+
if cross_attention_kwargs is not None:
|
1245 |
+
cross_attention_kwargs = cross_attention_kwargs.copy()
|
1246 |
+
lora_scale = cross_attention_kwargs.pop("scale", 1.0)
|
1247 |
+
else:
|
1248 |
+
lora_scale = 1.0
|
1249 |
+
|
1250 |
+
if USE_PEFT_BACKEND:
|
1251 |
+
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
1252 |
+
scale_lora_layers(self, lora_scale)
|
1253 |
+
|
1254 |
+
is_controlnet = mid_block_additional_residual is not None and down_block_additional_residuals is not None
|
1255 |
+
is_controlnext = controls is not None
|
1256 |
+
# using new arg down_intrablock_additional_residuals for T2I-Adapters, to distinguish from controlnets
|
1257 |
+
is_adapter = down_intrablock_additional_residuals is not None
|
1258 |
+
# maintain backward compatibility for legacy usage, where
|
1259 |
+
# T2I-Adapter and ControlNet both use down_block_additional_residuals arg
|
1260 |
+
# but can only use one or the other
|
1261 |
+
if not is_adapter and mid_block_additional_residual is None and down_block_additional_residuals is not None:
|
1262 |
+
deprecate(
|
1263 |
+
"T2I should not use down_block_additional_residuals",
|
1264 |
+
"1.3.0",
|
1265 |
+
"Passing intrablock residual connections with `down_block_additional_residuals` is deprecated \
|
1266 |
+
and will be removed in diffusers 1.3.0. `down_block_additional_residuals` should only be used \
|
1267 |
+
for ControlNet. Please make sure use `down_intrablock_additional_residuals` instead. ",
|
1268 |
+
standard_warn=False,
|
1269 |
+
)
|
1270 |
+
down_intrablock_additional_residuals = down_block_additional_residuals
|
1271 |
+
is_adapter = True
|
1272 |
+
|
1273 |
+
down_block_res_samples = (sample,)
|
1274 |
+
|
1275 |
+
if is_controlnext:
|
1276 |
+
scale = controls['scale']
|
1277 |
+
controls = controls['out'].to(sample)
|
1278 |
+
mean_latents, std_latents = torch.mean(sample, dim=(1, 2, 3), keepdim=True), torch.std(sample, dim=(1, 2, 3), keepdim=True)
|
1279 |
+
mean_control, std_control = torch.mean(controls, dim=(1, 2, 3), keepdim=True), torch.std(controls, dim=(1, 2, 3), keepdim=True)
|
1280 |
+
controls = (controls - mean_control) * (std_latents / (std_control + 1e-12)) + mean_latents
|
1281 |
+
controls = nn.functional.adaptive_avg_pool2d(controls, sample.shape[-2:])
|
1282 |
+
sample = sample + controls * scale
|
1283 |
+
|
1284 |
+
for i, downsample_block in enumerate(self.down_blocks):
|
1285 |
+
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
|
1286 |
+
# For t2i-adapter CrossAttnDownBlock2D
|
1287 |
+
additional_residuals = {}
|
1288 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1289 |
+
additional_residuals["additional_residuals"] = down_intrablock_additional_residuals.pop(0)
|
1290 |
+
|
1291 |
+
sample, res_samples = downsample_block(
|
1292 |
+
hidden_states=sample,
|
1293 |
+
temb=emb,
|
1294 |
+
encoder_hidden_states=encoder_hidden_states,
|
1295 |
+
attention_mask=attention_mask,
|
1296 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1297 |
+
encoder_attention_mask=encoder_attention_mask,
|
1298 |
+
**additional_residuals,
|
1299 |
+
)
|
1300 |
+
else:
|
1301 |
+
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
1302 |
+
if is_adapter and len(down_intrablock_additional_residuals) > 0:
|
1303 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1304 |
+
|
1305 |
+
down_block_res_samples += res_samples
|
1306 |
+
|
1307 |
+
if is_controlnet:
|
1308 |
+
new_down_block_res_samples = ()
|
1309 |
+
|
1310 |
+
for down_block_res_sample, down_block_additional_residual in zip(
|
1311 |
+
down_block_res_samples, down_block_additional_residuals
|
1312 |
+
):
|
1313 |
+
down_block_res_sample = down_block_res_sample + down_block_additional_residual
|
1314 |
+
new_down_block_res_samples = new_down_block_res_samples + (down_block_res_sample,)
|
1315 |
+
|
1316 |
+
down_block_res_samples = new_down_block_res_samples
|
1317 |
+
|
1318 |
+
# 4. mid
|
1319 |
+
if self.mid_block is not None:
|
1320 |
+
if hasattr(self.mid_block, "has_cross_attention") and self.mid_block.has_cross_attention:
|
1321 |
+
sample = self.mid_block(
|
1322 |
+
sample,
|
1323 |
+
emb,
|
1324 |
+
encoder_hidden_states=encoder_hidden_states,
|
1325 |
+
attention_mask=attention_mask,
|
1326 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1327 |
+
encoder_attention_mask=encoder_attention_mask,
|
1328 |
+
)
|
1329 |
+
else:
|
1330 |
+
sample = self.mid_block(sample, emb)
|
1331 |
+
|
1332 |
+
# To support T2I-Adapter-XL
|
1333 |
+
if (
|
1334 |
+
is_adapter
|
1335 |
+
and len(down_intrablock_additional_residuals) > 0
|
1336 |
+
and sample.shape == down_intrablock_additional_residuals[0].shape
|
1337 |
+
):
|
1338 |
+
sample += down_intrablock_additional_residuals.pop(0)
|
1339 |
+
|
1340 |
+
if is_controlnet:
|
1341 |
+
sample = sample + mid_block_additional_residual
|
1342 |
+
|
1343 |
+
# 5. up
|
1344 |
+
for i, upsample_block in enumerate(self.up_blocks):
|
1345 |
+
is_final_block = i == len(self.up_blocks) - 1
|
1346 |
+
|
1347 |
+
res_samples = down_block_res_samples[-len(upsample_block.resnets):]
|
1348 |
+
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
1349 |
+
|
1350 |
+
# if we have not reached the final block and need to forward the
|
1351 |
+
# upsample size, we do it here
|
1352 |
+
if not is_final_block and forward_upsample_size:
|
1353 |
+
upsample_size = down_block_res_samples[-1].shape[2:]
|
1354 |
+
|
1355 |
+
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
|
1356 |
+
sample = upsample_block(
|
1357 |
+
hidden_states=sample,
|
1358 |
+
temb=emb,
|
1359 |
+
res_hidden_states_tuple=res_samples,
|
1360 |
+
encoder_hidden_states=encoder_hidden_states,
|
1361 |
+
cross_attention_kwargs=cross_attention_kwargs,
|
1362 |
+
upsample_size=upsample_size,
|
1363 |
+
attention_mask=attention_mask,
|
1364 |
+
encoder_attention_mask=encoder_attention_mask,
|
1365 |
+
)
|
1366 |
+
else:
|
1367 |
+
sample = upsample_block(
|
1368 |
+
hidden_states=sample,
|
1369 |
+
temb=emb,
|
1370 |
+
res_hidden_states_tuple=res_samples,
|
1371 |
+
upsample_size=upsample_size,
|
1372 |
+
)
|
1373 |
+
|
1374 |
+
# 6. post-process
|
1375 |
+
if self.conv_norm_out:
|
1376 |
+
sample = self.conv_norm_out(sample)
|
1377 |
+
sample = self.conv_act(sample)
|
1378 |
+
sample = self.conv_out(sample)
|
1379 |
+
|
1380 |
+
if USE_PEFT_BACKEND:
|
1381 |
+
# remove `lora_scale` from each PEFT layer
|
1382 |
+
unscale_lora_layers(self, lora_scale)
|
1383 |
+
|
1384 |
+
if not return_dict:
|
1385 |
+
return (sample,)
|
1386 |
+
|
1387 |
+
return UNet2DConditionOutput(sample=sample)
|
pipeline/pipeline_controlnext.py
ADDED
@@ -0,0 +1,1378 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2024 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
17 |
+
from packaging import version
|
18 |
+
import torch
|
19 |
+
from transformers import (
|
20 |
+
CLIPImageProcessor,
|
21 |
+
CLIPTextModel,
|
22 |
+
CLIPTextModelWithProjection,
|
23 |
+
CLIPTokenizer,
|
24 |
+
CLIPVisionModelWithProjection,
|
25 |
+
)
|
26 |
+
|
27 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
28 |
+
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
29 |
+
from diffusers.loaders import (
|
30 |
+
FromSingleFileMixin,
|
31 |
+
IPAdapterMixin,
|
32 |
+
StableDiffusionXLLoraLoaderMixin,
|
33 |
+
TextualInversionLoaderMixin,
|
34 |
+
)
|
35 |
+
from diffusers.models import AutoencoderKL, ImageProjection, UNet2DConditionModel
|
36 |
+
from diffusers.models.attention_processor import (
|
37 |
+
AttnProcessor2_0,
|
38 |
+
FusedAttnProcessor2_0,
|
39 |
+
LoRAAttnProcessor2_0,
|
40 |
+
LoRAXFormersAttnProcessor,
|
41 |
+
XFormersAttnProcessor,
|
42 |
+
)
|
43 |
+
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
|
44 |
+
from models.controlnet import ControlNetModel
|
45 |
+
from diffusers.models.lora import adjust_lora_scale_text_encoder
|
46 |
+
from diffusers.schedulers import KarrasDiffusionSchedulers
|
47 |
+
from diffusers.utils import (
|
48 |
+
USE_PEFT_BACKEND,
|
49 |
+
deprecate,
|
50 |
+
is_invisible_watermark_available,
|
51 |
+
is_torch_xla_available,
|
52 |
+
logging,
|
53 |
+
replace_example_docstring,
|
54 |
+
scale_lora_layers,
|
55 |
+
unscale_lora_layers,
|
56 |
+
)
|
57 |
+
from diffusers.utils.torch_utils import randn_tensor
|
58 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline, StableDiffusionMixin
|
59 |
+
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput
|
60 |
+
|
61 |
+
if is_invisible_watermark_available():
|
62 |
+
from diffusers.pipelines.stable_diffusion_xl.watermark import StableDiffusionXLWatermarker
|
63 |
+
|
64 |
+
if is_torch_xla_available():
|
65 |
+
import torch_xla.core.xla_model as xm
|
66 |
+
|
67 |
+
XLA_AVAILABLE = True
|
68 |
+
else:
|
69 |
+
XLA_AVAILABLE = False
|
70 |
+
|
71 |
+
|
72 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
73 |
+
|
74 |
+
EXAMPLE_DOC_STRING = """
|
75 |
+
Examples:
|
76 |
+
```py
|
77 |
+
>>> import torch
|
78 |
+
>>> from diffusers import StableDiffusionXLPipeline
|
79 |
+
|
80 |
+
>>> pipe = StableDiffusionXLPipeline.from_pretrained(
|
81 |
+
... "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
82 |
+
... )
|
83 |
+
>>> pipe = pipe.to("cuda")
|
84 |
+
|
85 |
+
>>> prompt = "a photo of an astronaut riding a horse on mars"
|
86 |
+
>>> image = pipe(prompt).images[0]
|
87 |
+
```
|
88 |
+
"""
|
89 |
+
|
90 |
+
|
91 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg
|
92 |
+
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
|
93 |
+
"""
|
94 |
+
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and
|
95 |
+
Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4
|
96 |
+
"""
|
97 |
+
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
|
98 |
+
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
|
99 |
+
# rescale the results from guidance (fixes overexposure)
|
100 |
+
noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
|
101 |
+
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
|
102 |
+
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
|
103 |
+
return noise_cfg
|
104 |
+
|
105 |
+
|
106 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
107 |
+
def retrieve_timesteps(
|
108 |
+
scheduler,
|
109 |
+
num_inference_steps: Optional[int] = None,
|
110 |
+
device: Optional[Union[str, torch.device]] = None,
|
111 |
+
timesteps: Optional[List[int]] = None,
|
112 |
+
sigmas: Optional[List[float]] = None,
|
113 |
+
**kwargs,
|
114 |
+
):
|
115 |
+
"""
|
116 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
117 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
118 |
+
|
119 |
+
Args:
|
120 |
+
scheduler (`SchedulerMixin`):
|
121 |
+
The scheduler to get timesteps from.
