adapt logmetric to also make local per-logmsg test using sacrebleu
Browse files- logmetric.py +71 -21
logmetric.py
CHANGED
@@ -67,7 +67,7 @@ class LogMetric(evaluate.Metric):
|
|
67 |
"""TODO: Short description of my evaluation module."""
|
68 |
|
69 |
# Constant regex to get timestrings
|
70 |
-
timestamp_regex = r'(
|
71 |
timestamp_pattern = re.compile(timestamp_regex, re.MULTILINE)
|
72 |
|
73 |
def _info(self):
|
@@ -96,54 +96,104 @@ class LogMetric(evaluate.Metric):
|
|
96 |
# TODO: Download external resources if needed
|
97 |
pass
|
98 |
|
99 |
-
def getLogMetric(self, pred : str, ref : str):
|
100 |
ref = ref.strip(' \t\n\r')
|
101 |
pred = pred.strip(' \t\n\r')
|
102 |
|
103 |
# Find all timestrings in the log
|
104 |
-
pred_timestrings = self.timestamp_pattern.findall(pred)
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
|
111 |
-
|
112 |
-
|
113 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
# replace all digits in the reference timestamp (first timestamp) with '/d' to get
|
116 |
# a regex that describes the format
|
117 |
-
pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(
|
118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
# A variable to save the previous timestamp (as datetime obj) to check monotonicity
|
120 |
prev_datetime = None
|
121 |
# Convert matches to datetime objects
|
122 |
-
|
|
|
|
|
|
|
123 |
try:
|
124 |
# Check if the format matches with the format of the first timestamp
|
|
|
125 |
matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
|
126 |
# Check if the timestamps are monotonically increasing
|
127 |
cur_datetime = dateutil.parser.parse(ts)
|
128 |
monotonicallyIncreasing = True if prev_datetime == None else prev_datetime <= cur_datetime
|
129 |
prev_datetime = cur_datetime
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
|
|
|
|
134 |
|
135 |
except Exception as e:
|
136 |
# e.g. date format not parsable by dateutil.parser
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
# Correct amt of timestrings, monotonically increasing, consistent + (by dateutil.parser) parsable format
|
140 |
-
return 1.
|
141 |
|
142 |
-
def _compute(self, predictions, references):
|
143 |
"""Returns the scores"""
|
144 |
|
|
|
|
|
145 |
t_before_logmetric = time.perf_counter()
|
146 |
-
timestamp_score = np.mean([self.getLogMetric(p,r) for p,r in zip(predictions,references)])
|
147 |
t_after_logmetric = time.perf_counter()
|
148 |
|
149 |
logmetric_duration = f" {t_after_logmetric - t_before_logmetric:0.10f}"
|
|
|
67 |
"""TODO: Short description of my evaluation module."""
|
68 |
|
69 |
# Constant regex to get timestrings
|
70 |
+
timestamp_regex = r'^\s*(\d{4}[-/.]\d{2}[-/.]\d{2}(?:[ T]\d{2}[:]\d{2}(?:[:]\d{2}(?:[.,]\d+)?)?(?:Z|[+-]\d{2}[:]\d{2})?)?)\s*'
|
71 |
timestamp_pattern = re.compile(timestamp_regex, re.MULTILINE)
|
72 |
|
73 |
def _info(self):
|
|
|
96 |
# TODO: Download external resources if needed
|
97 |
pass
|
98 |
|
99 |
+
def getLogMetric(self, pred : str, ref : str, sacrebleu):
|
100 |
ref = ref.strip(' \t\n\r')
|
101 |
pred = pred.strip(' \t\n\r')
|
102 |
|
103 |
# Find all timestrings in the log
|
104 |
+
# pred_timestrings = self.timestamp_pattern.findall(pred)
|
105 |
+
pred_split_log = self.timestamp_pattern.split(pred)
|
106 |
+
# ref_timestrings = self.timestamp_pattern.findall(ref)
|
107 |
+
ref_split_log = self.timestamp_pattern.split(ref)
|
108 |
+
|
109 |
+
# This should alwas hold (safety feature)
|
110 |
+
# TODO: remove this after testing
|
111 |
+
assert(len(pred_split_log) % 2 == len(ref_split_log) % 2 == 1)
|
112 |
+
|
113 |
+
# One logentry always consists of timestamp + log-message
|
114 |
+
pred_logentries = []
|
115 |
+
ref_logentries = []
|
116 |
+
|
117 |
+
# reorganize log into logentry-tuples, consisting of timestamp + log-message
|
118 |
+
for i in range(1, len(pred_split_log), 2):
|
119 |
+
pred_logentries.append((pred_split_log[i],pred_split_log[i+1]))
|
120 |
|
121 |
+
for i in range(1, len(ref_split_log), 2):
|
122 |
+
ref_logentries.append((ref_split_log[i],ref_split_log[i+1]))
|
123 |
+
|
124 |
+
# The number of logentries of the reference/prediction which has more/less entries/timestamps
|
