|
import spaces |
|
import contextlib |
|
import gc |
|
import json |
|
import logging |
|
import math |
|
import os |
|
import random |
|
import shutil |
|
import sys |
|
import time |
|
import itertools |
|
from pathlib import Path |
|
|
|
import cv2 |
|
import numpy as np |
|
from PIL import Image, ImageDraw |
|
import torch |
|
import torch.nn.functional as F |
|
import torch.utils.checkpoint |
|
from torch.utils.data import Dataset |
|
from torchvision import transforms |
|
from tqdm.auto import tqdm |
|
|
|
import accelerate |
|
from accelerate import Accelerator |
|
from accelerate.logging import get_logger |
|
from accelerate.utils import ProjectConfiguration, set_seed |
|
|
|
from datasets import load_dataset |
|
from huggingface_hub import create_repo, upload_folder |
|
from packaging import version |
|
from safetensors.torch import load_model |
|
from peft import LoraConfig |
|
import gradio as gr |
|
import pandas as pd |
|
|
|
import transformers |
|
from transformers import ( |
|
AutoTokenizer, |
|
PretrainedConfig, |
|
CLIPVisionModelWithProjection, |
|
CLIPImageProcessor, |
|
CLIPProcessor, |
|
) |
|
|
|
import diffusers |
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDPMScheduler, |
|
ColorGuiderPixArtModel, |
|
ColorGuiderSDModel, |
|
UNet2DConditionModel, |
|
PixArtTransformer2DModel, |
|
ColorFlowPixArtAlphaPipeline, |
|
ColorFlowSDPipeline, |
|
UniPCMultistepScheduler, |
|
) |
|
from colorflow_utils.utils import * |
|
|
|
sys.path.append('./BidirectionalTranslation') |
|
from options.test_options import TestOptions |
|
from models import create_model |
|
from util import util |
|
|
|
from huggingface_hub import snapshot_download |
|
|
|
|
|
article = r""" |
|
If ColorFlow is helpful, please help to ⭐ the <a href='https://github.com/TencentARC/ColorFlow' target='_blank'>Github Repo</a>. Thanks! [![GitHub Stars](https://img.shields.io/github/stars/TencentARC/ColorFlow)](https://github.com/TencentARC/ColorFlow) |
|
|
|
📧 **Contact** |
|
<br> |
|
If you have any questions, please feel free to reach me out at <b>zhuangjh23@mails.tsinghua.edu.cn</b>. |
|
|
|
📝 **Citation** |
|
<br> |
|
If our work is useful for your research, please consider citing: |
|
```bibtex |
|
@misc{zhuang2024colorflow, |
|
title={ColorFlow: Retrieval-Augmented Image Sequence Colorization}, |
|
author={Junhao Zhuang and Xuan Ju and Zhaoyang Zhang and Yong Liu and Shiyi Zhang and Chun Yuan and Ying Shan}, |
|
year={2024}, |
|
eprint={2412.11815}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CV}, |
|
url={https://arxiv.org/abs/2412.11815}, |
|
} |
|
``` |
|
""" |
|
|
|
model_global_path = snapshot_download(repo_id="TencentARC/ColorFlow", cache_dir='./colorflow/', repo_type="model") |
|
print(model_global_path) |
|
|
|
|
|
transform = transforms.Compose([ |
|
transforms.ToTensor(), |
|
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]) |
|
]) |
|
weight_dtype = torch.float16 |
|
|
|
|
|
line_model_path = model_global_path + '/LE/erika.pth' |
|
line_model = res_skip() |
|
line_model.load_state_dict(torch.load(line_model_path)) |
|
line_model.eval() |
|
line_model.cuda() |
|
|
|
|
|
global opt |
|
|
|
opt = TestOptions().parse(model_global_path) |
|
ScreenModel = create_model(opt, model_global_path) |
|
ScreenModel.setup(opt) |