|
122 |
+
num_inference_steps (`int`):
|
123 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
124 |
+
must be `None`.
|
125 |
+
device (`str` or `torch.device`, *optional*):
|
126 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
127 |
+
timesteps (`List[int]`, *optional*):
|
128 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
129 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
130 |
+
sigmas (`List[float]`, *optional*):
|
131 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
132 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
133 |
+
|
134 |
+
Returns:
|
135 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
136 |
+
second element is the number of inference steps.
|
137 |
+
"""
|
138 |
+
if timesteps is not None and sigmas is not None:
|
139 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
140 |
+
if timesteps is not None:
|
141 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
142 |
+
if not accepts_timesteps:
|
143 |
+
raise ValueError(
|
144 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
145 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
146 |
+
)
|
147 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
148 |
+
timesteps = scheduler.timesteps
|
149 |
+
num_inference_steps = len(timesteps)
|
150 |
+
elif sigmas is not None:
|
151 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
152 |
+
if not accept_sigmas:
|
153 |
+
raise ValueError(
|
154 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
155 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
156 |
+
)
|
157 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
158 |
+
timesteps = scheduler.timesteps
|
159 |
+
num_inference_steps = len(timesteps)
|
160 |
+
else:
|
161 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
162 |
+
timesteps = scheduler.timesteps
|
163 |
+
return timesteps, num_inference_steps
|
164 |
+
|
165 |
+
|
166 |
+
class StableDiffusionXLControlNeXtPipeline(
|
167 |
+
DiffusionPipeline,
|
168 |
+
StableDiffusionMixin,
|
169 |
+
FromSingleFileMixin,
|
170 |
+
StableDiffusionXLLoraLoaderMixin,
|
171 |
+
TextualInversionLoaderMixin,
|
172 |
+
IPAdapterMixin,
|
173 |
+
):
|
174 |
+
r"""
|
175 |
+
Pipeline for text-to-image generation using Stable Diffusion XL.
|
176 |
+
|
177 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
178 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
179 |
+
|
180 |
+
The pipeline also inherits the following loading methods:
|
181 |
+
- [`~loaders.TextualInversionLoaderMixin.load_textual_inversion`] for loading textual inversion embeddings
|
182 |
+
- [`~loaders.FromSingleFileMixin.from_single_file`] for loading `.ckpt` files
|
183 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.load_lora_weights`] for loading LoRA weights
|
184 |
+
- [`~loaders.StableDiffusionXLLoraLoaderMixin.save_lora_weights`] for saving LoRA weights
|
185 |
+
- [`~loaders.IPAdapterMixin.load_ip_adapter`] for loading IP Adapters
|
186 |
+
|
187 |
+
Args:
|
188 |
+
vae ([`AutoencoderKL`]):
|
189 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
190 |
+
text_encoder ([`CLIPTextModel`]):
|
191 |
+
Frozen text-encoder. Stable Diffusion XL uses the text portion of
|
192 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
193 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
194 |
+
text_encoder_2 ([` CLIPTextModelWithProjection`]):
|
195 |
+
Second frozen text-encoder. Stable Diffusion XL uses the text and pool portion of
|
196 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModelWithProjection),
|
197 |
+
specifically the
|
198 |
+
[laion/CLIP-ViT-bigG-14-laion2B-39B-b160k](https://huggingface.co/laion/CLIP-ViT-bigG-14-laion2B-39B-b160k)
|
199 |
+
variant.
|
200 |
+
tokenizer (`CLIPTokenizer`):
|
201 |
+
Tokenizer of class
|
202 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
203 |
+
tokenizer_2 (`CLIPTokenizer`):
|
204 |
+
Second Tokenizer of class
|
205 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
206 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
207 |
+
scheduler ([`SchedulerMixin`]):
|
208 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
209 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
210 |
+
force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`):
|
211 |
+
Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of
|
212 |
+
`stabilityai/stable-diffusion-xl-base-1-0`.
|
213 |
+
add_watermarker (`bool`, *optional*):
|
214 |
+
Whether to use the [invisible_watermark library](https://github.com/ShieldMnt/invisible-watermark/) to
|
215 |
+
watermark output images. If not defined, it will default to True if the package is installed, otherwise no
|
216 |
+
watermarker will be used.
|
217 |
+
"""
|
218 |
+
|
219 |
+
model_cpu_offload_seq = "text_encoder->text_encoder_2->image_encoder->unet->vae"
|
220 |
+
_optional_components = [
|
221 |
+
"tokenizer",
|
222 |
+
"tokenizer_2",
|
223 |
+
"text_encoder",
|
224 |
+
"text_encoder_2",
|
225 |
+
"image_encoder",
|
226 |
+
"feature_extractor",
|
227 |
+
]
|
228 |
+
_callback_tensor_inputs = [
|
229 |
+
"latents",
|
230 |
+
"prompt_embeds",
|
231 |
+
"negative_prompt_embeds",
|
232 |
+
"add_text_embeds",
|
233 |
+
"add_time_ids",
|
234 |
+
"negative_pooled_prompt_embeds",
|
235 |
+
"negative_add_time_ids",
|
236 |
+
]
|
237 |
+
|
238 |
+
def __init__(
|
239 |
+
self,
|
240 |
+
vae: AutoencoderKL,
|
241 |
+
text_encoder: CLIPTextModel,
|
242 |
+
text_encoder_2: CLIPTextModelWithProjection,
|
243 |
+
tokenizer: CLIPTokenizer,
|
244 |
+
tokenizer_2: CLIPTokenizer,
|
245 |
+
unet: UNet2DConditionModel,
|
246 |
+
scheduler: KarrasDiffusionSchedulers,
|
247 |
+
controlnet: Optional[Union[ControlNetModel, List[ControlNetModel], Tuple[ControlNetModel], MultiControlNetModel]] = None,
|
248 |
+
image_encoder: CLIPVisionModelWithProjection = None,
|
249 |
+
feature_extractor: CLIPImageProcessor = None,
|
250 |
+
force_zeros_for_empty_prompt: bool = True,
|
251 |
+
add_watermarker: Optional[bool] = None,
|
252 |
+
):
|
253 |
+
super().__init__()
|
254 |
+
|
255 |
+
self.register_modules(
|
256 |
+
vae=vae,
|
257 |
+
text_encoder=text_encoder,
|
258 |
+
text_encoder_2=text_encoder_2,
|
259 |
+
tokenizer=tokenizer,
|
260 |
+
tokenizer_2=tokenizer_2,
|
261 |
+
unet=unet,
|
262 |
+
scheduler=scheduler,
|
263 |
+
image_encoder=image_encoder,
|
264 |
+
feature_extractor=feature_extractor,
|
265 |
+
controlnet=controlnet,
|
266 |
+
)
|
267 |
+
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
268 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
269 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
270 |
+
self.control_image_processor = VaeImageProcessor(
|
271 |
+
vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False
|
272 |
+
)
|
273 |
+
|
274 |
+
self.default_sample_size = self.unet.config.sample_size
|
275 |
+
|
276 |
+
add_watermarker = add_watermarker if add_watermarker is not None else is_invisible_watermark_available()
|
277 |
+
|
278 |
+
if add_watermarker:
|
279 |
+
self.watermark = StableDiffusionXLWatermarker()
|
280 |
+
else:
|
281 |
+
self.watermark = None
|
282 |
+
|
283 |
+
def prepare_image(
|
284 |
+
self,
|
285 |
+
image,
|
286 |
+
width,
|
287 |
+
height,
|
288 |
+
batch_size,
|
289 |
+
num_images_per_prompt,
|
290 |
+
device,
|
291 |
+
dtype,
|
292 |
+
do_classifier_free_guidance=False,
|
293 |
+
guess_mode=False,
|
294 |
+
):
|
295 |
+
image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32)
|
296 |
+
image_batch_size = image.shape[0]
|
297 |
+
|
298 |
+
if image_batch_size == 1:
|
299 |
+
repeat_by = batch_size
|
300 |
+
else:
|
301 |
+
# image batch size is the same as prompt batch size
|
302 |
+
repeat_by = num_images_per_prompt
|
303 |
+
|
304 |
+
image = image.repeat_interleave(repeat_by, dim=0)
|
305 |
+
|
306 |
+
image = image.to(device=device, dtype=dtype)
|
307 |
+
|
308 |
+
if do_classifier_free_guidance and not guess_mode:
|
309 |
+
image = torch.cat([image] * 2)
|
310 |
+
|
311 |
+
return image
|
312 |
+
|
313 |
+
def encode_prompt(
|
314 |
+
self,
|
315 |
+
prompt: str,
|
316 |
+
prompt_2: Optional[str] = None,
|
317 |
+
device: Optional[torch.device] = None,
|
318 |
+
num_images_per_prompt: int = 1,
|
319 |
+
do_classifier_free_guidance: bool = True,
|
320 |
+
negative_prompt: Optional[str] = None,
|
321 |
+
negative_prompt_2: Optional[str] = None,
|
322 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
323 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
324 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
325 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
326 |
+
lora_scale: Optional[float] = None,
|
327 |
+
clip_skip: Optional[int] = None,
|
328 |
+
):
|
329 |
+
r"""
|
330 |
+
Encodes the prompt into text encoder hidden states.
