|
''' |
|
Gradio demo (almost the same code as the one used in Huggingface space) |
|
''' |
|
import os, sys |
|
import cv2 |
|
import time |
|
import datetime, pytz |
|
import gradio as gr |
|
import torch |
|
import numpy as np |
|
from torchvision.utils import save_image |
|
|
|
|
|
|
|
root_path = os.path.abspath('.') |
|
sys.path.append(root_path) |
|
from test_code.inference import super_resolve_img |
|
from test_code.test_utils import load_grl, load_rrdb, load_dat |
|
|
|
|
|
def auto_download_if_needed(weight_path): |
|
if os.path.exists(weight_path): |
|
return |
|
|
|
if not os.path.exists("pretrained"): |
|
os.makedirs("pretrained") |
|
|
|
if weight_path == "pretrained/4x_APISR_RRDB_GAN_generator.pth": |
|
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.2.0/4x_APISR_RRDB_GAN_generator.pth") |
|
os.system("mv 4x_APISR_RRDB_GAN_generator.pth pretrained") |
|
|
|
if weight_path == "pretrained/4x_APISR_GRL_GAN_generator.pth": |
|
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/4x_APISR_GRL_GAN_generator.pth") |
|
os.system("mv 4x_APISR_GRL_GAN_generator.pth pretrained") |
|
|
|
if weight_path == "pretrained/2x_APISR_RRDB_GAN_generator.pth": |
|
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.1.0/2x_APISR_RRDB_GAN_generator.pth") |
|
os.system("mv 2x_APISR_RRDB_GAN_generator.pth pretrained") |
|
|
|
if weight_path == "pretrained/4x_APISR_DAT_GAN_generator.pth": |
|
os.system("wget https://github.com/Kiteretsu77/APISR/releases/download/v0.3.0/4x_APISR_DAT_GAN_generator.pth") |
|
os.system("mv 4x_APISR_DAT_GAN_generator.pth pretrained") |
|
|
|
|
|
|
|
def inference(img_path, model_name): |
|
|
|
try: |
|
weight_dtype = torch.float32 |
|
|
|
|
|
if model_name == "4xGRL": |
|
weight_path = "pretrained/4x_APISR_GRL_GAN_generator.pth" |
|
auto_download_if_needed(weight_path) |
|
generator = load_grl(weight_path, scale=4) |
|
|
|
elif model_name == "4xRRDB": |
|
weight_path = "pretrained/4x_APISR_RRDB_GAN_generator.pth" |
|
auto_download_if_needed(weight_path) |
|
generator = load_rrdb(weight_path, scale=4) |
|
|
|
elif model_name == "2xRRDB": |
|
weight_path = "pretrained/2x_APISR_RRDB_GAN_generator.pth" |
|
auto_download_if_needed(weight_path) |
|
generator = load_rrdb(weight_path, scale=2) |
|
|
|
elif model_name == "4xDAT": |
|
weight_path = "pretrained/4x_APISR_DAT_GAN_generator.pth" |
|
auto_download_if_needed(weight_path) |
|
generator = load_dat(weight_path, scale=4) |
|
|
|
else: |
|
raise gr.Error("We don't support such Model") |
|
|
|
generator = generator.to(dtype=weight_dtype) |
|
|
|
|
|
print("We are processing ", img_path) |
|
print("The time now is ", datetime.datetime.now(pytz.timezone('US/Eastern'))) |
|
|
|
|
|
super_resolved_img = super_resolve_img(generator, img_path, output_path=None, weight_dtype=weight_dtype, downsample_threshold=720, crop_for_4x=True) |
|
store_name = str(time.time()) + ".png" |
|
save_image(super_resolved_img, store_name) |
|
outputs = cv2.imread(store_name) |
|
outputs = cv2.cvtColor(outputs, cv2.COLOR_RGB2BGR) |
|
os.remove(store_name) |
|
|
|
return outputs |
|
|
|
|
|
except Exception as error: |
|
raise gr.Error(f"global exception: {error}") |
|
|
|
|
|
|
|
if __name__ == '__main__': |
|
|
|
MARKDOWN = \ |
|
""" |
|
## <p style='text-align: center'> APISR: Anime Production Inspired Real-World Anime Super-Resolution (CVPR 2024) </p> |
|
|
|
[GitHub](https://github.com/Kiteretsu77/APISR) | [Paper](https://arxiv.org/abs/2403.01598) |
|
|
|
APISR aims at restoring and enhancing low-quality low-resolution **anime** images and video sources with various degradations from real-world scenarios. |
|
|
|
### Note: Due to memory restriction, all images whose short side is over 720 pixel will be downsampled to 720 pixel with the same aspect ratio. E.g., 1920x1080 -> 1280x720 |
|
### Note: Please check [Model Zoo](https://github.com/Kiteretsu77/APISR/blob/main/docs/model_zoo.md) for the description of each weight and [Here](https://imgsli.com/MjU0MjI0) for model comparisons. |
|
|
|
### If APISR is helpful, please help star the [GitHub Repo](https://github.com/Kiteretsu77/APISR). Thanks! ### |
|
""" |
|
|
|
block = gr.Blocks().queue(max_size=10) |
|
with block: |
|
with gr.Row(): |
|
gr.Markdown(MARKDOWN) |
|
with gr.Row(elem_classes=["container"]): |
|
with gr.Column(scale=2): |
|
input_image = gr.Image(type="filepath", label="Input") |
|
model_name = gr.Dropdown( |
|
[ |
|
"2xRRDB", |
|
"4xRRDB", |
|
"4xGRL", |
|
"4xDAT", |
|
], |
|
type="value", |
|
value="4xGRL", |
|
label="model", |
|
) |
|
run_btn = gr.Button(value="Submit") |
|
|
|
with gr.Column(scale=3): |
|
output_image = gr.Image(type="numpy", label="Output image") |
|
|
|
with gr.Row(elem_classes=["container"]): |
|
gr.Examples( |
|
[ |
|
["keqing1.png"], |
|
["keqing2.png"], |
|
["lisa0.png"], |
|
["__assets__/lr_inputs/image-00277.png"], |
|
["__assets__/lr_inputs/image-00542.png"], |
|
["__assets__/lr_inputs/41.png"], |
|
["__assets__/lr_inputs/f91.jpg"], |
|
["__assets__/lr_inputs/image-00440.png"], |
|
["__assets__/lr_inputs/image-00164.jpg"], |
|
["__assets__/lr_inputs/img_eva.jpeg"], |
|
["__assets__/lr_inputs/naruto.jpg"], |
|
], |
|
[input_image], |
|
) |
|
|
|
run_btn.click(inference, inputs=[input_image, model_name], outputs=[output_image]) |
|
|
|
block.launch(share = True) |
|
|