|
import math |
|
from math import prod |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from architecture.grl_common.ops import ( |
|
calculate_mask, |
|
get_relative_coords_table, |
|
get_relative_position_index, |
|
window_partition, |
|
window_reverse, |
|
) |
|
from architecture.grl_common.swin_v1_block import Mlp |
|
from timm.models.layers import DropPath, to_2tuple |
|
|
|
|
|
class WindowAttentionV2(nn.Module): |
|
r"""Window based multi-head self attention (W-MSA) module with relative position bias. |
|
It supports both of shifted and non-shifted window. |
|
Args: |
|
dim (int): Number of input channels. |
|
window_size (tuple[int]): The height and width of the window. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0 |
|
proj_drop (float, optional): Dropout ratio of output. Default: 0.0 |
|
pretrained_window_size (tuple[int]): The height and width of the window in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
window_size, |
|
num_heads, |
|
qkv_bias=True, |
|
attn_drop=0.0, |
|
proj_drop=0.0, |
|
pretrained_window_size=[0, 0], |
|
use_pe=True, |
|
): |
|
|
|
super().__init__() |
|
self.dim = dim |
|
self.window_size = window_size |
|
self.pretrained_window_size = pretrained_window_size |
|
self.num_heads = num_heads |
|
self.use_pe = use_pe |
|
|
|
self.logit_scale = nn.Parameter( |
|
torch.log(10 * torch.ones((num_heads, 1, 1))), requires_grad=True |
|
) |
|
|
|
if self.use_pe: |
|
|
|
self.cpb_mlp = nn.Sequential( |
|
nn.Linear(2, 512, bias=True), |
|
nn.ReLU(inplace=True), |
|
nn.Linear(512, num_heads, bias=False), |
|
) |
|
table = get_relative_coords_table(window_size, pretrained_window_size) |
|
index = get_relative_position_index(window_size) |
|
self.register_buffer("relative_coords_table", table) |
|
self.register_buffer("relative_position_index", index) |
|
|
|
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = nn.Linear(dim, dim) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
self.softmax = nn.Softmax(dim=-1) |
|
|
|
def forward(self, x, mask=None): |
|
""" |
|
Args: |
|
x: input features with shape of (num_windows*B, N, C) |
|
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None |
|
""" |
|
B_, N, C = x.shape |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qkv = self.qkv(x) |
|
qkv = qkv.reshape(B_, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4) |
|
q, k, v = qkv[0], qkv[1], qkv[2] |
|
|
|
|
|
attn = F.normalize(q, dim=-1) @ F.normalize(k, dim=-1).transpose(-2, -1) |
|
logit_scale = torch.clamp(self.logit_scale, max=math.log(1.0 / 0.01)).exp() |
|
attn = attn * logit_scale |
|
|
|
|
|
if self.use_pe: |
|
bias_table = self.cpb_mlp(self.relative_coords_table) |
|
bias_table = bias_table.view(-1, self.num_heads) |
|
|
|
win_dim = prod(self.window_size) |
|
bias = bias_table[self.relative_position_index.view(-1)] |
|
bias = bias.view(win_dim, win_dim, -1).permute(2, 0, 1).contiguous() |
|
|
|
bias = 16 * torch.sigmoid(bias) |
|
attn = attn + bias.unsqueeze(0) |
|
|
|
|
|
if mask is not None: |
|
nW = mask.shape[0] |
|
mask = mask.unsqueeze(1).unsqueeze(0) |
|
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask |
|
attn = attn.view(-1, self.num_heads, N, N) |
|
|
|
|
|
attn = self.softmax(attn) |
|
attn = self.attn_drop(attn) |
|
x = (attn @ v).transpose(1, 2).reshape(B_, N, C) |
|
|
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, window_size={self.window_size}, " |
|
f"pretrained_window_size={self.pretrained_window_size}, num_heads={self.num_heads}" |
|
) |
|
|
|
def flops(self, N): |
|
|
|
flops = 0 |
|
|
|
flops += N * self.dim * 3 * self.dim |
|
|
|
flops += self.num_heads * N * (self.dim // self.num_heads) * N |
|
|
|
flops += self.num_heads * N * N * (self.dim // self.num_heads) |
|
|
|
flops += N * self.dim * self.dim |
|
return flops |
|
|
|
|
|
class WindowAttentionWrapperV2(WindowAttentionV2): |
|
def __init__(self, shift_size, input_resolution, **kwargs): |
|
super(WindowAttentionWrapperV2, self).__init__(**kwargs) |
|
self.shift_size = shift_size |
|
self.input_resolution = input_resolution |
|
|
|
if self.shift_size > 0: |