|
331 |
+
|
332 |
+
Args:
|
333 |
+
prompt (`str` or `List[str]`, *optional*):
|
334 |
+
prompt to be encoded
|
335 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
336 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
337 |
+
used in both text-encoders
|
338 |
+
device: (`torch.device`):
|
339 |
+
torch device
|
340 |
+
num_images_per_prompt (`int`):
|
341 |
+
number of images that should be generated per prompt
|
342 |
+
do_classifier_free_guidance (`bool`):
|
343 |
+
whether to use classifier free guidance or not
|
344 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
345 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
346 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
347 |
+
less than `1`).
|
348 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
349 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
350 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
351 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
352 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
353 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
354 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
355 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
356 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
357 |
+
argument.
|
358 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
359 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
360 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
361 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
362 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
363 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
364 |
+
input argument.
|
365 |
+
lora_scale (`float`, *optional*):
|
366 |
+
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
367 |
+
clip_skip (`int`, *optional*):
|
368 |
+
Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that
|
369 |
+
the output of the pre-final layer will be used for computing the prompt embeddings.
|
370 |
+
"""
|
371 |
+
device = device or self._execution_device
|
372 |
+
|
373 |
+
# set lora scale so that monkey patched LoRA
|
374 |
+
# function of text encoder can correctly access it
|
375 |
+
if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin):
|
376 |
+
self._lora_scale = lora_scale
|
377 |
+
|
378 |
+
# dynamically adjust the LoRA scale
|
379 |
+
if self.text_encoder is not None:
|
380 |
+
if not USE_PEFT_BACKEND:
|
381 |
+
adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
|
382 |
+
else:
|
383 |
+
scale_lora_layers(self.text_encoder, lora_scale)
|
384 |
+
|
385 |
+
if self.text_encoder_2 is not None:
|
386 |
+
if not USE_PEFT_BACKEND:
|
387 |
+
adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale)
|
388 |
+
else:
|
389 |
+
scale_lora_layers(self.text_encoder_2, lora_scale)
|
390 |
+
|
391 |
+
prompt = [prompt] if isinstance(prompt, str) else prompt
|
392 |
+
|
393 |
+
if prompt is not None:
|
394 |
+
batch_size = len(prompt)
|
395 |
+
else:
|
396 |
+
batch_size = prompt_embeds.shape[0]
|
397 |
+
|
398 |
+
# Define tokenizers and text encoders
|
399 |
+
tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2]
|
400 |
+
text_encoders = (
|
401 |
+
[self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2]
|
402 |
+
)
|
403 |
+
|
404 |
+
if prompt_embeds is None:
|
405 |
+
prompt_2 = prompt_2 or prompt
|
406 |
+
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
407 |
+
|
408 |
+
# textual inversion: process multi-vector tokens if necessary
|
409 |
+
prompt_embeds_list = []
|
410 |
+
prompts = [prompt, prompt_2]
|
411 |
+
for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders):
|
412 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
413 |
+
prompt = self.maybe_convert_prompt(prompt, tokenizer)
|
414 |
+
|
415 |
+
text_inputs = tokenizer(
|
416 |
+
prompt,
|
417 |
+
padding="max_length",
|
418 |
+
max_length=tokenizer.model_max_length,
|
419 |
+
truncation=True,
|
420 |
+
return_tensors="pt",
|
421 |
+
)
|
422 |
+
|
423 |
+
text_input_ids = text_inputs.input_ids
|
424 |
+
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
425 |
+
|
426 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
427 |
+
text_input_ids, untruncated_ids
|
428 |
+
):
|
429 |
+
removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1: -1])
|
430 |
+
logger.warning(
|
431 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
432 |
+
f" {tokenizer.model_max_length} tokens: {removed_text}"
|
433 |
+
)
|
434 |
+
|
435 |
+
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
436 |
+
|
437 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
438 |
+
pooled_prompt_embeds = prompt_embeds[0]
|
439 |
+
if clip_skip is None:
|
440 |
+
prompt_embeds = prompt_embeds.hidden_states[-2]
|
441 |
+
else:
|
442 |
+
# "2" because SDXL always indexes from the penultimate layer.
|
443 |
+
prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)]
|
444 |
+
|
445 |
+
prompt_embeds_list.append(prompt_embeds)
|
446 |
+
|
447 |
+
prompt_embeds = torch.concat(prompt_embeds_list, dim=-1)
|
448 |
+
|
449 |
+
# get unconditional embeddings for classifier free guidance
|
450 |
+
zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt
|
451 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt:
|
452 |
+
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
453 |
+
negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds)
|
454 |
+
elif do_classifier_free_guidance and negative_prompt_embeds is None:
|
455 |
+
negative_prompt = negative_prompt or ""
|
456 |
+
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
457 |
+
|
458 |
+
# normalize str to list
|
459 |
+
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
460 |
+
negative_prompt_2 = (
|
461 |
+
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
462 |
+
)
|
463 |
+
|
464 |
+
uncond_tokens: List[str]
|
465 |
+
if prompt is not None and type(prompt) is not type(negative_prompt):
|
466 |
+
raise TypeError(
|
467 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
468 |
+
f" {type(prompt)}."
|
469 |
+
)
|
470 |
+
elif batch_size != len(negative_prompt):
|
471 |
+
raise ValueError(
|
472 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
473 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
474 |
+
" the batch size of `prompt`."
|
475 |
+
)
|
476 |
+
else:
|
477 |
+
uncond_tokens = [negative_prompt, negative_prompt_2]
|
478 |
+
|
479 |
+
negative_prompt_embeds_list = []
|
480 |
+
for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders):
|
481 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
482 |
+
negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer)
|
483 |
+
|
484 |
+
max_length = prompt_embeds.shape[1]
|
485 |
+
uncond_input = tokenizer(
|
486 |
+
negative_prompt,
|
487 |
+
padding="max_length",
|
488 |
+
max_length=max_length,
|
489 |
+
truncation=True,
|
490 |
+
return_tensors="pt",
|
491 |
+
)
|
492 |
+
|
493 |
+
negative_prompt_embeds = text_encoder(
|
494 |
+
uncond_input.input_ids.to(device),
|
495 |
+
output_hidden_states=True,
|
496 |
+
)
|
497 |
+
# We are only ALWAYS interested in the pooled output of the final text encoder
|
498 |
+
negative_pooled_prompt_embeds = negative_prompt_embeds[0]
|
499 |
+
negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2]
|
500 |
+
|
501 |
+
negative_prompt_embeds_list.append(negative_prompt_embeds)
|
502 |
+
|
503 |
+
negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1)
|
504 |
+
|
505 |
+
if self.text_encoder_2 is not None:
|
506 |
+
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
507 |
+
else:
|
508 |
+
prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
509 |
+
|
510 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
511 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
512 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
513 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
514 |
+
|
515 |
+
if do_classifier_free_guidance:
|
516 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
517 |
+
seq_len = negative_prompt_embeds.shape[1]
|
518 |
+
|
519 |
+
if self.text_encoder_2 is not None:
|
520 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device)
|
521 |
+
else:
|
522 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device)
|
523 |
+
|
524 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
525 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
526 |
+
|
527 |
+
pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
528 |
+
bs_embed * num_images_per_prompt, -1
|
529 |
+
)
|
530 |
+
if do_classifier_free_guidance:
|
531 |
+
negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view(
|
532 |
+
bs_embed * num_images_per_prompt, -1
|
533 |
+
)
|
534 |
+
|
535 |
+
if self.text_encoder is not None:
|
536 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
537 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
538 |
+
unscale_lora_layers(self.text_encoder, lora_scale)
|
539 |
+
|
540 |
+
if self.text_encoder_2 is not None:
|
541 |
+
if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND:
|
542 |
+
# Retrieve the original scale by scaling back the LoRA layers
|
543 |
+
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
544 |
+
|
545 |
+
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
546 |
+
|
547 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.encode_image
|
548 |
+
def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
|
549 |
+
dtype = next(self.image_encoder.parameters()).dtype
|
550 |
+
|
551 |
+
if not isinstance(image, torch.Tensor):
|
552 |
+
image = self.feature_extractor(image, return_tensors="pt").pixel_values
|
553 |
+
|
554 |
+
image = image.to(device=device, dtype=dtype)
|
555 |
+
if output_hidden_states:
|
556 |
+
image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
|
557 |
+
image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
|
558 |
+
uncond_image_enc_hidden_states = self.image_encoder(
|
559 |
+
torch.zeros_like(image), output_hidden_states=True
|
560 |
+
).hidden_states[-2]
|
561 |
+
uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
|
562 |
+
num_images_per_prompt, dim=0
|
563 |
+
)
|
564 |
+
return image_enc_hidden_states, uncond_image_enc_hidden_states
|
565 |
+
else:
|
566 |
+
image_embeds = self.image_encoder(image).image_embeds
|
567 |
+
image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
|
568 |
+
uncond_image_embeds = torch.zeros_like(image_embeds)
|
569 |
+
|
570 |
+
return image_embeds, uncond_image_embeds
|
571 |
+
|
572 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_ip_adapter_image_embeds
|
573 |
+
def prepare_ip_adapter_image_embeds(
|
574 |
+
self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance
|
575 |
+
):
|
576 |
+
if ip_adapter_image_embeds is None:
|
577 |
+
if not isinstance(ip_adapter_image, list):
|
578 |
+
ip_adapter_image = [ip_adapter_image]
|
579 |
+
|
580 |
+
if len(ip_adapter_image) != len(self.unet.encoder_hid_proj.image_projection_layers):
|
581 |
+
raise ValueError(
|
582 |
+
f"`ip_adapter_image` must have same length as the number of IP Adapters. Got {len(ip_adapter_image)} images and {len(self.unet.encoder_hid_proj.image_projection_layers)} IP Adapters."