|
ScreenModel.eval() |
|
|
|
image_processor = CLIPImageProcessor() |
|
image_encoder = CLIPVisionModelWithProjection.from_pretrained(model_global_path + '/image_encoder/').to('cuda') |
|
|
|
|
|
examples = [ |
|
[ |
|
"./assets/example_5/input.png", |
|
["./assets/example_5/ref1.png", "./assets/example_5/ref2.png", "./assets/example_5/ref3.png"], |
|
"GrayImage(ScreenStyle)", |
|
"800x512", |
|
0, |
|
10 |
|
], |
|
[ |
|
"./assets/example_4/input.jpg", |
|
["./assets/example_4/ref1.jpg", "./assets/example_4/ref2.jpg", "./assets/example_4/ref3.jpg"], |
|
"GrayImage(ScreenStyle)", |
|
"640x640", |
|
0, |
|
10 |
|
], |
|
[ |
|
"./assets/example_3/input.png", |
|
["./assets/example_3/ref1.png", "./assets/example_3/ref2.png", "./assets/example_3/ref3.png"], |
|
"GrayImage(ScreenStyle)", |
|
"800x512", |
|
0, |
|
10 |
|
], |
|
[ |
|
"./assets/example_2/input.png", |
|
["./assets/example_2/ref1.png", "./assets/example_2/ref2.png", "./assets/example_2/ref3.png"], |
|
"GrayImage(ScreenStyle)", |
|
"800x512", |
|
0, |
|
10 |
|
], |
|
[ |
|
"./assets/example_1/input.jpg", |
|
["./assets/example_1/ref1.jpg", "./assets/example_1/ref2.jpg", "./assets/example_1/ref3.jpg"], |
|
"Sketch", |
|
"640x640", |
|
1, |
|
10 |
|
], |
|
[ |
|
"./assets/example_0/input.jpg", |
|
["./assets/example_0/ref1.jpg"], |
|
"Sketch", |
|
"640x640", |
|
1, |
|
10 |
|
], |
|
] |
|
|
|
global pipeline |
|
global MultiResNetModel |
|
|
|
@spaces.GPU |
|
def load_ckpt(input_style): |
|
global pipeline |
|
global MultiResNetModel |
|
if input_style == "Sketch": |
|
ckpt_path = model_global_path + '/sketch/' |
|
rank = 128 |
|
pretrained_model_name_or_path = 'PixArt-alpha/PixArt-XL-2-1024-MS' |
|
transformer = PixArtTransformer2DModel.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="transformer", revision=None, variant=None |
|
) |
|
pixart_config = get_pixart_config() |
|
|
|
ColorGuider = ColorGuiderPixArtModel.from_pretrained(ckpt_path) |
|
|
|
transformer_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0", "proj_in", "proj_out", "ff.net.0.proj", "ff.net.2", "proj", "linear", "linear_1", "linear_2"] |
|
) |
|
transformer.add_adapter(transformer_lora_config) |
|
ckpt_key_t = torch.load(ckpt_path + 'transformer_lora.bin', map_location='cpu') |
|
transformer.load_state_dict(ckpt_key_t, strict=False) |
|
|
|
transformer.to('cuda', dtype=weight_dtype) |
|
ColorGuider.to('cuda', dtype=weight_dtype) |
|
|
|
pipeline = ColorFlowPixArtAlphaPipeline.from_pretrained( |
|
pretrained_model_name_or_path, |
|
transformer=transformer, |
|
colorguider=ColorGuider, |
|
safety_checker=None, |
|
revision=None, |
|
variant=None, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline = pipeline.to("cuda") |
|
block_out_channels = [128, 128, 256, 512, 512] |
|
|
|
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels)) |
|
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False) |
|
MultiResNetModel.to('cuda', dtype=weight_dtype) |
|
|
|
elif input_style == "GrayImage(ScreenStyle)": |
|
ckpt_path = model_global_path + '/GraySD/' |
|
rank = 64 |
|
pretrained_model_name_or_path = 'stable-diffusion-v1-5/stable-diffusion-v1-5' |
|
unet = UNet2DConditionModel.from_pretrained( |
|
pretrained_model_name_or_path, subfolder="unet", revision=None, variant=None |
|
) |
|