|
attn_mask = calculate_mask(input_resolution, self.window_size, shift_size) |
|
else: |
|
attn_mask = None |
|
self.register_buffer("attn_mask", attn_mask) |
|
|
|
def forward(self, x, x_size): |
|
H, W = x_size |
|
B, L, C = x.shape |
|
x = x.view(B, H, W, C) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2)) |
|
|
|
|
|
x = window_partition(x, self.window_size) |
|
x = x.view(-1, prod(self.window_size), C) |
|
|
|
|
|
if self.input_resolution == x_size: |
|
attn_mask = self.attn_mask |
|
else: |
|
attn_mask = calculate_mask(x_size, self.window_size, self.shift_size) |
|
attn_mask = attn_mask.to(x.device) |
|
|
|
|
|
x = super(WindowAttentionWrapperV2, self).forward(x, mask=attn_mask) |
|
|
|
|
|
|
|
x = x.view(-1, *self.window_size, C) |
|
x = window_reverse(x, self.window_size, x_size) |
|
|
|
|
|
if self.shift_size > 0: |
|
x = torch.roll(x, shifts=(self.shift_size, self.shift_size), dims=(1, 2)) |
|
x = x.view(B, H * W, C) |
|
|
|
return x |
|
|
|
|
|
class SwinTransformerBlockV2(nn.Module): |
|
r"""Swin Transformer Block. |
|
Args: |
|
dim (int): Number of input channels. |
|
input_resolution (tuple[int]): Input resulotion. |
|
num_heads (int): Number of attention heads. |
|
window_size (int): Window size. |
|
shift_size (int): Shift size for SW-MSA. |
|
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. |
|
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True |
|
drop (float, optional): Dropout rate. Default: 0.0 |
|
attn_drop (float, optional): Attention dropout rate. Default: 0.0 |
|
drop_path (float, optional): Stochastic depth rate. Default: 0.0 |
|
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU |
|
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm |
|
pretrained_window_size (int): Window size in pre-training. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
dim, |
|
input_resolution, |
|
num_heads, |
|
window_size=7, |
|
shift_size=0, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
drop=0.0, |
|
attn_drop=0.0, |
|
drop_path=0.0, |
|
act_layer=nn.GELU, |
|
norm_layer=nn.LayerNorm, |
|
pretrained_window_size=0, |
|
use_pe=True, |
|
res_scale=1.0, |
|
): |
|
super().__init__() |
|
self.dim = dim |
|
self.input_resolution = input_resolution |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.shift_size = shift_size |
|
self.mlp_ratio = mlp_ratio |
|
if min(self.input_resolution) <= self.window_size: |
|
|
|
self.shift_size = 0 |
|
self.window_size = min(self.input_resolution) |
|
assert ( |
|
0 <= self.shift_size < self.window_size |
|
), "shift_size must in 0-window_size" |
|
self.res_scale = res_scale |
|
|
|
self.attn = WindowAttentionWrapperV2( |
|
shift_size=self.shift_size, |
|
input_resolution=self.input_resolution, |
|
dim=dim, |
|
window_size=to_2tuple(self.window_size), |
|
num_heads=num_heads, |
|
qkv_bias=qkv_bias, |
|
attn_drop=attn_drop, |
|
proj_drop=drop, |
|
pretrained_window_size=to_2tuple(pretrained_window_size), |
|
use_pe=use_pe, |
|
) |
|
self.norm1 = norm_layer(dim) |
|
|
|
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() |
|
|
|
self.mlp = Mlp( |
|
in_features=dim, |
|
hidden_features=int(dim * mlp_ratio), |
|
act_layer=act_layer, |
|
drop=drop, |
|
) |
|
self.norm2 = norm_layer(dim) |
|
|
|
def forward(self, x, x_size): |
|
|
|
x = x + self.res_scale * self.drop_path(self.norm1(self.attn(x, x_size))) |
|
|
|
x = x + self.res_scale * self.drop_path(self.norm2(self.mlp(x))) |
|
|
|
return x |
|
|
|
def extra_repr(self) -> str: |
|
return ( |
|
f"dim={self.dim}, input_resolution={self.input_resolution}, num_heads={self.num_heads}, " |
|
f"window_size={self.window_size}, shift_size={self.shift_size}, mlp_ratio={self.mlp_ratio}, res_scale={self.res_scale}" |
|
) |
|
|
|
def flops(self): |
|
flops = 0 |
|
H, W = self.input_resolution |
|
|
|
flops += self.dim * H * W |
|
|
|
nW = H * W / self.window_size / self.window_size |
|
flops += nW * self.attn.flops(self.window_size * self.window_size) |
|
|
|
flops += 2 * H * W * self.dim * self.dim * self.mlp_ratio |
|
|
|
flops += self.dim * H * W |
|
return flops |
|
|