|
583 |
+
)
|
584 |
+
|
585 |
+
image_embeds = []
|
586 |
+
for single_ip_adapter_image, image_proj_layer in zip(
|
587 |
+
ip_adapter_image, self.unet.encoder_hid_proj.image_projection_layers
|
588 |
+
):
|
589 |
+
output_hidden_state = not isinstance(image_proj_layer, ImageProjection)
|
590 |
+
single_image_embeds, single_negative_image_embeds = self.encode_image(
|
591 |
+
single_ip_adapter_image, device, 1, output_hidden_state
|
592 |
+
)
|
593 |
+
single_image_embeds = torch.stack([single_image_embeds] * num_images_per_prompt, dim=0)
|
594 |
+
single_negative_image_embeds = torch.stack(
|
595 |
+
[single_negative_image_embeds] * num_images_per_prompt, dim=0
|
596 |
+
)
|
597 |
+
|
598 |
+
if do_classifier_free_guidance:
|
599 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
600 |
+
single_image_embeds = single_image_embeds.to(device)
|
601 |
+
|
602 |
+
image_embeds.append(single_image_embeds)
|
603 |
+
else:
|
604 |
+
repeat_dims = [1]
|
605 |
+
image_embeds = []
|
606 |
+
for single_image_embeds in ip_adapter_image_embeds:
|
607 |
+
if do_classifier_free_guidance:
|
608 |
+
single_negative_image_embeds, single_image_embeds = single_image_embeds.chunk(2)
|
609 |
+
single_image_embeds = single_image_embeds.repeat(
|
610 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
611 |
+
)
|
612 |
+
single_negative_image_embeds = single_negative_image_embeds.repeat(
|
613 |
+
num_images_per_prompt, *(repeat_dims * len(single_negative_image_embeds.shape[1:]))
|
614 |
+
)
|
615 |
+
single_image_embeds = torch.cat([single_negative_image_embeds, single_image_embeds])
|
616 |
+
else:
|
617 |
+
single_image_embeds = single_image_embeds.repeat(
|
618 |
+
num_images_per_prompt, *(repeat_dims * len(single_image_embeds.shape[1:]))
|
619 |
+
)
|
620 |
+
image_embeds.append(single_image_embeds)
|
621 |
+
|
622 |
+
return image_embeds
|
623 |
+
|
624 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
625 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
626 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
627 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
628 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
629 |
+
# and should be between [0, 1]
|
630 |
+
|
631 |
+
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
632 |
+
extra_step_kwargs = {}
|
633 |
+
if accepts_eta:
|
634 |
+
extra_step_kwargs["eta"] = eta
|
635 |
+
|
636 |
+
# check if the scheduler accepts generator
|
637 |
+
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
638 |
+
if accepts_generator:
|
639 |
+
extra_step_kwargs["generator"] = generator
|
640 |
+
return extra_step_kwargs
|
641 |
+
|
642 |
+
def check_inputs(
|
643 |
+
self,
|
644 |
+
prompt,
|
645 |
+
prompt_2,
|
646 |
+
height,
|
647 |
+
width,
|
648 |
+
callback_steps,
|
649 |
+
negative_prompt=None,
|
650 |
+
negative_prompt_2=None,
|
651 |
+
prompt_embeds=None,
|
652 |
+
negative_prompt_embeds=None,
|
653 |
+
pooled_prompt_embeds=None,
|
654 |
+
negative_pooled_prompt_embeds=None,
|
655 |
+
ip_adapter_image=None,
|
656 |
+
ip_adapter_image_embeds=None,
|
657 |
+
callback_on_step_end_tensor_inputs=None,
|
658 |
+
):
|
659 |
+
if height % 8 != 0 or width % 8 != 0:
|
660 |
+
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
661 |
+
|
662 |
+
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
663 |
+
raise ValueError(
|
664 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
665 |
+
f" {type(callback_steps)}."
|
666 |
+
)
|
667 |
+
|
668 |
+
if callback_on_step_end_tensor_inputs is not None and not all(
|
669 |
+
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
670 |
+
):
|
671 |
+
raise ValueError(
|
672 |
+
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
673 |
+
)
|
674 |
+
|
675 |
+
if prompt is not None and prompt_embeds is not None:
|
676 |
+
raise ValueError(
|
677 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
678 |
+
" only forward one of the two."
|
679 |
+
)
|
680 |
+
elif prompt_2 is not None and prompt_embeds is not None:
|
681 |
+
raise ValueError(
|
682 |
+
f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
683 |
+
" only forward one of the two."
|
684 |
+
)
|
685 |
+
elif prompt is None and prompt_embeds is None:
|
686 |
+
raise ValueError(
|
687 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
688 |
+
)
|
689 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
690 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
691 |
+
elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)):
|
692 |
+
raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}")
|
693 |
+
|
694 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
695 |
+
raise ValueError(
|
696 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
697 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
698 |
+
)
|
699 |
+
elif negative_prompt_2 is not None and negative_prompt_embeds is not None:
|
700 |
+
raise ValueError(
|
701 |
+
f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:"
|
702 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
703 |
+
)
|
704 |
+
|
705 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
706 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
707 |
+
raise ValueError(
|
708 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
709 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
710 |
+
f" {negative_prompt_embeds.shape}."
|
711 |
+
)
|
712 |
+
|
713 |
+
if prompt_embeds is not None and pooled_prompt_embeds is None:
|
714 |
+
raise ValueError(
|
715 |
+
"If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`."
|
716 |
+
)
|
717 |
+
|
718 |
+
if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None:
|
719 |
+
raise ValueError(
|
720 |
+
"If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
721 |
+
)
|
722 |
+
|
723 |
+
if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
|
724 |
+
raise ValueError(
|
725 |
+
"Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
|
726 |
+
)
|
727 |
+
|
728 |
+
if ip_adapter_image_embeds is not None:
|
729 |
+
if not isinstance(ip_adapter_image_embeds, list):
|
730 |
+
raise ValueError(
|
731 |
+
f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
|
732 |
+
)
|
733 |
+
elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
|
734 |
+
raise ValueError(
|
735 |
+
f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
|
736 |
+
)
|
737 |
+
|
738 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
739 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
740 |
+
shape = (
|
741 |
+
batch_size,
|
742 |
+
num_channels_latents,
|
743 |
+
int(height) // self.vae_scale_factor,
|
744 |
+
int(width) // self.vae_scale_factor,
|
745 |
+
)
|
746 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
747 |
+
raise ValueError(
|
748 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
749 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
750 |
+
)
|
751 |
+
|
752 |
+
if latents is None:
|
753 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
754 |
+
else:
|
755 |
+
latents = latents.to(device)
|
756 |
+
|
757 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
758 |
+
latents = latents * self.scheduler.init_noise_sigma
|
759 |
+
return latents
|
760 |
+
|
761 |
+
def _get_add_time_ids(
|
762 |
+
self, original_size, crops_coords_top_left, target_size, dtype, text_encoder_projection_dim=None
|
763 |
+
):
|
764 |
+
add_time_ids = list(original_size + crops_coords_top_left + target_size)
|
765 |
+
|
766 |
+
passed_add_embed_dim = (
|
767 |
+
self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim
|
768 |
+
)
|
769 |
+
expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features
|
770 |
+
|
771 |
+
if expected_add_embed_dim != passed_add_embed_dim:
|
772 |
+
raise ValueError(
|
773 |
+
f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`."
|
774 |
+
)
|
775 |
+
|
776 |
+
add_time_ids = torch.tensor([add_time_ids], dtype=dtype)
|
777 |
+
return add_time_ids
|
778 |
+
|
779 |
+
def upcast_vae(self):
|
780 |
+
dtype = self.vae.dtype
|
781 |
+
self.vae.to(dtype=torch.float32)
|
782 |
+
use_torch_2_0_or_xformers = isinstance(
|
783 |
+
self.vae.decoder.mid_block.attentions[0].processor,
|
784 |
+
(
|
785 |
+
AttnProcessor2_0,
|
786 |
+
XFormersAttnProcessor,
|
787 |
+
LoRAXFormersAttnProcessor,
|
788 |
+
LoRAAttnProcessor2_0,
|
789 |
+
FusedAttnProcessor2_0,
|
790 |
+
),
|
791 |
+
)
|
792 |
+
# if xformers or torch_2_0 is used attention block does not need
|
793 |
+
# to be in float32 which can save lots of memory
|
794 |
+
if use_torch_2_0_or_xformers:
|
795 |
+
self.vae.post_quant_conv.to(dtype)
|
796 |
+
self.vae.decoder.conv_in.to(dtype)
|
797 |
+
self.vae.decoder.mid_block.to(dtype)
|
798 |
+
|
799 |
+
# Copied from diffusers.pipelines.latent_consistency_models.pipeline_latent_consistency_text2img.LatentConsistencyModelPipeline.get_guidance_scale_embedding
|
800 |
+
def get_guidance_scale_embedding(
|
801 |
+
self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32
|
802 |
+
) -> torch.Tensor:
|
803 |
+
"""
|
804 |
+
See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298
|
805 |
+
|
806 |
+
Args:
|
807 |
+
w (`torch.Tensor`):
|
808 |
+
Generate embedding vectors with a specified guidance scale to subsequently enrich timestep embeddings.
|
809 |
+
embedding_dim (`int`, *optional*, defaults to 512):
|
810 |
+
Dimension of the embeddings to generate.
|
811 |
+
dtype (`torch.dtype`, *optional*, defaults to `torch.float32`):
|
812 |
+
Data type of the generated embeddings.
|
813 |
+
|
814 |
+
Returns:
|
815 |
+
`torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.
|
816 |
+
"""
|
817 |
+
assert len(w.shape) == 1
|
818 |
+
w = w * 1000.0
|
819 |
+
|
820 |
+
half_dim = embedding_dim // 2
|
821 |
+
emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
|
822 |
+
emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
|
823 |
+
emb = w.to(dtype)[:, None] * emb[None, :]
|
824 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
|
825 |
+
if embedding_dim % 2 == 1: # zero pad
|
826 |
+
emb = torch.nn.functional.pad(emb, (0, 1))
|
827 |
+
assert emb.shape == (w.shape[0], embedding_dim)
|
828 |
+
return emb
|
829 |
+
|
830 |
+
@property
|
831 |
+
def guidance_scale(self):
|
832 |
+
return self._guidance_scale
|
833 |
+
|
834 |
+
@property
|
835 |
+
def guidance_rescale(self):
|
836 |
+
return self._guidance_rescale
|
837 |
+
|
838 |
+
@property
|
839 |
+
def clip_skip(self):
|
840 |
+
return self._clip_skip
|
841 |
+
|
842 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
843 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
844 |
+
# corresponds to doing no classifier free guidance.
|
845 |
+
@property
|
846 |
+
def do_classifier_free_guidance(self):
|
847 |
+
return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None
|
848 |
+
|
849 |
+
@property
|
850 |
+
def cross_attention_kwargs(self):
|
851 |
+
return self._cross_attention_kwargs
|
852 |
+
|
853 |
+
@property
|
854 |
+
def denoising_end(self):
|
855 |
+
return self._denoising_end
|
856 |
+
|
857 |
+
@property
|
858 |
+
def num_timesteps(self):
|
859 |
+
return self._num_timesteps
|
860 |
+
|
861 |
+
@property
|
862 |
+
def interrupt(self):
|
863 |
+
return self._interrupt
|
864 |
+
|
865 |
+
@torch.no_grad()
|
866 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
867 |
+
def __call__(
|
868 |
+
self,
|
869 |
+
prompt: Union[str, List[str]] = None,
|
870 |
+
prompt_2: Optional[Union[str, List[str]]] = None,
|
871 |
+
controlnet_image: Optional[PipelineImageInput] = None,
|
872 |
+
controlnet_scale: Optional[float] = 1.0,
|
873 |
+
height: Optional[int] = None,
|
874 |
+
width: Optional[int] = None,
|
875 |
+
num_inference_steps: int = 50,
|
876 |
+
timesteps: List[int] = None,
|
877 |
+
sigmas: List[float] = None,
|
878 |
+
denoising_end: Optional[float] = None,
|
879 |
+
guidance_scale: float = 5.0,
|
880 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
881 |
+
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
882 |
+
num_images_per_prompt: Optional[int] = 1,
|
883 |
+
eta: float = 0.0,
|
884 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
885 |
+
latents: Optional[torch.Tensor] = None,
|
886 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
887 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
888 |
+
pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
889 |
+
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None,
|
890 |
+
ip_adapter_image: Optional[PipelineImageInput] = None,
|
891 |
+
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,
|
892 |
+
output_type: Optional[str] = "pil",
|
893 |
+
return_dict: bool = True,
|
894 |
+
cross_attention_kwargs: Optional[Dict[str, Any]] = None,
|
895 |
+
guidance_rescale: float = 0.0,
|
896 |
+
original_size: Optional[Tuple[int, int]] = None,
|
897 |
+
crops_coords_top_left: Tuple[int, int] = (0, 0),
|
898 |
+
target_size: Optional[Tuple[int, int]] = None,
|
899 |
+
negative_original_size: Optional[Tuple[int, int]] = None,
|
900 |
+
negative_crops_coords_top_left: Tuple[int, int] = (0, 0),
|
901 |
+
negative_target_size: Optional[Tuple[int, int]] = None,
|
902 |
+
clip_skip: Optional[int] = None,
|
903 |
+
callback_on_step_end: Optional[
|
904 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
905 |
+
] = None,
|
906 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
907 |
+
**kwargs,
|
908 |
+
):
|
909 |
+
r"""
|
910 |
+
Function invoked when calling the pipeline for generation.