ColorGuider = ColorGuiderSDModel.from_pretrained(ckpt_path) |
|
ColorGuider.to('cuda', dtype=weight_dtype) |
|
unet.to('cuda', dtype=weight_dtype) |
|
|
|
pipeline = ColorFlowSDPipeline.from_pretrained( |
|
pretrained_model_name_or_path, |
|
unet=unet, |
|
colorguider=ColorGuider, |
|
safety_checker=None, |
|
revision=None, |
|
variant=None, |
|
torch_dtype=weight_dtype, |
|
) |
|
pipeline.scheduler = UniPCMultistepScheduler.from_config(pipeline.scheduler.config) |
|
unet_lora_config = LoraConfig( |
|
r=rank, |
|
lora_alpha=rank, |
|
init_lora_weights="gaussian", |
|
target_modules=["to_k", "to_q", "to_v", "to_out.0", "ff.net.0.proj", "ff.net.2"], |
|
) |
|
pipeline.unet.add_adapter(unet_lora_config) |
|
pipeline.unet.load_state_dict(torch.load(ckpt_path + 'unet_lora.bin', map_location='cpu'), strict=False) |
|
pipeline = pipeline.to("cuda") |
|
block_out_channels = [128, 128, 256, 512, 512] |
|
|
|
MultiResNetModel = MultiHiddenResNetModel(block_out_channels, len(block_out_channels)) |
|
MultiResNetModel.load_state_dict(torch.load(ckpt_path + 'MultiResNetModel.bin', map_location='cpu'), strict=False) |
|
MultiResNetModel.to('cuda', dtype=weight_dtype) |
|
|
|
|
|
|
|
|
|
|
|
global cur_input_style |
|
cur_input_style = "Sketch" |
|
load_ckpt(cur_input_style) |
|
cur_input_style = "GrayImage(ScreenStyle)" |
|
load_ckpt(cur_input_style) |
|
cur_input_style = None |
|
|
|
@spaces.GPU |
|
def fix_random_seeds(seed): |
|
random.seed(seed) |
|
np.random.seed(seed) |
|
torch.manual_seed(seed) |
|
if torch.cuda.is_available(): |
|
torch.cuda.manual_seed(seed) |
|
torch.cuda.manual_seed_all(seed) |
|
|
|
def process_multi_images(files): |
|
images = [Image.open(file.name) for file in files] |
|
imgs = [] |
|
for i, img in enumerate(images): |
|
imgs.append(img) |
|
return imgs |
|
|
|
@spaces.GPU |
|
def extract_lines(image): |
|
src = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2GRAY) |
|
|
|
rows = int(np.ceil(src.shape[0] / 16)) * 16 |
|
cols = int(np.ceil(src.shape[1] / 16)) * 16 |
|
|
|
patch = np.ones((1, 1, rows, cols), dtype="float32") |
|
patch[0, 0, 0:src.shape[0], 0:src.shape[1]] = src |
|
|
|
tensor = torch.from_numpy(patch).cuda() |
|
|
|
with torch.no_grad(): |
|
y = line_model(tensor) |
|
|
|
yc = y.cpu().numpy()[0, 0, :, :] |
|
yc[yc > 255] = 255 |
|
yc[yc < 0] = 0 |
|
|
|
outimg = yc[0:src.shape[0], 0:src.shape[1]] |
|
outimg = outimg.astype(np.uint8) |
|
outimg = Image.fromarray(outimg) |
|
torch.cuda.empty_cache() |
|
return outimg |
|
|
|
@spaces.GPU |
|
def to_screen_image(input_image): |
|
global opt |
|
global ScreenModel |
|
input_image = input_image.convert('RGB') |
|
input_image = get_ScreenVAE_input(input_image, opt) |
|
h = input_image['h'] |
|
w = input_image['w'] |
|
ScreenModel.set_input(input_image) |
|
fake_B, fake_B2, SCR = ScreenModel.forward(AtoB=True) |
|
images=fake_B2[:,:,:h,:w] |
|
im = util.tensor2im(images) |
|
image_pil = Image.fromarray(im) |
|
torch.cuda.empty_cache() |
|
return image_pil |
|
|
|
@spaces.GPU |
|
def extract_line_image(query_image_, input_style, resolution): |
|
if resolution == "640x640": |
|
tar_width = 640 |
|
tar_height = 640 |
|
elif resolution == "512x800": |
|
tar_width = 512 |
|
tar_height = 800 |
|
elif resolution == "800x512": |
|
tar_width = 800 |
|
tar_height = 512 |
