Spaces:
Sleeping
Sleeping
import os | |
from http import HTTPStatus | |
from fastapi.responses import StreamingResponse | |
from fastapi import FastAPI, Query | |
from typing import List | |
import spaces | |
import torch | |
import uvicorn | |
import time | |
import numpy as np | |
os.system("pip install transformers") | |
os.system("pip install accelerate") | |
os.system("pip install peft") | |
os.system("pip install -U FlagEmbedding") | |
#fmt: off | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from FlagEmbedding import BGEM3FlagModel | |
app = FastAPI() | |
zero = torch.Tensor([0]).cuda() | |
print(zero.device) | |
model_name = "BAAI/bge-m3" | |
model = BGEM3FlagModel(model_name, | |
use_fp16=True) | |
def get_rag_text(sentence: str, candidates: List[str], top_k: int): | |
start_time = time.time() | |
query_embeddings = model.encode([sentence], | |
batch_size=1, | |
max_length=8192, # If you don't need such a long length, you can set a smaller value to speed up the encoding process. | |
)['dense_vecs'] | |
key_embeddings = model.encode(candidates)['dense_vecs'] | |
similarity = query_embeddings @ key_embeddings.T | |
similarity = similarity.squeeze(0) | |
elapsed_time = time.time() - start_time | |
print(elapsed_time) | |
rag_result = "" | |
top_k_indices = np.argsort(similarity)[-top_k:] | |
for idx in top_k_indices: | |
rag_result += (candidates[idx] + "/n") | |
rag_result = rag_result.rstrip() | |
return {"rag_result": rag_result} | |
async def get_rag_result(prompt: str, candidates: List[str] = Query(...), top_k: int = Query(...)): | |
rag_text = get_rag_text(prompt, candidates, top_k) | |
return rag_text | |
if __name__ == "__main__": | |
uvicorn.run(app, host="0.0.0.0", port=7860) |