|
911 |
+
|
912 |
+
Args:
|
913 |
+
prompt (`str` or `List[str]`, *optional*):
|
914 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
915 |
+
instead.
|
916 |
+
prompt_2 (`str` or `List[str]`, *optional*):
|
917 |
+
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
918 |
+
used in both text-encoders
|
919 |
+
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
920 |
+
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
921 |
+
Anything below 512 pixels won't work well for
|
922 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
923 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
924 |
+
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
925 |
+
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
926 |
+
Anything below 512 pixels won't work well for
|
927 |
+
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0)
|
928 |
+
and checkpoints that are not specifically fine-tuned on low resolutions.
|
929 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
930 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
931 |
+
expense of slower inference.
|
932 |
+
timesteps (`List[int]`, *optional*):
|
933 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
934 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
935 |
+
passed will be used. Must be in descending order.
|
936 |
+
sigmas (`List[float]`, *optional*):
|
937 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
938 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
939 |
+
will be used.
|
940 |
+
denoising_end (`float`, *optional*):
|
941 |
+
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be
|
942 |
+
completed before it is intentionally prematurely terminated. As a result, the returned sample will
|
943 |
+
still retain a substantial amount of noise as determined by the discrete timesteps selected by the
|
944 |
+
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a
|
945 |
+
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image
|
946 |
+
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output)
|
947 |
+
guidance_scale (`float`, *optional*, defaults to 5.0):
|
948 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
949 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
950 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
951 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
952 |
+
usually at the expense of lower image quality.
|
953 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
954 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
955 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
956 |
+
less than `1`).
|
957 |
+
negative_prompt_2 (`str` or `List[str]`, *optional*):
|
958 |
+
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and
|
959 |
+
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders
|
960 |
+
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
961 |
+
The number of images to generate per prompt.
|
962 |
+
eta (`float`, *optional*, defaults to 0.0):
|
963 |
+
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
964 |
+
[`schedulers.DDIMScheduler`], will be ignored for others.
|
965 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
966 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
967 |
+
to make generation deterministic.
|
968 |
+
latents (`torch.Tensor`, *optional*):
|
969 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
970 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
971 |
+
tensor will ge generated by sampling using the supplied random `generator`.
|
972 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
973 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
974 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
975 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
976 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
977 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
978 |
+
argument.
|
979 |
+
pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
980 |
+
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
981 |
+
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
982 |
+
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*):
|
983 |
+
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
984 |
+
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt`
|
985 |
+
input argument.
|
986 |
+
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.
|
987 |
+
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):
|
988 |
+
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of
|
989 |
+
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should
|
990 |
+
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not
|
991 |
+
provided, embeddings are computed from the `ip_adapter_image` input argument.
|
992 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
993 |
+
The output format of the generate image. Choose between
|
994 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
995 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
996 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
997 |
+
of a plain tuple.
|
998 |
+
cross_attention_kwargs (`dict`, *optional*):
|
999 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
1000 |
+
`self.processor` in
|
1001 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
1002 |
+
guidance_rescale (`float`, *optional*, defaults to 0.0):
|
1003 |
+
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are
|
1004 |
+
Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of
|
1005 |
+
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf).
|
1006 |
+
Guidance rescale factor should fix overexposure when using zero terminal SNR.
|
1007 |
+
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1008 |
+
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled.
|
1009 |
+
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as
|
1010 |
+
explained in section 2.2 of
|
1011 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1012 |
+
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1013 |
+
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position
|
1014 |
+
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting
|
1015 |
+
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1016 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1017 |
+
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1018 |
+
For most cases, `target_size` should be set to the desired height and width of the generated image. If
|
1019 |
+
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in
|
1020 |
+
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952).
|
1021 |
+
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1022 |
+
To negatively condition the generation process based on a specific image resolution. Part of SDXL's
|
1023 |
+
micro-conditioning as explained in section 2.2 of
|
1024 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1025 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1026 |
+
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)):
|
1027 |
+
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's
|
1028 |
+
micro-conditioning as explained in section 2.2 of
|
1029 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1030 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1031 |
+
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)):
|
1032 |
+
To negatively condition the generation process based on a target image resolution. It should be as same
|
1033 |
+
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of
|
1034 |
+
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more
|
1035 |
+
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208.
|
1036 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
1037 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
1038 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
1039 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
1040 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
1041 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
1042 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
1043 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
1044 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
1045 |
+
|
1046 |
+
Examples:
|
1047 |
+
|
1048 |
+
Returns:
|
1049 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`:
|
1050 |
+
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a
|
1051 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
1052 |
+
"""
|
1053 |
+
|
1054 |
+
callback = kwargs.pop("callback", None)
|
1055 |
+
callback_steps = kwargs.pop("callback_steps", None)
|
1056 |
+
|
1057 |
+
if callback is not None:
|
1058 |
+
deprecate(
|
1059 |
+
"callback",
|
1060 |
+
"1.0.0",
|
1061 |
+
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1062 |
+
)
|
1063 |
+
if callback_steps is not None:
|
1064 |
+
deprecate(
|
1065 |
+
"callback_steps",
|
1066 |
+
"1.0.0",
|
1067 |
+
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
1068 |
+
)
|
1069 |
+
|
1070 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
1071 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
1072 |
+
|
1073 |
+
# 0. Default height and width to unet
|
1074 |
+
height = height or self.default_sample_size * self.vae_scale_factor
|
1075 |
+
width = width or self.default_sample_size * self.vae_scale_factor
|
1076 |
+
|
1077 |
+
original_size = original_size or (height, width)
|
1078 |
+
target_size = target_size or (height, width)
|
1079 |
+
|
1080 |
+
# 1. Check inputs. Raise error if not correct
|
1081 |
+
self.check_inputs(
|
1082 |
+
prompt,
|
1083 |
+
prompt_2,
|
1084 |
+
height,
|
1085 |
+
width,
|
1086 |
+
callback_steps,
|
1087 |
+
negative_prompt,
|
1088 |
+
negative_prompt_2,
|
1089 |
+
prompt_embeds,
|
1090 |
+
negative_prompt_embeds,
|
1091 |
+
pooled_prompt_embeds,
|
1092 |
+
negative_pooled_prompt_embeds,
|
1093 |
+
ip_adapter_image,
|
1094 |
+
ip_adapter_image_embeds,
|
1095 |
+
callback_on_step_end_tensor_inputs,
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
self._guidance_scale = guidance_scale
|
1099 |
+
self._guidance_rescale = guidance_rescale
|
1100 |
+
self._clip_skip = clip_skip
|
1101 |
+
self._cross_attention_kwargs = cross_attention_kwargs
|
1102 |
+
self._denoising_end = denoising_end
|
1103 |
+
self._interrupt = False
|
1104 |
+
|
1105 |
+
# 2. Define call parameters
|
1106 |
+
if prompt is not None and isinstance(prompt, str):
|
1107 |
+
batch_size = 1
|
1108 |
+
elif prompt is not None and isinstance(prompt, list):
|
1109 |
+
batch_size = len(prompt)
|
1110 |
+
else:
|
1111 |
+
batch_size = prompt_embeds.shape[0]
|
1112 |
+
|
1113 |
+
device = self._execution_device
|
1114 |
+
|
1115 |
+
# 3. Encode input prompt
|
1116 |
+
lora_scale = (
|
1117 |
+
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
|
1118 |
+
)
|
1119 |
+
|
1120 |
+
(
|
1121 |
+
prompt_embeds,
|
1122 |
+
negative_prompt_embeds,
|
1123 |
+
pooled_prompt_embeds,
|
1124 |
+
negative_pooled_prompt_embeds,
|
1125 |
+
) = self.encode_prompt(
|
1126 |
+
prompt=prompt,
|
1127 |
+
prompt_2=prompt_2,
|
1128 |
+
device=device,
|
1129 |
+
num_images_per_prompt=num_images_per_prompt,
|
1130 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1131 |
+
negative_prompt=negative_prompt,
|
1132 |
+