|
else: |
|
gr.Info("Unsupported resolution") |
|
|
|
query_image = process_image(query_image_, int(tar_width*1.5), int(tar_height*1.5)) |
|
if input_style == "GrayImage(ScreenStyle)": |
|
extracted_line = to_screen_image(query_image) |
|
extracted_line = Image.blend(extracted_line.convert('L').convert('RGB'), query_image.convert('L').convert('RGB'), 0.5) |
|
input_context = extracted_line |
|
elif input_style == "Sketch": |
|
query_image = query_image.convert('L').convert('RGB') |
|
extracted_line = extract_lines(query_image) |
|
extracted_line = extracted_line.convert('L').convert('RGB') |
|
input_context = extracted_line |
|
torch.cuda.empty_cache() |
|
return input_context, extracted_line, input_context |
|
|
|
@spaces.GPU(duration=180) |
|
def colorize_image(VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps): |
|
if VAE_input is None or input_context is None: |
|
gr.Info("Please preprocess the image first") |
|
raise ValueError("Please preprocess the image first") |
|
global cur_input_style |
|
global pipeline |
|
global MultiResNetModel |
|
if input_style != cur_input_style: |
|
gr.Info(f"Loading {input_style} model...") |
|
load_ckpt(input_style) |
|
cur_input_style = input_style |
|
gr.Info(f"{input_style} model loaded") |
|
reference_images = process_multi_images(reference_images) |
|
fix_random_seeds(seed) |
|
if resolution == "640x640": |
|
tar_width = 640 |
|
tar_height = 640 |
|
elif resolution == "512x800": |
|
tar_width = 512 |
|
tar_height = 800 |
|
elif resolution == "800x512": |
|
tar_width = 800 |
|
tar_height = 512 |
|
else: |
|
gr.Info("Unsupported resolution") |
|
validation_mask = Image.open('./assets/mask.png').convert('RGB').resize((tar_width*2, tar_height*2)) |
|
gr.Info("Image retrieval in progress...") |
|
query_image_bw = process_image(input_context, int(tar_width), int(tar_height)) |
|
query_image = query_image_bw.convert('RGB') |
|
query_image_vae = process_image(VAE_input, int(tar_width*1.5), int(tar_height*1.5)) |
|
reference_images = [process_image(ref_image, tar_width, tar_height) for ref_image in reference_images] |
|
query_patches_pil = process_image_Q_varres(query_image, tar_width, tar_height) |
|
reference_patches_pil = [] |
|
for reference_image in reference_images: |
|
reference_patches_pil += process_image_ref_varres(reference_image, tar_width, tar_height) |
|
combined_image = None |
|
with torch.no_grad(): |
|
clip_img = image_processor(images=query_patches_pil, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) |
|
query_embeddings = image_encoder(clip_img).image_embeds |
|
reference_patches_pil_gray = [rimg.convert('RGB').convert('RGB') for rimg in reference_patches_pil] |
|
clip_img = image_processor(images=reference_patches_pil_gray, return_tensors="pt").pixel_values.to(image_encoder.device, dtype=image_encoder.dtype) |
|
reference_embeddings = image_encoder(clip_img).image_embeds |
|
cosine_similarities = F.cosine_similarity(query_embeddings.unsqueeze(1), reference_embeddings.unsqueeze(0), dim=-1) |
|
sorted_indices = torch.argsort(cosine_similarities, descending=True, dim=1).tolist() |
|
top_k = 3 |
|
top_k_indices = [cur_sortlist[:top_k] for cur_sortlist in sorted_indices] |
|
combined_image = Image.new('RGB', (tar_width * 2, tar_height * 2), 'white') |
|
