svenwey commited on
Commit
f07bac5
·
1 Parent(s): 0b41e7e
Files changed (1) hide show
  1. logmetric.py +6 -6
logmetric.py CHANGED
@@ -98,25 +98,25 @@ class LogMetric(evaluate.Metric):
98
  pass
99
 
100
  # Jaccard Similarity to measure closeness of two log-messages
101
- def get_jaccard_similarity(set1, set2):
102
  intersection = set1.intersection(set2)
103
  union = set1.union(set2)
104
  return len(intersection) / len(union)
105
 
106
  # A score depending on the difference in length of two sentences
107
- def get_length_score(sentence1, sentence2):
108
  s1len = len(sentence1)
109
  s2len = len(sentence2)
110
 
111
  return 1 - (abs(s1len - s2len) / max(s1len, s2len))
112
 
113
  # Combine a weighted average of different scores
114
- def get_overall_similarity(sentence1, sentence2):
115
  s1split = sentence1.split()
116
  s2split = sentence2.split()
117
 
118
- jaccard_score = get_jaccard_similarity(set(s1split), set(s2split))
119
- length_score = get_length_score(s1split, s2split)
120
 
121
  return (jaccard_score * 0.7 + length_score * 0.3) * 100.0
122
 
@@ -196,7 +196,7 @@ class LogMetric(evaluate.Metric):
196
  monotonicallyIncreasingScore = 0.0
197
 
198
  # apply jaccard-similarity to every pred-ref pair and then take mean score * 100
199
- local_score = np.mean([get_overall_similarity(p, r) for p,r in
200
  zip(
201
  list(map(lambda t: t[1], pred_logentries))[:min_logentries],
202
  list(map(lambda t: t[1], ref_logentries))[:min_logentries]
 
98
  pass
99
 
100
  # Jaccard Similarity to measure closeness of two log-messages
101
+ def get_jaccard_similarity(self, set1, set2):
102
  intersection = set1.intersection(set2)
103
  union = set1.union(set2)
104
  return len(intersection) / len(union)
105
 
106
  # A score depending on the difference in length of two sentences
107
+ def get_length_score(self, sentence1, sentence2):
108
  s1len = len(sentence1)
109
  s2len = len(sentence2)
110
 
111
  return 1 - (abs(s1len - s2len) / max(s1len, s2len))
112
 
113
  # Combine a weighted average of different scores
114
+ def get_overall_similarity(self, sentence1, sentence2):
115
  s1split = sentence1.split()
116
  s2split = sentence2.split()
117
 
118
+ jaccard_score = self.get_jaccard_similarity(set(s1split), set(s2split))
119
+ length_score = self.get_length_score(s1split, s2split)
120
 
121
  return (jaccard_score * 0.7 + length_score * 0.3) * 100.0
122
 
 
196
  monotonicallyIncreasingScore = 0.0
197
 
198
  # apply jaccard-similarity to every pred-ref pair and then take mean score * 100
199
+ local_score = np.mean([self.get_overall_similarity(p, r) for p,r in
200
  zip(
201
  list(map(lambda t: t[1], pred_logentries))[:min_logentries],
202
  list(map(lambda t: t[1], ref_logentries))[:min_logentries]