negative_prompt_2=negative_prompt_2,
|
1133 |
+
prompt_embeds=prompt_embeds,
|
1134 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
1135 |
+
pooled_prompt_embeds=pooled_prompt_embeds,
|
1136 |
+
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
1137 |
+
lora_scale=lora_scale,
|
1138 |
+
clip_skip=self.clip_skip,
|
1139 |
+
)
|
1140 |
+
|
1141 |
+
# 4. Prepare timesteps
|
1142 |
+
timesteps, num_inference_steps = retrieve_timesteps(
|
1143 |
+
self.scheduler, num_inference_steps, device, timesteps, sigmas
|
1144 |
+
)
|
1145 |
+
|
1146 |
+
# 5. Prepare latent variables
|
1147 |
+
num_channels_latents = self.unet.config.in_channels
|
1148 |
+
latents = self.prepare_latents(
|
1149 |
+
batch_size * num_images_per_prompt,
|
1150 |
+
num_channels_latents,
|
1151 |
+
height,
|
1152 |
+
width,
|
1153 |
+
prompt_embeds.dtype,
|
1154 |
+
device,
|
1155 |
+
generator,
|
1156 |
+
latents,
|
1157 |
+
)
|
1158 |
+
|
1159 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
1160 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
1161 |
+
|
1162 |
+
# 7. Prepare added time ids & embeddings
|
1163 |
+
add_text_embeds = pooled_prompt_embeds
|
1164 |
+
if self.text_encoder_2 is None:
|
1165 |
+
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1])
|
1166 |
+
else:
|
1167 |
+
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim
|
1168 |
+
|
1169 |
+
add_time_ids = self._get_add_time_ids(
|
1170 |
+
original_size,
|
1171 |
+
crops_coords_top_left,
|
1172 |
+
target_size,
|
1173 |
+
dtype=prompt_embeds.dtype,
|
1174 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1175 |
+
)
|
1176 |
+
if negative_original_size is not None and negative_target_size is not None:
|
1177 |
+
negative_add_time_ids = self._get_add_time_ids(
|
1178 |
+
negative_original_size,
|
1179 |
+
negative_crops_coords_top_left,
|
1180 |
+
negative_target_size,
|
1181 |
+
dtype=prompt_embeds.dtype,
|
1182 |
+
text_encoder_projection_dim=text_encoder_projection_dim,
|
1183 |
+
)
|
1184 |
+
else:
|
1185 |
+
negative_add_time_ids = add_time_ids
|
1186 |
+
|
1187 |
+
if self.do_classifier_free_guidance:
|
1188 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
1189 |
+
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0)
|
1190 |
+
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0)
|
1191 |
+
|
1192 |
+
prompt_embeds = prompt_embeds.to(device)
|
1193 |
+
add_text_embeds = add_text_embeds.to(device)
|
1194 |
+
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1)
|
1195 |
+
|
1196 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1197 |
+
image_embeds = self.prepare_ip_adapter_image_embeds(
|
1198 |
+
ip_adapter_image,
|
1199 |
+
ip_adapter_image_embeds,
|
1200 |
+
device,
|
1201 |
+
batch_size * num_images_per_prompt,
|
1202 |
+
self.do_classifier_free_guidance,
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
if controlnet_image is not None and self.controlnet is not None:
|
1206 |
+
controlnet_image = self.prepare_image(
|
1207 |
+
controlnet_image,
|
1208 |
+
width,
|
1209 |
+
height,
|
1210 |
+
batch_size,
|
1211 |
+
num_images_per_prompt,
|
1212 |
+
device,
|
1213 |
+
self.controlnet.dtype,
|
1214 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
1215 |
+
)
|
1216 |
+
# 8. Denoising loop
|
1217 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
1218 |
+
|
1219 |
+
# 8.1 Apply denoising_end
|
1220 |
+
if (
|
1221 |
+
self.denoising_end is not None
|
1222 |
+
and isinstance(self.denoising_end, float)
|
1223 |
+
and self.denoising_end > 0
|
1224 |
+
and self.denoising_end < 1
|
1225 |
+
):
|
1226 |
+
discrete_timestep_cutoff = int(
|
1227 |
+
round(
|
1228 |
+
self.scheduler.config.num_train_timesteps
|
1229 |
+
- (self.denoising_end * self.scheduler.config.num_train_timesteps)
|
1230 |
+
)
|
1231 |
+
)
|
1232 |
+
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps)))
|
1233 |
+
timesteps = timesteps[:num_inference_steps]
|
1234 |
+
|
1235 |
+
# 9. Optionally get Guidance Scale Embedding
|
1236 |
+
timestep_cond = None
|
1237 |
+
if self.unet.config.time_cond_proj_dim is not None:
|
1238 |
+
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
|
1239 |
+
timestep_cond = self.get_guidance_scale_embedding(
|
1240 |
+
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
|
1241 |
+
).to(device=device, dtype=latents.dtype)
|
1242 |
+
|
1243 |
+
self._num_timesteps = len(timesteps)
|
1244 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
1245 |
+
for i, t in enumerate(timesteps):
|
1246 |
+
if self.interrupt:
|
1247 |
+
continue
|
1248 |
+
|
1249 |
+
# expand the latents if we are doing classifier free guidance
|
1250 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
1251 |
+
|
1252 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
1253 |
+
|
1254 |
+
# predict the noise residual
|
1255 |
+
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids}
|
1256 |
+
if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
|
1257 |
+
added_cond_kwargs["image_embeds"] = image_embeds
|
1258 |
+
|
1259 |
+
unet_additional_args = {}
|
1260 |
+
if self.controlnet is not None:
|
1261 |
+
controls = self.controlnet(
|
1262 |
+
controlnet_image,
|
1263 |
+
t,
|
1264 |
+
)
|
1265 |
+
|
1266 |
+
# This makes the effect of the controlnext much more stronger
|
1267 |
+
# if do_classifier_free_guidance:
|
1268 |
+
# scale = controlnet_output['scale']
|
1269 |
+
# scale = scale.repeat(batch_size*2)[:, None, None, None]
|
1270 |
+
# scale[:batch_size] *= 0
|
1271 |
+
# controlnet_output['scale'] = scale
|
1272 |
+
|
1273 |
+
controls['scale'] *= controlnet_scale
|
1274 |
+
unet_additional_args["controls"] = controls
|
1275 |
+
|
1276 |
+
noise_pred = self.unet(
|
1277 |
+
latent_model_input,
|
1278 |
+
t,
|
1279 |
+
encoder_hidden_states=prompt_embeds,
|
1280 |
+
timestep_cond=timestep_cond,
|
1281 |
+
cross_attention_kwargs=self.cross_attention_kwargs,
|
1282 |
+
added_cond_kwargs=added_cond_kwargs,
|
1283 |
+
return_dict=False,
|
1284 |
+
**unet_additional_args,
|
1285 |
+
)[0]
|
1286 |
+
|
1287 |
+
# perform guidance
|
1288 |
+
if self.do_classifier_free_guidance:
|
1289 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
1290 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
1291 |
+
|
1292 |
+
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
|
1293 |
+
# Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
|
1294 |
+
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)
|
1295 |
+
|
1296 |
+
# compute the previous noisy sample x_t -> x_t-1
|
1297 |
+
latents_dtype = latents.dtype
|
1298 |
+
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
1299 |
+
if latents.dtype != latents_dtype:
|
1300 |
+
if torch.backends.mps.is_available():
|
1301 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1302 |
+
latents = latents.to(latents_dtype)
|
1303 |
+
|
1304 |
+
if callback_on_step_end is not None:
|
1305 |
+
callback_kwargs = {}
|
1306 |
+
for k in callback_on_step_end_tensor_inputs:
|
1307 |
+
callback_kwargs[k] = locals()[k]
|
1308 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
1309 |
+
|
1310 |
+
latents = callback_outputs.pop("latents", latents)
|
1311 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
1312 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
1313 |
+
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds)
|
1314 |
+
negative_pooled_prompt_embeds = callback_outputs.pop(
|
1315 |
+
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds
|
1316 |
+
)
|
1317 |
+
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids)
|
1318 |
+
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids)
|
1319 |
+
|
1320 |
+
# call the callback, if provided
|
1321 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
1322 |
+
progress_bar.update()
|
1323 |
+
if callback is not None and i % callback_steps == 0:
|
1324 |
+
step_idx = i // getattr(self.scheduler, "order", 1)
|
1325 |
+
callback(step_idx, t, latents)
|
1326 |
+
|
1327 |
+
if XLA_AVAILABLE:
|
1328 |
+
xm.mark_step()
|
1329 |
+
|
1330 |
+
if not output_type == "latent":
|
1331 |
+
# make sure the VAE is in float32 mode, as it overflows in float16
|
1332 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
1333 |
+
|
1334 |
+
if needs_upcasting:
|
1335 |
+
self.upcast_vae()
|
1336 |
+
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype)
|
1337 |
+
elif latents.dtype != self.vae.dtype:
|
1338 |
+
if torch.backends.mps.is_available():
|
1339 |
+
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
1340 |
+
self.vae = self.vae.to(latents.dtype)
|
1341 |
+
|
1342 |
+
# unscale/denormalize the latents
|
1343 |
+
# denormalize with the mean and std if available and not None
|
1344 |
+
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
1345 |
+
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
1346 |
+
if has_latents_mean and has_latents_std:
|
1347 |
+
latents_mean = (
|
1348 |
+
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1349 |
+
)
|
1350 |
+
latents_std = (
|
1351 |
+
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype)
|
1352 |
+
)
|
1353 |
+
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
1354 |
+
else:
|
1355 |
+
latents = latents / self.vae.config.scaling_factor
|
1356 |
+
|
1357 |
+
image = self.vae.decode(latents, return_dict=False)[0]
|
1358 |
+
|
1359 |
+
# cast back to fp16 if needed
|
1360 |
+
if needs_upcasting:
|
1361 |
+
self.vae.to(dtype=torch.float16)
|
1362 |
+
else:
|
1363 |
+
image = latents
|
1364 |
+
|
1365 |
+
if not output_type == "latent":
|
1366 |
+
# apply watermark if available
|
1367 |
+
if self.watermark is not None:
|
1368 |
+
image = self.watermark.apply_watermark(image)
|
1369 |
+
|
1370 |
+
image = self.image_processor.postprocess(image, output_type=output_type)
|
1371 |
+
|
1372 |
+
# Offload all models
|
1373 |
+
self.maybe_free_model_hooks()
|
1374 |
+
|
1375 |
+
if not return_dict:
|
1376 |
+
return (image,)
|
1377 |
+
|
1378 |
+
return StableDiffusionXLPipelineOutput(images=image)
|
utils/preprocess.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import cv2
|
2 |
+
import numpy as np
|
3 |
+
from PIL import Image
|
4 |
+
|
5 |
+
|
6 |
+
def get_extractor(extractor_name):
|
7 |
+
if extractor_name is None:
|
8 |
+
return None
|
9 |
+
if extractor_name not in EXTRACTORS:
|
10 |
+
raise ValueError(f"Extractor {extractor_name} is not supported.")
|
11 |
+
return EXTRACTORS[extractor_name]
|
12 |
+
|
13 |
+
|
14 |
+
def canny_extractor(image: Image.Image, threshold1=None, threshold2=None) -> Image.Image:
|
15 |
+
image = np.array(image)
|
16 |
+
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
|
17 |
+
v = np.median(gray)
|
18 |
+
|
19 |
+
sigma = 0.33
|
20 |
+
threshold1 = threshold1 or int(max(0, (1.0 - sigma) * v))
|
21 |
+
threshold2 = threshold2 or int(min(255, (1.0 + sigma) * v))
|
22 |
+
|
23 |
+
edges = cv2.Canny(gray, threshold1, threshold2)
|
24 |
+
edges = Image.fromarray(edges).convert("RGB")
|
25 |
+
return edges
|
26 |
+
|
27 |
+
|
28 |
+
def depth_extractor(image: Image.Image):
|
29 |
+
raise NotImplementedError("Depth extractor is not implemented yet.")
|
30 |
+
|
31 |
+
|
32 |
+
def pose_extractor(image: Image.Image):
|
33 |
+
raise NotImplementedError("Pose extractor is not implemented yet.")
