Create colorflow_cli.py
Browse files- colorflow_cli.py +77 -0
colorflow_cli.py
ADDED
|
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
'''
|
| 2 |
+
python colorflow_cli.py \
|
| 3 |
+
--input_image ./input.jpg \
|
| 4 |
+
--reference_images ./ref1.jpg ./ref2.jpg \
|
| 5 |
+
--output_dir ./results \
|
| 6 |
+
--input_style Sketch \
|
| 7 |
+
--resolution 640x640 \
|
| 8 |
+
--seed 123 \
|
| 9 |
+
--num_inference_steps 20
|
| 10 |
+
'''
|
| 11 |
+
|
| 12 |
+
# colorflow_cli.py
|
| 13 |
+
from app_func import *
|
| 14 |
+
import argparse
|
| 15 |
+
import torch
|
| 16 |
+
from PIL import Image
|
| 17 |
+
import os
|
| 18 |
+
import logging
|
| 19 |
+
|
| 20 |
+
# 原文件中的必要导入和函数定义(需保留原文件中的核心逻辑)
|
| 21 |
+
# ... [保留原文件中的模型加载、extract_line_image、colorize_image等函数] ...
|
| 22 |
+
|
| 23 |
+
def parse_args():
|
| 24 |
+
parser = argparse.ArgumentParser(description="ColorFlow命令行图像上色工具")
|
| 25 |
+
parser.add_argument("--input_image", type=str, required=True, help="输入图像路径")
|
| 26 |
+
parser.add_argument("--reference_images", type=str, nargs='+', required=True, help="参考图像路径列表")
|
| 27 |
+
parser.add_argument("--output_dir", type=str, default="./output", help="输出目录")
|
| 28 |
+
parser.add_argument("--input_style", type=str, default="GrayImage(ScreenStyle)",
|
| 29 |
+
choices=["GrayImage(ScreenStyle)", "Sketch"], help="输入样式类型")
|
| 30 |
+
parser.add_argument("--resolution", type=str, default="640x640",
|
| 31 |
+
choices=["640x640", "512x800", "800x512"], help="分辨率设置")
|
| 32 |
+
parser.add_argument("--seed", type=int, default=0, help="随机种子")
|
| 33 |
+
parser.add_argument("--num_inference_steps", type=int, default=10, help="推理步数")
|
| 34 |
+
return parser.parse_args()
|
| 35 |
+
|
| 36 |
+
def save_image(image: Image.Image, path: str, format: str = "PNG") -> None:
|
| 37 |
+
"""安全保存图像并处理异常"""
|
| 38 |
+
try:
|
| 39 |
+
image.save(path, format=format)
|
| 40 |
+
logging.info(f"成功保存图像至: {path}")
|
| 41 |
+
except Exception as e:
|
| 42 |
+
logging.error(f"保存图像失败: {str(e)}")
|
| 43 |
+
raise
|
| 44 |
+
|
| 45 |
+
def main():
|
| 46 |
+
args = parse_args()
|
| 47 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
| 48 |
+
|
| 49 |
+
# 初始化模型
|
| 50 |
+
global cur_input_style, pipeline, MultiResNetModel
|
| 51 |
+
cur_input_style = None
|
| 52 |
+
load_ckpt(args.input_style)
|
| 53 |
+
|
| 54 |
+
# 预处理输入图像
|
| 55 |
+
input_img = Image.open(args.input_image).convert("RGB")
|
| 56 |
+
input_context, extracted_line, _ = extract_line_image(input_img, args.input_style, args.resolution)
|
| 57 |
+
|
| 58 |
+
# 执行颜色化并获取全部结果
|
| 59 |
+
high_res_img, up_img, raw_output, preprocessed_bw = colorize_image(
|
| 60 |
+
VAE_input=extracted_line,
|
| 61 |
+
input_context=input_context,
|
| 62 |
+
reference_images=args.reference_images,
|
| 63 |
+
resolution=args.resolution,
|
| 64 |
+
seed=args.seed,
|
| 65 |
+
input_style=args.input_style,
|
| 66 |
+
num_inference_steps=args.num_inference_steps
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
# 保存所有结果
|
| 70 |
+
save_image(high_res_img, os.path.join(args.output_dir, "colorized_result.png"))
|
| 71 |
+
save_image(up_img, os.path.join(args.output_dir, "upsampled_intermediate.png"))
|
| 72 |
+
save_image(raw_output, os.path.join(args.output_dir, "raw_generated_output.png"))
|
| 73 |
+
save_image(preprocessed_bw, os.path.join(args.output_dir, "preprocessed_bw.png"))
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
|
| 77 |
+
main()
|