125 |
+
max_logentries = max(len(pred_logentries), len(ref_logentries))
|
126 |
+
min_logentries = min(len(pred_logentries), len(ref_logentries))
|
127 |
+
|
128 |
+
|
129 |
+
# Case there are no timestamps in reference and none in prediction
|
130 |
+
# we can compute bleu directly from original prediction (ref will be empty, but we offload this to the bleu metric)
|
131 |
+
if (len(pred_logentries) == 0 and len(ref_logentries) == 0):
|
132 |
+
# TODO: remove this later, for testing purposes only
|
133 |
+
assert(pred == "")
|
134 |
+
# any sensible log reference is empty if there is no timestamp, hence it suffices to check exact match
|
135 |
+
logmsg_score = 100.0 if pred == ref else 0.0
|
136 |
+
return 0.3 * 100.0 + 0.7 * logmsg_score
|
137 |
|
138 |
+
# Case one has 0 timestamps, other has >0 timestamps
|
139 |
+
if (len(pred_logentries) == 0 or len(ref_logentries) == 0):
|
140 |
+
# It is nonsensical to compare something in this case
|
141 |
+
return 0.0
|
142 |
+
|
143 |
+
|
144 |
# replace all digits in the reference timestamp (first timestamp) with '/d' to get
|
145 |
# a regex that describes the format
|
146 |
+
pred_timestring_pattern = re.sub(r'\d', r'\\d', re.escape(pred_logentries[0][0]))
|
147 |
|
148 |
+
matchesPatternScore = 100.0
|
149 |
+
monotonicallyIncreasingScore = 100.0
|
150 |
+
|
151 |
+
# An array to save score per logentry
|
152 |
+
logmessage_scores = []
|
153 |
+
# TODO: Idea to penalize too long/ short logs-> add the amount of(max_len - min_len) between timestamps times score 0 at the end
|
154 |
# A variable to save the previous timestamp (as datetime obj) to check monotonicity
|
155 |
prev_datetime = None
|
156 |
# Convert matches to datetime objects
|
157 |
+
# TODO TODO TODO fix this:
|
158 |
+
for i in range(min_logentries):
|
159 |
+
ts, pred_lm = pred_logentries[i]
|
160 |
+
_, ref_lm = ref_logentries[i]
|
161 |
try:
|
162 |
# Check if the format matches with the format of the first timestamp
|
163 |
+
# TODO!! Check this later, maybe it is too restricting for training a llm
|
164 |
matchesPattern = re.fullmatch(pred_timestring_pattern, ts) is not None
|
165 |
# Check if the timestamps are monotonically increasing
|
166 |
cur_datetime = dateutil.parser.parse(ts)
|
167 |
monotonicallyIncreasing = True if prev_datetime == None else prev_datetime <= cur_datetime
|
168 |
prev_datetime = cur_datetime
|
169 |
|
170 |
+
# If one entry doesn't fulfill the matching pattern property or the monotinicity property, set to 0 for whole log
|
171 |
+
if (not matchesPattern):
|
172 |
+
matchesPatternScore = 0.0
|
173 |
+
if (not monotonicallyIncreasing):
|
174 |
+
monotonicallyIncreasingScore = 0.0
|
175 |
|
176 |
except Exception as e:
|
177 |
# e.g. date format not parsable by dateutil.parser
|
178 |
+
matchesPatternScore = 0.0
|
179 |
+
monotonicallyIncreasingScore = 0.0
|
180 |
+
|
181 |
+
logmessage_scores.append(sacrebleu.compute(predictions=[pred_lm], references=[ref_lm])["score"])
|
182 |
+
|
183 |
+
# TODO: remove later. Used only for testing purposes
|
184 |
+
assert(len(logmessage_scores) == min_logentries)
|
185 |
+
# we aggregate the bleu scores where we weight the difference in logentries with a score of 0
|
186 |
+
logmessage_aggregated_score = ((min_logentries / max_logentries) * np.mean(logmessage_scores))
|
187 |
# Correct amt of timestrings, monotonically increasing, consistent + (by dateutil.parser) parsable format
|
188 |
+
return 0.2 * monotonicallyIncreasingScore + 0.1 * matchesPatternScore + 0.7 * logmessage_aggregated_score
|
189 |
|
190 |
+
def _compute(self, predictions, references, sacrebleu):
|
191 |
"""Returns the scores"""
|
192 |
|
193 |
+
# TODO: get separate log entries (split before timestamps), replace timestamps with token and compare the log entry with BLEU
|
194 |
+
|
195 |
t_before_logmetric = time.perf_counter()
|
196 |
+
timestamp_score = np.mean([self.getLogMetric(p,r, sacrebleu) for p,r in zip(predictions,references)])
|
197 |
t_after_logmetric = time.perf_counter()
|
198 |
|
199 |
logmetric_duration = f" {t_after_logmetric - t_before_logmetric:0.10f}"
|