|
34 |
+
|
35 |
+
|
36 |
+
EXTRACTORS = {
|
37 |
+
"canny": canny_extractor,
|
38 |
+
}
|
utils/tools.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from diffusers import UniPCMultistepScheduler, AutoencoderKL
|
5 |
+
from safetensors.torch import load_file
|
6 |
+
from pipeline.pipeline_controlnext import StableDiffusionXLControlNeXtPipeline
|
7 |
+
from models.unet import UNet2DConditionModel, UNET_CONFIG
|
8 |
+
from models.controlnet import ControlNetModel
|
9 |
+
from . import utils
|
10 |
+
|
11 |
+
|
12 |
+
def get_pipeline(
|
13 |
+
pretrained_model_name_or_path,
|
14 |
+
unet_model_name_or_path,
|
15 |
+
controlnet_model_name_or_path,
|
16 |
+
vae_model_name_or_path=None,
|
17 |
+
lora_path=None,
|
18 |
+
load_weight_increasement=False,
|
19 |
+
enable_xformers_memory_efficient_attention=False,
|
20 |
+
revision=None,
|
21 |
+
variant=None,
|
22 |
+
hf_cache_dir=None,
|
23 |
+
use_safetensors=True,
|
24 |
+
device=None,
|
25 |
+
):
|
26 |
+
pipeline_init_kwargs = {}
|
27 |
+
|
28 |
+
if controlnet_model_name_or_path is not None:
|
29 |
+
print(f"loading controlnet from {controlnet_model_name_or_path}")
|
30 |
+
controlnet = ControlNetModel()
|
31 |
+
if controlnet_model_name_or_path is not None:
|
32 |
+
utils.load_safetensors(controlnet, controlnet_model_name_or_path)
|
33 |
+
else:
|
34 |
+
controlnet.scale = nn.Parameter(torch.tensor(0.), requires_grad=False)
|
35 |
+
controlnet.to(device, dtype=torch.float32)
|
36 |
+
pipeline_init_kwargs["controlnet"] = controlnet
|
37 |
+
|
38 |
+
utils.log_model_info(controlnet, "controlnext")
|
39 |
+
else:
|
40 |
+
print(f"no controlnet")
|
41 |
+
|
42 |
+
print(f"loading unet from {pretrained_model_name_or_path}")
|
43 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
44 |
+
# load unet from local checkpoint
|
45 |
+
unet_sd = load_file(pretrained_model_name_or_path) if pretrained_model_name_or_path.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
|
46 |
+
unet_sd = utils.extract_unet_state_dict(unet_sd)
|
47 |
+
unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
|
48 |
+
unet = UNet2DConditionModel.from_config(UNET_CONFIG)
|
49 |
+
unet.load_state_dict(unet_sd, strict=True)
|
50 |
+
else:
|
51 |
+
from huggingface_hub import hf_hub_download
|
52 |
+
filename = "diffusion_pytorch_model"
|
53 |
+
if variant == "fp16":
|
54 |
+
filename += ".fp16"
|
55 |
+
if use_safetensors:
|
56 |
+
filename += ".safetensors"
|
57 |
+
else:
|
58 |
+
filename += ".pt"
|
59 |
+
unet_file = hf_hub_download(
|
60 |
+
repo_id=pretrained_model_name_or_path,
|
61 |
+
filename="unet" + '/' + filename,
|
62 |
+
cache_dir=hf_cache_dir,
|
63 |
+
)
|
64 |
+
unet_sd = load_file(unet_file) if unet_file.endswith(".safetensors") else torch.load(pretrained_model_name_or_path)
|
65 |
+
unet_sd = utils.extract_unet_state_dict(unet_sd)
|
66 |
+
unet_sd = utils.convert_sdxl_unet_state_dict_to_diffusers(unet_sd)
|
67 |
+
unet = UNet2DConditionModel.from_config(UNET_CONFIG)
|
68 |
+
unet.load_state_dict(unet_sd, strict=True)
|
69 |
+
unet = unet.to(dtype=torch.float16)
|
70 |
+
utils.log_model_info(unet, "unet")
|
71 |
+
|
72 |
+
if unet_model_name_or_path is not None:
|
73 |
+
print(f"loading controlnext unet from {unet_model_name_or_path}")
|
74 |
+
controlnext_unet_sd = load_file(unet_model_name_or_path)
|
75 |
+
controlnext_unet_sd = utils.convert_to_controlnext_unet_state_dict(controlnext_unet_sd)
|
76 |
+
unet_sd = unet.state_dict()
|
77 |
+
assert all(
|
78 |
+
k in unet_sd for k in controlnext_unet_sd), \
|
79 |
+
f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}"
|
80 |
+
if load_weight_increasement:
|
81 |
+
print("loading weight increasement")
|
82 |
+
for k in controlnext_unet_sd.keys():
|
83 |
+
controlnext_unet_sd[k] = controlnext_unet_sd[k] + unet_sd[k]
|
84 |
+
unet.load_state_dict(controlnext_unet_sd, strict=False)
|
85 |
+
utils.log_model_info(controlnext_unet_sd, "controlnext unet")
|
86 |
+
|
87 |
+
pipeline_init_kwargs["unet"] = unet
|
88 |
+
|
89 |
+
if vae_model_name_or_path is not None:
|
90 |
+
print(f"loading vae from {vae_model_name_or_path}")
|
91 |
+
vae = AutoencoderKL.from_pretrained(vae_model_name_or_path, cache_dir=hf_cache_dir, torch_dtype=torch.float16).to(device)
|
92 |
+
pipeline_init_kwargs["vae"] = vae
|
93 |
+
|
94 |
+
print(f"loading pipeline from {pretrained_model_name_or_path}")
|
95 |
+
if os.path.isfile(pretrained_model_name_or_path):
|
96 |
+
pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_single_file(
|
97 |
+
pretrained_model_name_or_path,
|
98 |
+
use_safetensors=pretrained_model_name_or_path.endswith(".safetensors"),
|
99 |
+
local_files_only=True,
|
100 |
+
cache_dir=hf_cache_dir,
|
101 |
+
**pipeline_init_kwargs,
|
102 |
+
)
|
103 |
+
else:
|
104 |
+
pipeline: StableDiffusionXLControlNeXtPipeline = StableDiffusionXLControlNeXtPipeline.from_pretrained(
|
105 |
+
pretrained_model_name_or_path,
|
106 |
+
revision=revision,
|
107 |
+
variant=variant,
|
108 |
+
use_safetensors=use_safetensors,
|
109 |
+
cache_dir=hf_cache_dir,
|
110 |
+
**pipeline_init_kwargs,
|
111 |
+
)
|
112 |
+
|
113 |
+
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config)
|
114 |
+
pipeline.set_progress_bar_config()
|
115 |
+
pipeline = pipeline.to(device, dtype=torch.float16)
|
116 |
+
|
117 |
+
if lora_path is not None:
|
118 |
+
pipeline.load_lora_weights(lora_path)
|
119 |
+
if enable_xformers_memory_efficient_attention:
|
120 |
+
pipeline.enable_xformers_memory_efficient_attention()
|
121 |
+
|
122 |
+
return pipeline
|
123 |
+
|
124 |
+
|
125 |
+
def get_scheduler(
|
126 |
+
scheduler_name,
|
127 |
+
scheduler_config,
|
128 |
+
):
|
129 |
+
if scheduler_name == 'Euler A':
|
130 |
+
from diffusers.schedulers import EulerAncestralDiscreteScheduler
|
131 |
+
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config)
|
132 |
+
elif scheduler_name == 'UniPC':
|
133 |
+
from diffusers.schedulers import UniPCMultistepScheduler
|
134 |
+
scheduler = UniPCMultistepScheduler.from_config(scheduler_config)
|
135 |
+
elif scheduler_name == 'Euler':
|
136 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
137 |
+
scheduler = EulerDiscreteScheduler.from_config(scheduler_config)
|
138 |
+
elif scheduler_name == 'DDIM':
|
139 |
+
from diffusers.schedulers import DDIMScheduler
|
140 |
+
scheduler = DDIMScheduler.from_config(scheduler_config)
|
141 |
+
elif scheduler_name == 'DDPM':
|
142 |
+
from diffusers.schedulers import DDPMScheduler
|
143 |
+
scheduler = DDPMScheduler.from_config(scheduler_config)
|
144 |
+
else:
|
145 |
+
raise ValueError(f"Unknown scheduler: {scheduler_name}")
|
146 |
+
return scheduler
|
utils/utils.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Tuple, Union, Optional
|
3 |
+
from safetensors.torch import load_file
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
|
6 |
+
|
7 |
+
def count_num_parameters_of_safetensors_model(safetensors_path):
|
8 |
+
state_dict = load_file(safetensors_path)
|
9 |
+
return sum(p.numel() for p in state_dict.values())
|
10 |
+
|
11 |
+
|
12 |
+
def import_model_class_from_model_name_or_path(
|
13 |
+
pretrained_model_name_or_path: str, revision: str, subfolder: str = None
|
14 |
+
):
|
15 |
+
text_encoder_config = PretrainedConfig.from_pretrained(
|
16 |
+
pretrained_model_name_or_path, revision=revision, subfolder=subfolder
|
17 |
+
)
|
18 |
+
model_class = text_encoder_config.architectures[0]
|
19 |
+
if model_class == "CLIPTextModel":
|
20 |
+
from transformers import CLIPTextModel
|
21 |
+
return CLIPTextModel
|
22 |
+
elif model_class == "CLIPTextModelWithProjection":
|
23 |
+
from transformers import CLIPTextModelWithProjection
|
24 |
+
return CLIPTextModelWithProjection
|
25 |
+
else:
|
26 |
+
raise ValueError(f"{model_class} is not supported.")
|
27 |
+
|
28 |
+
|
29 |
+
def fix_clip_text_encoder_position_ids(text_encoder):
|
30 |
+
if hasattr(text_encoder.text_model.embeddings, "position_ids"):
|
31 |
+
text_encoder.text_model.embeddings.position_ids = text_encoder.text_model.embeddings.position_ids.long()
|
32 |
+
|
33 |
+
|
34 |
+
def load_controlnext_unet_state_dict(unet_sd, controlnext_unet_sd):
|
35 |
+
assert all(
|
36 |
+
k in unet_sd for k in controlnext_unet_sd), f"controlnext unet state dict is not compatible with unet state dict, missing keys: {set(controlnext_unet_sd.keys()) - set(unet_sd.keys())}, extra keys: {set(unet_sd.keys()) - set(controlnext_unet_sd.keys())}"
|
37 |
+
for k in controlnext_unet_sd.keys():
|
38 |
+
unet_sd[k] = controlnext_unet_sd[k]
|
39 |
+
return unet_sd
|
40 |
+
|
41 |
+
|
42 |
+
def convert_to_controlnext_unet_state_dict(state_dict):
|
43 |
+
import re
|
44 |
+
pattern = re.compile(r'.*attn2.*to_out.*')
|
45 |
+
state_dict = {k: v for k, v in state_dict.items() if pattern.match(k)}
|
46 |
+
# state_dict = extract_unet_state_dict(state_dict)
|
47 |
+
if is_sdxl_state_dict(state_dict):
|
48 |
+
state_dict = convert_sdxl_unet_state_dict_to_diffusers(state_dict)
|
49 |
+
return state_dict
|
50 |
+
|
51 |
+
|
52 |
+
def make_unet_conversion_map():
|
53 |
+
unet_conversion_map_layer = []
|
54 |
+
|
55 |
+
for i in range(3): # num_blocks is 3 in sdxl
|
56 |
+
# loop over downblocks/upblocks
|
57 |
+
for j in range(2):
|
58 |
+
# loop over resnets/attentions for downblocks
|
59 |
+
hf_down_res_prefix = f"down_blocks.{i}.resnets.{j}."