combined_image.paste(query_image_bw.resize((tar_width, tar_height)), (tar_width//2, tar_height//2)) |
|
idx_table = {0:[(1,0), (0,1), (0,0)], 1:[(1,3), (0,2),(0,3)], 2:[(2,0),(3,1), (3,0)], 3:[(2,3), (3,2),(3,3)]} |
|
for i in range(2): |
|
for j in range(2): |
|
idx_list = idx_table[i * 2 + j] |
|
for k in range(top_k): |
|
ref_index = top_k_indices[i * 2 + j][k] |
|
idx_y = idx_list[k][0] |
|
idx_x = idx_list[k][1] |
|
combined_image.paste(reference_patches_pil[ref_index].resize((tar_width//2-2, tar_height//2-2)), (tar_width//2 * idx_x + 1, tar_height//2 * idx_y + 1)) |
|
gr.Info("Model inference in progress...") |
|
generator = torch.Generator(device='cuda').manual_seed(seed) |
|
image = pipeline( |
|
"manga", cond_image=combined_image, cond_mask=validation_mask, num_inference_steps=num_inference_steps, generator=generator |
|
).images[0] |
|
gr.Info("Post-processing image...") |
|
with torch.no_grad(): |
|
width, height = image.size |
|
new_width = width // 2 |
|
new_height = height // 2 |
|
left = (width - new_width) // 2 |
|
top = (height - new_height) // 2 |
|
right = left + new_width |
|
bottom = top + new_height |
|
center_crop = image.crop((left, top, right, bottom)) |
|
up_img = center_crop.resize(query_image_vae.size) |
|
test_low_color = transform(up_img).unsqueeze(0).to('cuda', dtype=weight_dtype) |
|
query_image_vae = transform(query_image_vae).unsqueeze(0).to('cuda', dtype=weight_dtype) |
|
|
|
h_color, hidden_list_color = pipeline.vae._encode(test_low_color,return_dict = False, hidden_flag = True) |
|
h_bw, hidden_list_bw = pipeline.vae._encode(query_image_vae, return_dict = False, hidden_flag = True) |
|
|
|
hidden_list_double = [torch.cat((hidden_list_color[hidden_idx], hidden_list_bw[hidden_idx]), dim = 1) for hidden_idx in range(len(hidden_list_color))] |
|
|
|
|
|
hidden_list = MultiResNetModel(hidden_list_double) |
|
output = pipeline.vae._decode(h_color.sample(),return_dict = False, hidden_list = hidden_list)[0] |
|
|
|
output[output > 1] = 1 |
|
output[output < -1] = -1 |
|
high_res_image = Image.fromarray(((output[0] * 0.5 + 0.5).permute(1, 2, 0).detach().cpu().numpy() * 255).astype(np.uint8)).convert("RGB") |
|
gr.Info("Colorization complete!") |
|
torch.cuda.empty_cache() |
|
return high_res_image, up_img, image, query_image_bw |
|
|
|
with gr.Blocks() as demo: |
|
gr.HTML( |
|
""" |
|
<div style="text-align: center;"> |
|
<h1 style="text-align: center; font-size: 3em;">🎨 ColorFlow:</h1> |
|
<h3 style="text-align: center; font-size: 1.8em;">Retrieval-Augmented Image Sequence Colorization</h3> |
|
<p style="text-align: center; font-weight: bold;"> |
|
<a href="https://zhuang2002.github.io/ColorFlow/">Project Page</a> | |
|
<a href="https://arxiv.org/abs/2412.11815">ArXiv Preprint</a> | |
|
<a href="https://github.com/TencentARC/ColorFlow">GitHub Repository</a> |
|
</p> |
|
<p style="text-align: center; font-weight: bold;"> |
|
NOTE: Each time you switch the input style, the corresponding model will be reloaded, which may take some time. Please be patient. |
|
</p> |
|
<p style="text-align: left; font-size: 1.1em;"> |
|
Welcome to the demo of <strong>ColorFlow</strong>. Follow the steps below to explore the capabilities of our model: |
|
</p> |
|
</div> |
|
<div style="text-align: left; margin: 0 auto;"> |
|
