|
''' |
|
This is file is to execute the inference for a single image or a folder input |
|
''' |
|
import argparse |
|
import os, sys, cv2, shutil, warnings |
|
import torch |
|
import gradio as gr |
|
from torchvision.transforms import ToTensor |
|
from torchvision.utils import save_image |
|
warnings.simplefilter("default") |
|
os.environ["PYTHONWARNINGS"] = "default" |
|
|
|
|
|
|
|
root_path = os.path.abspath('.') |
|
sys.path.append(root_path) |
|
from test_code.test_utils import load_grl, load_rrdb, load_cunet |
|
|
|
|
|
|
|
@torch.no_grad |
|
def super_resolve_img(generator, input_path, output_path=None, weight_dtype=torch.float32, downsample_threshold=720, crop_for_4x=True): |
|
''' Super Resolve a low resolution image |
|
Args: |
|
generator (torch): the generator class that is already loaded |
|
input_path (str): the path to the input lr images |
|
output_path (str): the directory to store the generated images |
|
weight_dtype (bool): the weight type (float32/float16) |
|
downsample_threshold (int): the threshold of height/width (short side) to downsample the input |
|
crop_for_4x (bool): whether we crop the lr images to match 4x scale (needed for some situation) |
|
''' |
|
print("Processing image {}".format(input_path)) |
|
|
|
|
|
img_lr = cv2.imread(input_path) |
|
h, w, c = img_lr.shape |
|
|
|
|
|
|
|
short_side = min(h, w) |
|
if downsample_threshold != -1 and short_side > downsample_threshold: |
|
resize_ratio = short_side / downsample_threshold |
|
img_lr = cv2.resize(img_lr, (int(w/resize_ratio), int(h/resize_ratio)), interpolation = cv2.INTER_LINEAR) |
|
|
|
|
|
|
|
if crop_for_4x: |
|
h, w, _ = img_lr.shape |
|
if h % 4 != 0: |
|
img_lr = img_lr[:4*(h//4),:,:] |
|
if w % 4 != 0: |
|
img_lr = img_lr[:,:4*(w//4),:] |
|
|
|
|
|
h, w, c = img_lr.shape |
|
if h*w > 720*1280: |
|
raise gr.Error("The input image size is too large. The largest area we support is 720x1280=921600 pixel!") |
|
|
|
|
|
|
|
img_lr = cv2.cvtColor(img_lr, cv2.COLOR_BGR2RGB) |
|
img_lr = ToTensor()(img_lr).unsqueeze(0).cuda() |
|
img_lr = img_lr.to(dtype=weight_dtype) |
|
|
|
|
|
|
|
print("lr shape is ", img_lr.shape) |
|
super_resolved_img = generator(img_lr) |
|
|
|
|
|
with torch.cuda.amp.autocast(): |
|
if output_path is not None: |
|
save_image(super_resolved_img, output_path) |
|
|
|
|
|
torch.cuda.empty_cache() |
|
|
|
return super_resolved_img |
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--input_dir', type = str, default = '__assets__/lr_inputs', help="Can be either single image input or a folder input") |
|
parser.add_argument('--model', type = str, default = 'GRL', help=" 'GRL' || 'RRDB' (for ESRNET & ESRGAN) || 'CUNET' (for Real-ESRGAN) ") |
|
parser.add_argument('--scale', type = int, default = 4, help="Up scaler factor") |
|
parser.add_argument('--weight_path', type = str, default = 'pretrained/4x_APISR_GRL_GAN_generator.pth', help="Weight path directory, usually under saved_models folder") |
|
parser.add_argument('--store_dir', type = str, default = 'sample_outputs', help="The folder to store the super-resolved images") |
|
parser.add_argument('--float16_inference', type = bool, default = False, help="Float16 inference, only useful in RRDB now") |
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_dir = args.input_dir |
|
model = args.model |
|
weight_path = args.weight_path |
|
store_dir = args.store_dir |
|
scale = args.scale |
|
float16_inference = args.float16_inference |
|
|
|
|
|
|
|
if not os.path.exists(weight_path): |
|
print("we cannot locate weight path ", weight_path) |
|
|
|
os._exit(0) |
|
|
|
|
|
|
|
if os.path.exists(store_dir): |
|
shutil.rmtree(store_dir) |
|
os.makedirs(store_dir) |
|
|
|
|
|
|
|
|
|
if float16_inference: |
|
torch.backends.cudnn.benchmark = True |
|
weight_dtype = torch.float16 |
|
else: |
|
weight_dtype = torch.float32 |
|
|
|
|
|
|
|
if model == "GRL": |
|
generator = load_grl(weight_path, scale=scale) |
|
elif model == "RRDB": |
|
generator = load_rrdb(weight_path, scale=scale) |
|
generator = generator.to(dtype=weight_dtype) |
|
|
|
|
|
|
|
if os.path.isdir(store_dir): |
|
for filename in sorted(os.listdir(input_dir)): |
|
input_path = os.path.join(input_dir, filename) |
|
output_path = os.path.join(store_dir, filename) |
|
|
|
super_resolve_img(generator, input_path, output_path, weight_dtype, crop_for_4x=True) |
|
|
|
else: |
|
filename = os.path.split(input_dir)[-1].split('.')[0] |
|
output_path = os.path.join(store_dir, filename+"_"+str(scale)+"x.png") |
|
|
|
super_resolve_img(generator, input_dir, output_path, weight_dtype, crop_for_4x=True) |
|
|
|
|