|
60 |
+
sd_down_res_prefix = f"input_blocks.{3*i + j + 1}.0."
|
61 |
+
unet_conversion_map_layer.append((sd_down_res_prefix, hf_down_res_prefix))
|
62 |
+
|
63 |
+
if i < 3:
|
64 |
+
# no attention layers in down_blocks.3
|
65 |
+
hf_down_atn_prefix = f"down_blocks.{i}.attentions.{j}."
|
66 |
+
sd_down_atn_prefix = f"input_blocks.{3*i + j + 1}.1."
|
67 |
+
unet_conversion_map_layer.append((sd_down_atn_prefix, hf_down_atn_prefix))
|
68 |
+
|
69 |
+
for j in range(3):
|
70 |
+
# loop over resnets/attentions for upblocks
|
71 |
+
hf_up_res_prefix = f"up_blocks.{i}.resnets.{j}."
|
72 |
+
sd_up_res_prefix = f"output_blocks.{3*i + j}.0."
|
73 |
+
unet_conversion_map_layer.append((sd_up_res_prefix, hf_up_res_prefix))
|
74 |
+
|
75 |
+
# if i > 0: commentout for sdxl
|
76 |
+
# no attention layers in up_blocks.0
|
77 |
+
hf_up_atn_prefix = f"up_blocks.{i}.attentions.{j}."
|
78 |
+
sd_up_atn_prefix = f"output_blocks.{3*i + j}.1."
|
79 |
+
unet_conversion_map_layer.append((sd_up_atn_prefix, hf_up_atn_prefix))
|
80 |
+
|
81 |
+
if i < 3:
|
82 |
+
# no downsample in down_blocks.3
|
83 |
+
hf_downsample_prefix = f"down_blocks.{i}.downsamplers.0.conv."
|
84 |
+
sd_downsample_prefix = f"input_blocks.{3*(i+1)}.0.op."
|
85 |
+
unet_conversion_map_layer.append((sd_downsample_prefix, hf_downsample_prefix))
|
86 |
+
|
87 |
+
# no upsample in up_blocks.3
|
88 |
+
hf_upsample_prefix = f"up_blocks.{i}.upsamplers.0."
|
89 |
+
sd_upsample_prefix = f"output_blocks.{3*i + 2}.{2}." # change for sdxl
|
90 |
+
unet_conversion_map_layer.append((sd_upsample_prefix, hf_upsample_prefix))
|
91 |
+
|
92 |
+
hf_mid_atn_prefix = "mid_block.attentions.0."
|
93 |
+
sd_mid_atn_prefix = "middle_block.1."
|
94 |
+
unet_conversion_map_layer.append((sd_mid_atn_prefix, hf_mid_atn_prefix))
|
95 |
+
|
96 |
+
for j in range(2):
|
97 |
+
hf_mid_res_prefix = f"mid_block.resnets.{j}."
|
98 |
+
sd_mid_res_prefix = f"middle_block.{2*j}."
|
99 |
+
unet_conversion_map_layer.append((sd_mid_res_prefix, hf_mid_res_prefix))
|
100 |
+
|
101 |
+
unet_conversion_map_resnet = [
|
102 |
+
# (stable-diffusion, HF Diffusers)
|
103 |
+
("in_layers.0.", "norm1."),
|
104 |
+
("in_layers.2.", "conv1."),
|
105 |
+
("out_layers.0.", "norm2."),
|
106 |
+
("out_layers.3.", "conv2."),
|
107 |
+
("emb_layers.1.", "time_emb_proj."),
|
108 |
+
("skip_connection.", "conv_shortcut."),
|
109 |
+
]
|
110 |
+
|
111 |
+
unet_conversion_map = []
|
112 |
+
for sd, hf in unet_conversion_map_layer:
|
113 |
+
if "resnets" in hf:
|
114 |
+
for sd_res, hf_res in unet_conversion_map_resnet:
|
115 |
+
unet_conversion_map.append((sd + sd_res, hf + hf_res))
|
116 |
+
else:
|
117 |
+
unet_conversion_map.append((sd, hf))
|
118 |
+
|
119 |
+
for j in range(2):
|
120 |
+
hf_time_embed_prefix = f"time_embedding.linear_{j+1}."
|
121 |
+
sd_time_embed_prefix = f"time_embed.{j*2}."
|
122 |
+
unet_conversion_map.append((sd_time_embed_prefix, hf_time_embed_prefix))
|
123 |
+
|
124 |
+
for j in range(2):
|
125 |
+
hf_label_embed_prefix = f"add_embedding.linear_{j+1}."
|
126 |
+
sd_label_embed_prefix = f"label_emb.0.{j*2}."
|
127 |
+
unet_conversion_map.append((sd_label_embed_prefix, hf_label_embed_prefix))
|
128 |
+
|
129 |
+
unet_conversion_map.append(("input_blocks.0.0.", "conv_in."))
|
130 |
+
unet_conversion_map.append(("out.0.", "conv_norm_out."))
|
131 |
+
unet_conversion_map.append(("out.2.", "conv_out."))
|
132 |
+
|
133 |
+
return unet_conversion_map
|
134 |
+
|
135 |
+
|
136 |
+
def convert_unet_state_dict(src_sd, conversion_map):
|
137 |
+
converted_sd = {}
|
138 |
+
for src_key, value in src_sd.items():
|
139 |
+
src_key_fragments = src_key.split(".")[:-1] # remove weight/bias
|
140 |
+
while len(src_key_fragments) > 0:
|
141 |
+
src_key_prefix = ".".join(src_key_fragments) + "."
|
142 |
+
if src_key_prefix in conversion_map:
|
143 |
+
converted_prefix = conversion_map[src_key_prefix]
|
144 |
+
converted_key = converted_prefix + src_key[len(src_key_prefix):]
|
145 |
+
converted_sd[converted_key] = value
|
146 |
+
break
|
147 |
+
src_key_fragments.pop(-1)
|
148 |
+
assert len(src_key_fragments) > 0, f"key {src_key} not found in conversion map"
|
149 |
+
|
150 |
+
return converted_sd
|
151 |
+
|
152 |
+
|
153 |
+
def convert_sdxl_unet_state_dict_to_diffusers(sd):
|
154 |
+
unet_conversion_map = make_unet_conversion_map()
|
155 |
+
|
156 |
+
conversion_dict = {sd: hf for sd, hf in unet_conversion_map}
|
157 |
+
return convert_unet_state_dict(sd, conversion_dict)
|
158 |
+
|
159 |
+
|
160 |
+
def extract_unet_state_dict(state_dict):
|
161 |
+
unet_sd = {}
|
162 |
+
UNET_KEY_PREFIX = "model.diffusion_model."
|
163 |
+
for k, v in state_dict.items():
|
164 |
+
if k.startswith(UNET_KEY_PREFIX):
|
165 |
+
unet_sd[k[len(UNET_KEY_PREFIX):]] = v
|
166 |
+
return unet_sd
|
167 |
+
|
168 |
+
|
169 |
+
def is_sdxl_state_dict(state_dict):
|
170 |
+
return any(key.startswith('input_blocks') for key in state_dict.keys())
|
171 |
+
|
172 |
+
|
173 |
+
def contains_unet_keys(state_dict):
|
174 |
+
UNET_KEY_PREFIX = "model.diffusion_model."
|
175 |
+
return any(k.startswith(UNET_KEY_PREFIX) for k in state_dict.keys())
|
176 |
+
|
177 |
+
|
178 |
+
def load_safetensors(model, safetensors_path, strict=True, load_weight_increasement=False):
|
179 |
+
if not load_weight_increasement:
|
180 |
+
state_dict = load_file(safetensors_path)
|
181 |
+
model.load_state_dict(state_dict, strict=strict)
|
182 |
+
else:
|
183 |
+
state_dict = load_file(safetensors_path)
|
184 |
+
pretrained_state_dict = model.state_dict()
|
185 |
+
for k in state_dict.keys():
|
186 |
+
state_dict[k] = state_dict[k] + pretrained_state_dict[k]
|
187 |
+
model.load_state_dict(state_dict, strict=False)
|
188 |
+
|
189 |
+
|
190 |
+
def log_model_info(model, name):
|
191 |
+
sd = model.state_dict() if hasattr(model, "state_dict") else model
|
192 |
+
print(
|
193 |
+
f"{name}:",
|
194 |
+
f" number of parameters: {sum(p.numel() for p in sd.values())}",
|
195 |
+
f" dtype: {sd[next(iter(sd))].dtype}",
|
196 |
+
sep='\n'
|
197 |
+
)
|
198 |
+
|
199 |
+
|
200 |
+
def around_reso(img_w, img_h, reso: Union[Tuple[int, int], int], divisible: Optional[int] = None, max_width=None, max_height=None) -> Tuple[int, int]:
|
201 |
+
r"""
|
202 |
+
w*h = reso*reso
|
203 |
+
w/h = img_w/img_h
|
204 |
+
=> w = img_ar*h
|
205 |
+
=> img_ar*h^2 = reso
|
206 |
+
=> h = sqrt(reso / img_ar)
|
207 |
+
"""
|
208 |
+
reso = reso if isinstance(reso, tuple) else (reso, reso)
|
209 |
+
divisible = divisible or 1
|
210 |
+
if img_w * img_h <= reso[0] * reso[1] and (not max_width or img_w <= max_width) and (not max_height or img_h <= max_height) and img_w % divisible == 0 and img_h % divisible == 0:
|
211 |
+
return (img_w, img_h)
|
212 |
+
img_ar = img_w / img_h
|
213 |
+
around_h = math.sqrt(reso[0]*reso[1] / img_ar)
|
214 |
+
around_w = img_ar * around_h // divisible * divisible
|
215 |
+
if max_width and around_w > max_width:
|
216 |
+
around_h = around_h * max_width // around_w
|
217 |
+
around_w = max_width
|
218 |
+
elif max_height and around_h > max_height:
|
219 |
+
around_w = around_w * max_height // around_h
|
220 |
+
around_h = max_height
|
221 |
+
around_h = min(around_h, max_height) if max_height else around_h
|
222 |
+
around_w = min(around_w, max_width) if max_width else around_w
|
223 |
+
around_h = int(around_h // divisible * divisible)
|
224 |
+
around_w = int(around_w // divisible * divisible)
|
225 |
+
return (around_w, around_h)
|