<ol style="font-size: 1.1em;"> |
|
<li>Choose input style: GrayImage(ScreenStyle) or Sketch.</li> |
|
<li>Upload your image: Use the 'Upload' button to select the image you want to colorize.</li> |
|
<li>Preprocess the image: Click the 'Preprocess' button to decolorize the image.</li> |
|
<li>Upload reference images: Upload multiple reference images to guide the colorization.</li> |
|
<li>Set sampling parameters (optional): Adjust the settings and click the <b>Colorize</b> button.</li> |
|
</ol> |
|
<p> |
|
⏱️ <b>ZeroGPU Time Limit</b>: Hugging Face ZeroGPU has an inference time limit of 180 seconds. You may need to log in with a free account to use this demo. Large sampling steps might lead to timeout (GPU Abort). In that case, please consider logging in with a Pro account or running it on your local machine. |
|
</p> |
|
</div> |
|
<div style="text-align: center;"> |
|
<p style="text-align: center; font-weight: bold;"> |
|
注意:每次切换输入样式时,相应的模型将被重新加载,可能需要一些时间。请耐心等待。 |
|
</p> |
|
<p style="text-align: left; font-size: 1.1em;"> |
|
欢迎使用 <strong>ColorFlow</strong> 演示。请按照以下步骤探索我们模型的能力: |
|
</p> |
|
</div> |
|
<div style="text-align: left; margin: 0 auto;"> |
|
<ol style="font-size: 1.1em;"> |
|
<li>选择输入样式:灰度图(ScreenStyle)、线稿。</li> |
|
<li>上传您的图像:使用“上传”按钮选择要上色的图像。</li> |
|
<li>预处理图像:点击“预处理”按钮以去色图像。</li> |
|
<li>上传参考图像:上传多张参考图像以指导上色。</li> |
|
<li>设置采样参数(可选):调整设置并点击 <b>上色</b> 按钮。</li> |
|
</ol> |
|
<p> |
|
⏱️ <b>ZeroGPU时间限制</b>:Hugging Face ZeroGPU 的推理时间限制为 180 秒。您可能需要使用免费帐户登录以使用此演示。大采样步骤可能会导致超时(GPU 中止)。在这种情况下,请考虑使用专业帐户登录或在本地计算机上运行。 |
|
</p> |
|
</div> |
|
""" |
|
) |
|
VAE_input = gr.State() |
|
input_context = gr.State() |
|
|
|
|
|
with gr.Column(): |
|
with gr.Row(): |
|
input_style = gr.Radio(["GrayImage(ScreenStyle)", "Sketch"], label="Input Style", value="GrayImage(ScreenStyle)") |
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(type="pil", label="Image to Colorize") |
|
resolution = gr.Radio(["640x640", "512x800", "800x512"], label="Select Resolution(Width*Height)", value="640x640") |
|
extract_button = gr.Button("Preprocess (Decolorize)") |
|
extracted_image = gr.Image(type="pil", label="Decolorized Result") |
|
with gr.Row(): |
|
reference_images = gr.Files(label="Reference Images (Upload multiple)", file_count="multiple") |
|
with gr.Column(): |
|
output_gallery = gr.Gallery(label="Colorization Results", type="pil") |
|
seed = gr.Slider(label="Random Seed", minimum=0, maximum=100000, value=0, step=1) |
|
num_inference_steps = gr.Slider(label="Inference Steps", minimum=4, maximum=100, value=10, step=1) |
|
colorize_button = gr.Button("Colorize") |
|
|
|
|
|
|
|
|
|
extract_button.click( |
|
extract_line_image, |
|
inputs=[input_image, input_style, resolution], |
|
outputs=[extracted_image, VAE_input, input_context] |
|
) |
|
colorize_button.click( |
|
colorize_image, |
|
inputs=[VAE_input, input_context, reference_images, resolution, seed, input_style, num_inference_steps], |
|
outputs=output_gallery |
|
) |
|
|
|
with gr.Column(): |
|
gr.Markdown("### Quick Examples") |
|
gr.Examples( |
|
examples=examples, |
|
inputs=[input_image, reference_images, input_style, resolution, seed, num_inference_steps], |
|
label="Examples", |
|
examples_per_page=6, |
|
) |
|
|
|
gr.Markdown(article) |
|
|
|
|
|
|
|
|
|
|
|
demo.launch() |