svijayanand's picture
Update app.py
92443d8 verified
import asyncio
import logging
from dotenv import load_dotenv
from pathlib import Path
from ingest_data import download_data_and_create_embedding
# from ingest_data import run_rag
from langchain_community.vectorstores import FAISS
from langchain_core.runnables.passthrough import RunnablePassthrough
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import ChatPromptTemplate
from langchain_openai import ChatOpenAI
from ingest_data import underlying_embeddings, openai_api_key
from langchain.chat_models import ChatOpenAI
from langchain.prompts import ChatPromptTemplate
from langchain.schema import StrOutputParser
import chainlit as cl
# load env variables
# load_dotenv()
# # Asynchronous execution (e.g., for a better a chatbot user experience)
# async def call_chain_async(question):
# print("invoke the runnable chain")
# output_chunks = await runnable_chain.ainvoke(question)
# return output_chunks
# Specify the path to the file you want to check
# file_path = Path('./faiss_index/index.faiss')
# # Check if the file exists
# if file_path.exists():
# print("Embeddings already done, use the saved index")
# # Combine the retrieved data with the output of the LLM
# vector_store = FAISS.load_local(
# "faiss_index", underlying_embeddings, allow_dangerous_deserialization=True
# )
# else:
# vector_store = download_data_and_create_embedding()
# @cl.on_chat_start
# async def on_chat_start():
# model = ChatOpenAI(streaming=True)
# prompt = ChatPromptTemplate.from_messages(
# [
# (
# "system",
# "You're a very knowledgeable historian who provides accurate and eloquent answers to historical questions.",
# ),
# ("human", "{question}"),
# ]
# )
# runnable = prompt | model | StrOutputParser()
# cl.user_session.set("runnable", runnable)
# @cl.on_message
# async def on_message(message: cl.Message):
# runnable = cl.user_session.get("runnable") # type: Runnable
# msg = cl.Message(content="")
# async for chunk in runnable.astream(
# {"question": message.content},
# config=RunnableConfig(callbacks=[cl.LangchainCallbackHandler()]),
# ):
# await msg.stream_token(chunk)
# await msg.send()
# @cl.on_message
# async def main(question):
# response = await call_chain_async(question.content)
# await cl.Message(content=response).send()
@cl.on_chat_start
async def on_chat_start():
msg=cl.Message(content="Firing up the movie info chatbot...")
await msg.send()
msg.content= "Hi, welcome to movie info chatbot. What is your query?"
await msg.update()
@cl.on_message
async def on_message(message: cl.Message):
print("Embeddings already done, use the saved index")
# Combine the retrieved data with the output of the LLM
vector_store = FAISS.load_local(
"faiss_index", underlying_embeddings, allow_dangerous_deserialization=True
)
# create a prompt template to send to our LLM that will incorporate the documents from our retriever with the
# question we ask the chat model
print("Creating Prompt Template...")
prompt_template = ChatPromptTemplate.from_template(
"Answer the {question} based on the following {context}."
)
# create a retriever for our documents
print("initializing retriever...")
retriever = vector_store.as_retriever()
# create a chat model / LLM
print("initializing LLM...")
chat_model = ChatOpenAI(
model="gpt-3.5-turbo", temperature=0, api_key=openai_api_key
)
# create a parser to parse the output of our LLM
print("initializing str output parser...")
parser = StrOutputParser()
# 💻 Create the sequence (recipe)
print("initializing runnable chain...")
runnable_chain = (
# TODO: How do we chain the output of our retriever, prompt, model and model output parser so that we can get a good answer to our query?
{"context": retriever, "question": RunnablePassthrough()}
| prompt_template
| chat_model
| StrOutputParser()
)
print("Answer the following Question:")
print(message.content)
# Asynchronous execution (e.g., for a better a chatbot user experience)
output_chunks = runnable_chain.invoke(message.content)
# output_chunks = await runnable_chain.ainvoke(cl.Message.content)
answer = ''.join(output_chunks)
print(f"answer to question is : {answer}")
# output_stream = asyncio.run(call_chain_async("What are some good sci-fi movies from the 1980s?"))
# print("".join(output_stream))
# answer = await call_chain_async(question.content)
await cl.Message(content=answer).send()